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Abstract
The gravitymodel (GM) analogous toNewton’s law of universal gravitation has successfully described
theflowbetween different spatial regions, such as humanmigration, traffic flows, international
economic trades, etc. This simple but powerful approach relies only on the ‘mass’ factor represented
by the scale of the regions and the ‘geometrical’ factor represented by the geographical distance.
However, when the population has a subpopulation structure distinguished by different attributes, the
estimation of the flow solely from the coarse-grained geographical factors in theGMcauses the loss of
differential geographical information for each attribute. To exploit the full information contained in
the geographical information of subpopulation structure, we generalize theGM for populationflow
by explicitly harnessing the subpopulation properties characterized by both attributes and geography.
As a concrete example, we examine themarriage patterns between the bride and the groom clans of
Korea in the past. By exploitingmore refined geographical and clan information, our generalizedGM
properly describes the real data, a part of which could not be explained by the conventional GM.
Therefore, wewould like to emphasize the necessity of using our generalized version of theGM,when
the information on such nongeographical subpopulation structures is available.

1. Introduction

For decades, the gravitymodel (GM) has successfully explained flows between geographically separated two
regions such as trafficflow [1–5], international economic trades [6, 7], and humanmigration [8, 9]. TheGM is
named afterNewton’s law of universal gravitation because of the similarity in the formula: a certain type offlow
between two regions is proportional to the product of ‘mass’ of each region and inversely proportional to a
certain power of distance between the regions.We interpret themass depending on contexts; we can quantify the
relative importance of regions in humanmigration from their population sizes, and the relative importance of
countries in international trades from their economic scales. This simple but powerfulmodel has succeeded in
interpreting the real world. For instance, theGM indeed accurately describes the empirical data of daily human
mobility inmultiscalemobility networks [10]. It also nicely explains the inter- and intra-city trafficflows in
Korea [11], alongwith the passenger flows in theKorean subway system [12].

However, those examples only concern the spatial aspect of population.We can easily imaginemore
complicated situations such as the population flowbetween other attributes than the spatial or regional
attributes, when the population at a given region consists of subpopulation structures. The subpopulation
structures characterized by attributes for population flows can be ethnic groups, income levels, etc. In particular,
when spatialmovement of the subpopulation belonging to one attribute to another subpopulation takes place,
theflowbetween attributes becomes relevant. This applies not only to the population flowbut also to the
international trade, for instance. Goods are transferred in different economic sectors as the attributes, and one
may aim at estimating the flowbetween economic sectors. One such previous attempt to apply theGM to
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explain flowbetween attributes is [13] partly by a subset of the authors of this paper. However, the results have
revealed the limitation of the conventional GMwhen the geographical location of population center of a clan is
not representative. The limitation stems from the process of significant coarse graining of the detailed
geographical information of clans into a single point (the population center).

In this paper, we exploit detailed information on the population substructures by generalizing theGM,
rather than coarse graining the information. First, we formulate the generalized gravitymodel (GGM) to take the
full information available on the subpopulation (characterized by both geographical information and attribute
information)flows. Aswe show infigure 1(a), when subpopulations are distinguished not only by geographical
regions but also by attributes, flows between regions or attributes can be calculated by properly taking
subpopulation flowswithout information loss (see figures 1(b) and (c), respectively).We alsowould like to
emphasize the necessity of calculating subpopulation flows, because the population flows calculated from the
coarse-grained population data and those from individual subpopulation data are not equivalent. As a concrete
example, we apply theGGM tomarriage records combinedwith census data. The results show that it effectively
captures the geographical constraint imposed in themarriage patterns in the past, in contrast to theGM.

The paper is organized as follows.Wefirst formulate theGGM in section 2.We introduce our data set in
section 3 and apply themodel to this data. The result in section 4 demonstrates that theGGM indeed captures
the geographical information not available from theGM. Finally, we conclude ourwork in section 5.

2. TheGGM

Our derivation of theGGM is a natural extension of using themaximumentropy principle to derive theGM
[14, 15], wherewe replace regional indices with both regional and attribute indices.We provide our step-by-step
derivation in this section partly for a pedagogical purpose and the self-containedness of this paper, butmost
importantly, we can directly demonstrate the problemof using the coarse-grained population data during the
derivation. Themaximumentropy principle is theway to estimate a real probability distribution bymaximizing
entropy. In particular, thismethod is useful for systemswithmany degrees of freedombecause it focuses on only
a fewmacroscopic quantities. The real probability distribution is estimated by themaximumentropy principle
from the agreement of those observed quantities. Each Lagrangemultiplier corresponding to each constraint in
maximization gives the correspondingmodel parameter.

Let us start from the number NAB
ij( ) of people whomove from regionAwith attribute i to regionBwith

attribute j, wherewe take the convention of uppercase letters as the subscript for the region indices, and the
lowercase letters as the superscript for the attribute indices. The sets of attributes {i} for the sender side and {j}

Figure 1. (a)Wepresent the schematic figure for two spatial distributions of attributes, i and j, andflows between subpopulations.
Each attribute has its own spatial population distribution represented by the color gradient with the center ofmass, e.g., iCMor jCM
(marked by the × symbol). Since the population for a given region is again distinguished by its attribute, each subpopulation is
distinguished by both region and attribute indices denoted by uppercase letters,A,B,C, andD, and lowercase letters, i and j,
respectively.We illustrate all of the possible flow combinations between subpopulations, andwe use the rectangular and oval
boundaries to distinguish regions and attributes, respectively. (b)We show the comparison offlows between regions in the viewpoints
of GMandGGM.TheGMdescribed on the left considers theflowbetween regions. It integrates the population size at a given region
first to calculate theflow, while theGGMon the right first considers subpopulation flows and integrates them.Aswe show in section 2,
the results from theGMandGGMare not equivalent. (c)Wecompare theflows between attributes in theGMandGGM.TheGMon
the left takes into account theflowbetween attributes i and j from the centers of populations as in [13], which causes some information
loss due to the coarse graining. In contrast, we keep the entire information available by integrating all of the subpopulation flows in the
GGM (this paper).
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for the receiver side can be different. For example, {i} and {j} can be the education level and the income level,
respectively, whenwe try to describe the flowof employment fromone city’s education system to another city’s
industry. Our formalism adopts the discrete indices and summation, but it should be straightforward to deal
with the continuous cases by using continuous variables and integration.

The total number NA
i( ) of peoplemoving from regionAwith attribute i to anywherewith any attribute is then

N N . 1A
i

j B
AB
ij

,
å= ( )( ) ( )

In the sameway, the total number NB
j˜ ( )
of people who arrive at regionBwith attribute j from anywherewith any

attribute is given by

N N . 2B
j

i A
AB
ij

,
å=˜ ( )( ) ( )

Whenpeoplemove, they have to pay the cost, which is naturally a function of the distance between two regions,
among other factors.We denote the cost tomove from (i,A) to ( j,B) for each unit ofmovement by cAB

ij( ). Then,
the totalmoving costC is the followingweighted sum

C N c . 3
i A j B

AB
ij

AB
ij

, , ,
å= ( )( ) ( )

Wecan thenwrite down the numberW of all possible arrangements of travelers considering themultiplicity
factor NAB

ij( ) as

W
N

N
, 4

i A j B AB
ij

, , ,

=


! ( )( )

whereN is the total number ofmoving people, N Ni A j B AB
ij

, , ,= å ( ). In the entropymaximization scheme, NAB
ij{ }( ) is

estimated frommaximizing the Boltzmann entropy k WlogB (equivalentlymaximizingW)with constraints.
We consider three constraints underwhichW ismaximized: the outflows NA

i{ }( ) , the inflows NB
j{ ˜ }( )
, and the

totalmoving costC represented in equations (1)–(3). For this optimization problemunder given constraints, we
have to use the Lagrangemultipliermethod, i.e., tofind the stationary point of the Lagrangian

N
N

N
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5

AB
ij

i A j B AB
ij

i A
A
i

A
i

j B
AB
ij

j B
B
j

B
j

i A
AB
ij

i A j B
AB
ij

AB
ij

, , , , , , , , , ,




å å å å ål l g= + - + - + -
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥({ }) ! ˜ ˜

( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

where A
il , B

jl̃ , and γ are the Lagrangemultipliers for each constraint. This problem is essentially the recap of the
derivation for themost probable distribution in terms of a given energy value, from the standard formalismof
canonical ensemble in statisticalmechanics, so the readersmay check the details in any standard statistical
mechanics textbooks such as [19]. Themoving cost for eachmovement and the γ parameter here play the roles
of energy and inverse temperature there, respectively. The solution ofmaximizing equation (5) is given by

N N N e . 6AB
ij

A
i

B
j cAB

ij
µ g-˜ ( )( ) ( ) ( ) ( )

Note that all A
il and B

jl̃ becomeunity from the constraint itself (themass conservation), so there is only one free
parameter γ, which is determined by the real data. Later, wewill specifically choose the γ value thatminimizes
the error between themodel and real data.

Theflow from regionA to regionB usually decays as a function of the distance between themdue to the
obviously rising cost, and thuswe have to choose the cost function c(r) as an increasing function of the distance r
between two regions. Conventionally, we set the form c r rlnµ( ) [20], which leads equation (6) to

N
N N

r
. 7AB

ij A
i

B
j

AB

µ
g

˜
( )

( )( )
( ) ( )

Note that, though the numbers of leaving or arriving people, NA
i( ) and NB

j˜ ( )
, are not the population size Pregion

attribute

at each region and attribute, generally those are assumed to be linear to the population sizes [N PA
i

A
iµ( ) ( ) and

N PB
j

B
jµ˜ ( ) ( )], yielding

N
P P

r
. 8AB

ij A
i

B
j

AB

µ
g( )

( )( )
( ) ( )
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In this case, we can reproduce theGM for the flowbetween two spatial regions

N N
P P

r

P P

r
, 9AB

i j
AB
ij i A

i
j B

j

AB

A B

AB,
åº µ

å å
=

g g( ) ( )
( )( )

( ) ( )

where PA andPB are total numbers of people who live in regionA and regionB, respectively. However, when NA
i( )

and NB
j˜ ( )
are nonlinear with respect to the population sizes such as in [10], i.e., N PA

i
A
iµ a[ ]( ) ( ) and N PB

j
B

jµ b˜ [ ]( ) ( ) ,
the populationflow from regionAwith attribute i to regionBwith attribute j: N P P rAB

ij
A
i

B
j

ABµ a b g[ ] [ ] ( )( ) ( ) ( ) . In
this case, the flow from regionA to regionB regardless of attributes:NAB cannot be explained by theGMunless
α=β=1 or the population contains only one attribute, because
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Note that the conventional GMprovides the upper or lower bounds: P Pi A
i å a a[ ] [ ]( ) forα>1 and

P Pi A
i å a a[ ] [ ]( ) forα<1, by using the convexity or concavity of the functional form.

In parallel, summing up NAB
ij( ) for all of the regions gives the number ofmoving people from attribute i to j,
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r
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This is not reducible to theGMeither, because
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where r(iCM, jCM) is the distance between the centers of population of i and j, as shown infigure 1. The only case
when the two expressions actually coincide is the assumption implicitlymade in [13]—the population of each
attribute i is treated as the ‘pointmass’ located in a single location in space, namely, iCM. TheGGMestimates the
flowbetween attributes without such a coarse graining process involving the information loss.Hence, theGGM
is the correct way to handle subpopulation structures when it comes to theGMof population flow.We later
show that it indeed effectively captures the geographical constraints for themarriage flow in the past obtained
from the data, whichwas not possible with the coarse-grained version of theGMdue to thewidely distributed
population of the clans [13].

3.Data sets

In the traditionally patriarchal culture of Korea after around 17th century, a bride usuallymoved to her groom’s
place in the past, once they gotmarried.We treat this type ofmigration caused by themarriage as ourmain data
of humanmigration. By applying theGGM tomarriage patterns between clans in the past, we estimate the
geographical constraints.We take the realmarriage flow O ij( ) from the bride clan i to the groom clan j from the
family book data called jokbo.We presentmore details in section 3.1. To compute themodelflow,we extract the
distance rAB between two regions and the distribution of the population for each clan, NA

i( ) (the bride side) and

NB
j˜ ( ) (the groom side), from themodern census data in 1985, 2000, and 2015—the three particular years when

the information on the regional distribution of each clan’s population is available.
Wemeasure the distance rAB based on geographical coordinates of the regions using theGooglemaps

application programming interface [21]. The traveling distancewithin the same region rAA is estimated as the
square root of the region’s area.We assume that the size of themoving populations, represented by NA

i( ) and

NB
j˜ ( )
, are proportional to that of the resident populations (from the census data) of the corresponding clans living

in the corresponding regions, sowe just take the face values of populations in the census data and treat them as
themigrating population for simplicity. As argued in [13], we use thismodern population data to estimate the
pastmigration flowbetween clans in jokbo data, based on the fact that the proportion of each clan living in each
regionwith respect to the total population of Korea has been relatively steady.

3.1. Jokbo data
Jokbo, or the Korean family book, records themembers of paternal lineage and eachmember’s spouse and
children. Even though a bride does not change her family name aftermarriage inKorean culture, shewas (and
still is inmany conservative families) considered to belong to the groom’s family aftermarriage. The key element
of jokbo for our research is the fact that it records information of the female spouse’s original clan including the
information on its geographical origin. Each clan has its own jokbo, which is passed down to descendants.
Previously, the distributions of clans inKorea have been studied based on ten jokbo data [16–18].Marriage

4
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patterns using the same data set have been studied in [13]with theGM framework under the assumption
described in the left figure offigure 1(c).

We also use the same ten jokbo data set, but at this timewemerge two jokbo among ten because those two are
different subgroups of the same clan (because our attribute unit is the clans), which results in the total number of
nine distinct jokbo used in our analysis.We count howmany brides from each clan imarriedwith grooms from
clan j, the owner of jokbo, and treat the number of brides as the realmigration flow O ij( ) from the bride clan i to
the groomclan j. Each jokbo contains between 5 146 and 189 158marriage entries (see table 1 for detailed
statistics).We index the jokbo in the ascending order of the value of j

optg( ) (that will be introduced in section 4)

predicted from the 2015 census data. There is a single case of a tie, andwe break it by using j
optg( ) from the

1985 data.

3.2. Census data

Weassume that the outflow NA
i( ) from (i, A) and the inflow NB

j˜ ( )
to ( j, B) are proportional to their population

sizes, PA
i( ) and PB

j( ), to predict theflow N ij( ) from equation (11). The population size of each clan residing in each
region is taken from theKorean census data [22], where the spatial resolution of the data is determined by the set
of 194 administrative regions. In particular, we use the census data in the years 1985 and 2000 as in [13], and the
newdata in 2015.We present the detailed population statistics for each groom clan in the census data in table 1.

Due to the changes in the administrative boundaries over 30 years (between 1985 and 2015), we have
generated the common set of 194 administrative regions for the three different years, wherewe have unified the
administrative regionswhose boundaries had been changed, following the procedure of [13] to unify the
administrative regions (for the two different years: 1985 and 2000, in [13]).

4. Results

Weapply theGGMexpressed in equation (11) to themarriage patterns in the past. The real number ofmarriage
entries {O ij( )} are listed in the jokbo data, andwe compare the predicted flow N ij{ }( ) from themodel with
{O ij( )}. For each groom clan (corresponding to each jokbo clan) j, the difference is quantified by the error

E E O N , 13j

i

ij

i

ij ij2 2å å= º -[ ] [ ] ( )( ) ( ) ( ) ( )

calculated from the list of the bride clans {i}. Note thatwe discard the selfmigration flow E jj( ) whenwe calculate
E j( ), because themarriage between the same clanswas forbidden in the past and it is indeed significantly
underrepresented as reported in [13]. In practice, we also checked that ignoring E jj( ) does notmakemuch of a
difference in our results. The proportionality factor for equation (11) is calculated byminimizing E j( ) at a given
value of jg( ). The optimal value j

optg( ) is assigned as the jg( ) value thatminimizes the error E j( ). In this case, we

vary the jg( ) value from0 to 10with the resolution of 0.1. The obtained j
optg( ) value indicates the geographical

constraint for the brides’migration to the groom clan j.
Infigure 2, on the left side of each panel (corresponding to each groom clan j), we show the error in

equation (13) as a function of jg( ), via the fact that N ij( ) is a function of jg( ). On the right side of each panel, we
also show scatter plots comparing the realflow O ij( ) versus the predicted flow N ij( ) from theGGMat a given j

optg( )

valuewith the guideline corresponding to O Nij ij=( ) ( ). The predicted flow N ij( ) and the number of entries O ij( )

Table 1.The volume of the jokbo and the census data. The number of bride clans and the total number of entries
in each jokbo are counted based on the existing clans in the census data. Note that we count all brides in the jokbo
whether it includes birth and death dates or not, and thus the volume can be different from the previous research
[13, 16–18]. In addition, the population sizes of the groom clans in the census data are presented.

Jokbo clan
Jokbo data Census data (population size)

Number of bride clans Number of entries Year 1985 Year 2000 Year 2015

1 1 755 155 392 3 892 342 4 324 478 4 456 700

2 1 077 59 588 47 383 61 650 78 607

3 1 149 54 377 200 334 232 753 298 092

4 901 25 542 25 115 25 667 34 802

5 782 39 405 231 289 238 505 324 507

6 804 25 343 21 756 21 536 27 343

7 1 723 189 158 343 700 380 530 445 946

8 607 12 846 15 539 17 939 20 484

9 356 5 146 103 220 123 688 163 610

5
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in jokbo are indeed close to the O Nij ij=( ) ( ) line. Since the results from1985, 2000, and 2015 census data are
qualitatively the same, we only show the results in 2015. Except for the clan 1, theGGMactually captures
nonzero j

optg( ) values, while the exponent j
optg( ) always vanishes whenwe use theGM for all of the jokbo [13].

We calculate N ij( ) from each census data in 1985, 2000, and 2015, sowe obtain the three j
optg( ) values

corresponding to each year, for each groom clan (see figure 3). From the similarity of error landscapes in each
census data, the j

optg( ) values for different years are notmuch different for a given groom clan j (check table 2 for

details), which indicates that the results of j
optg( ) are temporally robust for a given groom clan. It is also interesting

to note thatmany j
optg( ) values are around 2 corresponding to the same formulawith demographic gravitation

introduced in [2].Most importantly, comparedwith theGM results, i.e., 0j
optg ( ) for all of the groom clans [13],

theGGM indeed yields nonzero j
optg( ) values except for the clan 1. It implies that theGGMactually captures the

information of the geographical constraint on the flow, in contrast to theGMwhere it is hard to capture this

Figure 2.The error landscapes as the function of γ and the scatter plot of real and estimatedmarriage flows at j
optg( ) for each groom clan

j, with the census data in 2015.We index the groom clans according to j
optg( ) in the ascending order, from1 to 9. The panels (a)–(i)

correspond to the groom clans 1–9, respectively. For the actual error landscape plots, we use the normalized error E j( )(γ)/E j( )(γ=0)
with respect to the γ=0 case. The vertical dashed lines in the error landscapes indicate the j

optg( ) value that gives theminimumvalue of

E j( ).

Figure 3.The estimated exponent j
optg( ) of distance in equation (11) from the census data in 1985, 2000, and 2015, for each groom clan

j. The horizontal axis indicates groom clans, andwe use three different types of symbols to distinguish the results for each year.We
shade every other column for better readability.

6
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geographical information due to the coarse graining, i.e., treating the population of a clan as a point particle at a
center ofmass. On the contrary, theGGMusesmuchmore detailed information of the subpopulation structure
that eventually leads us to capture the actual geographical constraint imposed on the flow.

To validate ourmodel, wemeasure the performance of ourmodel comparedwith theGMusing the
normalized reduced errorwith respect to the case of no geographical constraint, i.e., γ=0, defined as

e
E E

E

0

0
. 14j

j j j

j

optg g g

g
D =

= - =

=

[ ( ) ( )]
( )

( )( )
( ) ( ) ( )

( )

The normalized reduced error e jD ( ) quantifies the improvement of performance by using theGGMcompared
with theGM,which results in 0j

optg ( ) for all of the clans [13]. Large values of e jD ( ) indicate significance of

geographical constraints in themigration flow. Except for clans such as j=1, 5, and 9, the normalized reduced
error e jD ( );10%, as shown infigure 4. To demonstrate the statistical significance of geographical information
of the data, we shuffle regional indices for the groom clan j to obtain the corresponding surrogate j

optg( ) values,

also shown infigure 4.
For the exceptional cases of j=1, 5, and 9, we suspect the lack of geographical information in the data itself,

as we argue. To test the statistical significance of spatial correlation in the data, we shuffle the regional indices to
scramble geographical information.We examine the result of ourmodel in this shuffled data, which is shown in
figure 4. It supports that theGGMextractsmore geographical information than theGM, by capturing the
nonzero γ exponent. If the shuffled data gives similar results to those fromoriginal data, the original data
contains a small amount of geographical information. As shown infigure 4, this situation precisely happens for

Table 2.The results of j
optg( ) for each groom clan j, from the 1985, 2000, and 2015 census data, respectively. For the comparison between the

GGMand theGM,we provide the values of e jD ( ) (%) in equation (14) as the percentage, representing the relative performance of theGGM.
We also characterize the population distribution of each clan bymeasuring the dispersion R jD ( ) (km) in equation (15) and the effective
number of occupied regions n j( ) in equation (16).

Groom clan j
Year 1985 Year 2000 Year 2015

j
optg( )

e jD ( ) R jD ( ) n j( ) j
optg( )

e jD ( ) R jD ( ) n j( ) j
optg( )

e jD ( ) R jD ( ) n j( )

1 0.1 0.02 151.35 104.23 0.2 0.17 148.54 81.43 0.2 0.38 146.32 76.65

2 1.7 9.98 118.39 43.15 1.7 8.50 118.43 43.18 1.7 7.57 117.83 47.21

3 1.6 17.81 149.91 71.31 1.7 18.99 142.11 62.44 1.8 16.81 139.23 60.14

4 1.7 15.01 131.46 85.29 1.7 15.17 125.76 67.34 1.8 13.51 125.52 64.48

5 1.3 0.52 143.01 54.98 1.8 1.28 146.06 51.84 2.0 2.02 146.76 62.44

6 1.7 9.43 141.09 60.74 2.0 10.12 137.44 50.50 2.1 9.24 134.61 51.60

7 5.3 6.05 155.77 91.37 5.6 9.69 152.98 74.21 6.2 10.32 149.64 71.26

8 6.0 2.88 140.40 63.56 6.6 6.64 136.73 61.83 6.9 7.08 133.10 57.67

9 7.2 2.18 139.94 87.32 7.3 2.54 136.68 70.49 7.7 2.40 134.97 69.69

Figure 4.The performance of theGGMexpressed as the normalized reduced error in equation (14) from the census data in 2015 for
each groom clan j, comparedwith themodel performance from geographically scrambled data. The values for the real data and the
average values from the shuffled data are shown as the large purple diamonds and the small green diamondswith the error bars
representing the standard deviation over 100 realizations, respectively. As infigure 3, The horizontal axis indicates groom clans andwe
shade every other column for better readability.
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the clans j=1, 5, and 9, whose original and shuffled data give similar results. In other words, the data
corresponding to those three clans originally contain less geographical information than the other clans. The
small e jD ( ), therefore, does not come from theGGMbut from the clan data itself. Hence, we conclude that as
long as the data has enough geographical information, theGGMeffectively extracts the corresponding
information.

Asmentioned above, geographical information of the population distribution is closely related to themodel
performance and the statistical significance of the nonzero j

optg( ) values. To quantify the geographical

information in the distribution of clansmore systematically, we introduce twomeasures: the dispersion that
quantifies how strongly localized the populations are, and the homogeneity that focuses on howuniformly the
populations occupy distinct regions. For the latter, we use the concept of the effective number of occupied
regions based on theRényi entropy for a given probability distribution, as in [23].We define the dispersion

R jD ( ) from the centroid R j( ) of the clan j by taking population fractions as weights:

R f r R , 15j

A
A

j
A

j 2åD = -∣∣ ∣∣ ( )( ) ( ) ( )

where rA is the location of the administrative regionA. The population fraction f
A

j( ) is the population of clan j
living inA divided by the total population of clan j, and ∣∣ ∣∣ is the Euclidean norm. The population centroid
of clan j is then fR rj

A A
j

A= å( ) ( ) . As the concept ofmoment of inertia or radius of gyration [13], R jD ( ) measures
how (geographically)widely a certain clan is distributed. The effective number of occupied regions is defined as
the reciprocal of the heterogeneity quantified by the secondmoment of the population fraction, given by

n
f

1
. 16j

A A
j 2

=
å [ ]

( )( )
( )

In contrast to R jD ( ), n j( ) measures howmany of distinct regions (regardless of their geographical location) a
certain clan occupies effectively; there are scaling relations for extreme cases: n j( ); the total number of
administrative regionswhen the clan j is uniformly distributed to the entire set of administrative regions, while
n j( );1when the clan j is almost exclusively living in a single particular administrative region [23].

The dispersion R jD ( ) and the number n j( ) of occupied regions are usually positively correlated. However,
R jD ( ) can be large evenwhen n j( ) is small, e.g., when the clan hasmultiple localized residential regions. Hence,

we use bothmeasures formore accurate identification of the population distributions. For all of the 788 clans in
the 2015 census data, wemeasure both R jD ( ) and n j( ) and present them as the density plot infigure 5. Among all
of the clans listed in the census data, all of the groom clans corresponding to the jokbo data have relevantly large
values of dispersion and the effective number of occupied regions. Note that the combination of large R jD ( ) and
small n j( ) (as discussed before) is observed indeed, while the combination of small R jD ( ) and large n j( ) does not
appear, as shown infigure 5. This contrast hints the existence of suchmultiple localized residential regions,
which is also discussed in [13].

Finally, we compare the relative performance ofGGMwith these twomeasures, presented infigure 6. There
is a trend of increasing e jD ( ) when the population distribution hasmore geographical information, low

Figure 5.The density plot of dispersion R jD ( ) and the effective number of occupied regions n j( ) for all of the clans in the 2015 census
data. The nine orange diamonds correspond to the groom clans in the jokbo data.
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dispersion and low effective number of occupation regions. The Pearson correlation coefficients between e jD ( )

and the dispersion R j( ) or the effective number n j( ) of occupied regions are−0.270 and−0.213, respectively,
implying the anticorrelation. This observation again confirms thatwhen the data includesmeaningful
geographical information, theGGMcaptures the geographical constraint, while theGMmay not.

5. Conclusions and discussion

In this paper, we formulate theGGM to properly take subpopulation structures for humanmigration, by
keeping the entire geographical distribution of the subpopulations. The key aspect of our point is that we need to
calculate individual subpopulation flows, before trying any geographical coarsening. To test the validity of the
GGM,we investigate themarriage patterns of Korea in the past. Applying ourmodel to themarriage pattern, we
identify the geographical constraint. The results demonstrate that theGGMcaptures the subpopulation aspect
of the datawithout the information loss occurred in theGM.

Webelieve that our approach is applicable to awide range of research on population dynamics.Moreover,
wewould like to point out that theGGM is in fact evenmore general than the treatment for our particular data
set, e.g., the different types of attributes for the departure and arrival places by taking the different sets i j¹{ } { }.
For instance, the attribute in the departure place for education can be the education level of people, while the
attribute of the arrival place forwork can be the income level. Furthermore, if we release the constraintsα=1
andβ=1, one can also allow the nonlinearmass relation. In this case, theGGMbecomes particularly
important to prevent the loss of information because the scale factor, in addition to the distance factor, also has
the nonlinear relationwith the flow.

Finally, this scheme can be extended formultiple types of attributes that can be represented by the attribute
vectors. For instance, people living in the regionAwith the attribute i=(ei,mi) representing the education level
ei and the income levelmi canmove to the regionBwith j=(ej,mj).We hope to extend this type of general
scheme for awide variety of different data sets of human (and possibly nonhuman)migration orflowpatterns in
the future.
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Figure 6.The same R jD ( )–n j( ) diagram as figure 5, but onlywith the groom clans, using the census data in the three different years.
The color of the points represents e jD ( ), and the different symbols indicate the results from the census data in different years.
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