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Abstract

Shortcuts to adiabaticity (STA) provide control protocols to guide the dynamics of a quantum system
through an adiabatic reference trajectory in an arbitrary prescheduled time. Designing STA proves
challenging in complex quantum systems when the dynamics of the degrees of freedom span different
time scales. We introduce counterdiabatic Born—Oppenheimer dynamics (CBOD) as a framework to
design STA in systems with a large separation of energy scales. CBOD exploits the Born—-Oppenheimer
approximation to separate the Hamiltonian into effective fast and slow degrees of freedom and
calculate the corresponding counterdiabatic drivings for each sub-system. We show the validity of the
CBOD technique via an example of coupled harmonic oscillators, which can be solved exactly for
comparison, and further apply it to a system of two-charged particles.

1. Introduction

Tailoring the nonadiabatic dynamics of quantum matter is an open problem at the frontiers of physics with
important applications in emergent quantum technologies. Control protocols relying on adiabatic dynamics are
natural to prescribe the evolution of a system along a reference adiabatic trajectory. While they are robust against
uncontrolled errors in the experimental implementation, they are susceptible to decoherence. Driving protocols
known as shortcuts to adiabaticity (STA) provide an alternative, by speeding up an adiabatic reference trajectory
ofa quantum system in a prescheduled amount of time [1].

STA have found broad applications in quantum mechanical systems of varying complexity. They can be used
to guide the dynamics of systems with a discrete energy spectrum [2—7], as shown in the laboratory [8—11].
Similarly, STA can be used to control the degrees of freedom of continuous variables systems [1, 12—19] as
demonstrated by the fast control of a trapped ion in phase space [20]. In the context of trapped ultracold atoms,
early theoretical results indicated that STA could be applied to many-body systems [17, 21-23]. Ultrafast
expansions and compressions of atomic clouds have by now been implemented in a wide variety of interaction
regimes including thermal clouds [24], Bose—Einstein condensates well described by mean field theory [25, 26],
tightly confined quasi-one-dimensional atomic clouds with phase fluctuations [27], and a unitary Fermi gasas a
paradigmatic instance of a strongly-coupled quantum fluid [28, 29]. In addition, theoretical studies have shown
that STA can be used to guide the evolution of many-body quantum systems that exhibit quantum critical
behavior [30, 31]. In this context, STA can be used to suppress excitation formation across a phase transition
[32]. Implementing STA may require modifying the systems Hamiltonian with nonlocal interactions including
high order terms [30, 33]. However, the required controls may be simplified or absorbed into the form of the
original system Hamiltonian [34—37]. Further efforts to control the dynamics of many-body systems have been
put forward relying on integrability (e.g. the existence of Lax pairs) [38] or variational methods [39]. Despite this
surge of progress, applications of STA remain mostly confined to systems with few degrees of freedom or the
control of certain collective modes in many-body quantum systems.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Designing STA requires the ability to control and describe the time-evolution of a system, an ubiquitous
challenge across a variety of fields when dealing with complex quantum systems. Among them, a prominent
instance occurs in quantum chemistry, in the study of quantum systems with degrees of freedom spanning
different time and energy scales [40]. When the separation of scales is sufficiently large, it is possible to decouple
the dynamics via the Born—Oppenheimer approximation (BOA) [41]. Born and Oppenheimer considered the
description of a molecule and harnessed the separation of energy scales between the electronic and nuclear
rotational and vibrational motions to simplify the description. As the electronic mass is much smaller than that
of the atomic nuclei, the motion of the corresponding degrees of freedom occurs on vastly different time scales.
When the mass ratio is large enough, the electrons move in an effectively static configuration of the nuclei.
Further, this separation leads to the evolution of the nuclear component in the presence of a potential set by the
energy of the electronic motion. When the assumptions of the approximation are relaxed, the nuclear motion is
subject to a Berry vector potential due to the electronic motion [42—46]. Understanding the BOA and its limits
has proved particularly fruitful in the field of spectroscopy [47, 48], the study of molecular dynamics, and in
computational models [49-58]. There has also been recent advances in the quantum simulation of molecular
dynamics, with the recent proposal and experimental implementation of vibrational spectroscopy with trapped
ions via boson sampling [59-61].

In this paper, we introduce Counterdiabatic Born—-Oppenheimer dynamics (CBOD) as an efficient
technique for the fast control of complex systems that are well described by the BOA. To this end, we first
provide a brief summary of the BOA and the engineering of STA by counterdiabatic driving (CD) in sections 2
and 3, respectively. We then present CBOD in section 4 and demonstrate its validity with a paradigmatic
example of coupled harmonic oscillators of unequal mass, in section 5. We end by considering an example of a
trapped particle and free particle interacting via a Coulomb-like term in section 6.

2. Born—-Oppenheimer method

In order to fix the notation, we will briefly discuss the BOA that will be at the core of the CBOD technique.
Throughout this work, we will consider two-body systems. However, the approach can be readily generalized to
N-body systems with two sub-sets of slow (heavy) and fast (light) particles, that we indicate with the labels Sand
F, respectively. We will make the assumption that mg > mp. In this section, we will introduce both the
conventional BOA as well as the relaxed BOA, whereby, the fast degrees of freedom give rise to a Berry vector
potential for the slow variables.

2.1. Conventional BOA
Consider a Hamiltonian of the form

o2 2
A=25 4 PE v g, M
2mg 2mp
where p, = —i/% V, (i = S, F) denotes the momentum operator and V (s, %) is a global potential term. The
latter can generally be decomposed as
V(Xs, Xp) = VsRs) + Vr(Xp) + Vi(Xs, Xp), (@)

with the first two terms acting exclusively on the slow and fast coordinates, respectively, and an interaction term,
which is not separable in the coordinate representation in terms of {xs, xz}. The general form given by this
Hamiltonian includes the usual molecular Hamiltonian for electronic and nuclear dynamics, frequently used in
quantum chemistry [41, 47, 62].

We wish to obtain the solutions to the Schrodinger equation

p3 P}
— 4+ £ L VR %p) [T =EW. (3)
2m5 21”11:

Given the difference in mass (g >> mp), the BOA suppresses the kinetic energy term of the slow variables [63]
to obtain a reduced Hamiltonian for the fast ones. As X commutes with this reduced Hamiltonian, we can
simultaneously obtain the solutions of the reduced and full sub-systems. The reduced Hamiltonian governs the
Schrodinger equation of the fast sub-system
f)Z
[—F + V(xs, ﬁF):|¢n(XF; Xs) = n(X5) 9, (XF5 Xs)- (4)
2m F
The slow coordinates x5 can be regarded as a parameter on which the reduced system eigenvalues and
eigenvectors depend. The solutions to the reduced Schrédinger equation form a complete set, in terms of which
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the full solution to the complete Schrodinger equation, equation (3), can be written as
U =" 4,(xp X5)Pu(xs), )

where 1 runs over the eigenstates of the reduced Hamiltonian. We will assume in this work that the fast sub-
system is in a single eigenstate #, avoiding the need for the summation in equation (5).

Using the product expansion of the wave function, equation (5), and the reduced Schroédinger equation,
equation (4), the full Schrodinger equation reads

a2
IZ% + sn(f(s):Ipr; X9 (xs) = E¢(Xp; x5) Y (xy). ©
S

In the conventional BOA the derivatives of the fast sub-system wave function, ¢ (xg; xs), with respect to xgare
neglected in the above equation, i.e.,
i i
=S (xp; XV (X5) ~ P (XF; X5) 1) (X). @)
27’)’15 21’[’15

Integrating out the fast degrees of freedom is then straightforward and leads to a slow sub-system Schroédinger
equation in the final form

A2
[& + en@cs)]w(xy = E 1 (xs). ®)
217’15

Note, E gives the full energy of the system while the full approximate wave function is given by equation (5).

The conventional BOA involves truly two approximations: (1) the energy scales of the system are vastly
different allowing for the suppression of one of the kinetic energies to obtain the reduced Hamiltonian and (2)
corrections due to the elimination of derivatives in x5 of the reduced wave function are small. These corrections
arereferred to as diagonal corrections and they are usually negligible in comparison to the energy scale of the fast
sub-system [47]. The form of these corrections and their calculation is a vibrant area of research in its own right
[64-71]. We have added another approximation to the conventional approach, that the fast sub-system evolves
adiabatically, this was invoked when the sum over the fast sub-system states was neglected. This isa common
approximation when using the BOA to describe time-evolution [47, 72], as the fast sub-system is assumed to
quickly relax to its ground state in the time-scale of the slow motion. Note, that when we combine the BOA with
CD, we will assume the fast sub-system either evolves adiabatically or, more importantly for our approach, that
the fast sub-system is driven such that adiabaticity is enforced; in either case, the adiabatic approximation is met.

2.2.Relaxed BOA

The approximation involving the elimination of the derivatives with respect to xs made in the conventional BOA
can be relaxed [44, 45]. Generally, the neglected diagonal term can couple arbitrary eigenfunctions of the fast
degrees of freedom. A relaxed BOA consists of keeping the resulting cross-terms of the xs derivative while
neglecting transitions between these different eigenstates. This leads to the appearance of a Berry connection
between the two sub-systems in the full Schrédinger equation, which plays a role analogous to the vector
potential in the quantum mechanics of a charged particle in an electromagnetic field [44, 45, 73].

Starting from the Schrodinger equation (6), our goal is to obtain a Schrodinger equation which is solely
dependent on the slow degree of freedom, without invoking the previous approximation that disregards the
derivatives of the momentum operator. To remove the fast degree of freedom we multiply equation (6) from the
left by ¢ (xp; Xs)' and integrate over xxto obtain

o2
p o
deF¢(XF; Xsﬁlﬁ + eu (XS)]¢(XF§ xg)th(xs) = deF¢(XF; x5) B (xF; X)) (Xs). ©)
s
There is only one non-trivial integral in the above Schrédinger equation, which is,
f)Z
[ axes x5 x9 -6 X9 x9) (10)
ZWZS

Itis an algebraic exercise [63] to obtain the terms arising from this integral, which can be written in terms of a
vector and a scalar potential in the slow sub-system Schrddinger equation

3
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2 2
[—ﬁ—(vxs AP+ g + sn(fcs)]w(xs) — B $(xs) (11)
2mg 2mg

with

Axs) = if dxpd (xF; X5)' Vi@ (Xp5 X5)
=1(¢|Vys9), (12)

2
glxg) = deF[sz¢(XF§ x)'] Vi@ (XF5 Xg) + [deF¢(XF; X ) Vg (Xp; Xs)]
= (Vi ®IVis@) — (VBld) (& Vs @) (13)

The vector potential A (xg) is the familiar Berry connection. The scalar potential €, (Xs) is local and is dictated by
the fast variables. In addition, there is a contribution to the scalar potential experienced by the slow degrees of
freedom that is given by g(xs), which is the trace of the quantum geometric tensor [74] associated with the change
of the eigenstates | ) with respect to the slow coordinates xg, treated as a parameter.

3. Counterdiabatic driving

Among the variety of techniques available to engineer STA, CD stands out as a universal approach. It relies on
the use of auxiliary counterdiabatic fields to guide the evolution of the quantum system of interest through an
adiabatic reference trajectory. CD was developed in the context of molecular dynamics by Demirplak and Rice
[2,3,75], as an alternative to strictly adiabatic population transfers between molecular states; see also the
independent and closely related work by Berry [4]. CD and related protocols have been recently implemented in
avariety of platforms for quantum technologies including trapped ions [20], nitrogen-vacancy centres in
diamond [9, 11], ultracold atoms in optical lattices [8] and as a method to speed up stimulated Raman adiabatic
passage in ultracold gases [10]. It has become a popular technique to control and engineer the nonadiabatic
evolution of quantum systems while enforcing the following of adiabatic trajectories [2—4, 23, 39, 75].

CD relies on the spectral properties, eigenstates and energies, of the driven Hamiltonian of interest

Hy(t)|n(1)) = ,(t)|n(1)). (14)

According to the adiabatic approximation, the state of a system prepared in an eigenstate [n(0)) att = 0 evolves
under a slowly-varying Hy(t) into

34(1)) = exp [—% S " At () — [ t dt’(n(t’)|aun<r’>>]ln(r>>, (15)

which includes the dynamical phase as well as the geometric phase associated with the Berry connec-
tion i{n(t")|0yn(t")).

A STA protocol assisted by CD can be designed by identifying a modified driven Hamiltonian H (t) such that
the adiabatic evolution (15) becomes the exact solution of the corresponding time-dependent Schrédinger
equation

H®WX @) = iz 5 (1)), (16)

Hence, no matter how fast the system is driven, the evolution is described by the adiabatic trajectory (15), i.e.,
without the requirement of slow driving. The corresponding time-evolution operator also fulfills (16), which
allows the identification of the modified driven Hamiltonian as the generator of evolution

A =i4[0,0010 ). (17)
Making use of the following form of the time-evolution operator

U@ = 313 m) (n)], (18)
the modified driven Hamiltonian is found by explicit computation [2, 4]

H(t) =" euln) (n] + Hi(1), (19)
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where we have defined

Bi(t) = i%Y_(|9n) (n] — (n|0:n)|n) (n]). (20)

The first term in (19) is recognized as the spectral decomposition of the original system Hamiltonian Hy(t). The
second term, H, is the auxiliary CD term required so that the adiabatic trajectory |24 (¢)) in equatlon (15) becomes
an exact solution of (16), that is the Schrodmger equation for the full driving Hamiltonian H = H, + H,.

When the energy spectrum of Hy is non-degenerate, the additional CD term can be recasted using the
differential of the time-independent Schrodinger equation of the original system Hamiltonian [4], Hy(?),

(m(1)]0:Ho(t)|n(t))

N|on(r)) = 5
<m( )0in( )> D) — () on

which yields the following alternative expression for the auxiliary CD term
o =iz Y Bu(1)0:Ho (1) By(1) .

m=n n 5n(t) - 5m(t)

in terms of the projector B, (t) = |m(t)) (m(t)].

4. Counterdiabatic Born—-Oppenheimer Dynamics (CBOD)

The Born—Oppenheimer method and the theory of CD can be exploited jointly to engineer the fast nonadiabatic
control of complex systems, as we next discuss. The CDs for the slow and fast sub-systems can be obtained via
the BOA, either via the conventional or relaxed variants. These auxiliary control terms can then be used to drive
the (exact) system Hamiltonian, a technique we shall term as CBOD.

4.1. CD with the conventional BOA
We first consider the conventional BOA, according to which the fast and slow sub-system Hamiltonians are

A2
An p o
Ay kp, t; X5) = —— + V (x5, Xp), (23)
ZmF
A2
A A Pg o
Hs(Xs, t) = —= + ,Xy). (24)
2m5

The required CD terms can be found via the general expression equation (20) and for the slow and fast sub-
systems read, respectively,

A1 (1) = i/ (18:0) (9] — (¢10:0)19) (@], (25)
Hs,1(8) = 1% (10:0) (¥ — ($10:) [9) (). (26)

By contrast, the CD term for the full system is
Hyaia (1) = i72 (10,9) (V] — (¥]0,9) [ W) (). (27)

The full form can be rewritten, exploiting the tensor product structure of the full wave function

[T) = |¢) ® |¢) (i.e. separable in the BOA). We note that while this separable form is natural in the BOA, it can
be invoked generally [76, 77]. Substituting in the factored form of the full wave function, the full CD can be
written as

Han,1 (1) = (19, 0)(¢l © 1)1 + 1)@ @ 10:)(W] — (¢l0:d) @ [)] — 1o}l @ (¥10,3))
= Hr,1 (1) © [9)(Y] + |9)(3] ® Hs(0). (28)

Therefore, the CBOD technique simplifies the global CD control by driving the two sub-systems separately, this
is, by using the auxiliary control terms (25) and (26) as opposed to (27).

We can gain further insight into the CBOD terms by assuming the spectra of Hs and Hy to be non-
degenerate, as this allows the recasting of the CD control terms into the form of equation (22),

—in Z Z |¢ (b |0V (x5, XF)|¢ ><¢ |

(29)
P en(Xs) — €m(Xs)
—is Z Z W)m wmlEat5j();S) |¢n> <wn| ) (30)

Note, that in the fast control ﬁp, 1» Xg is treated as a parameter, which is the case of the reduced Hamiltonian in
equation (4) in the BOA.
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As customary in STA assisted by CD, the required auxiliary terms are off-diagonal in state space. However, it
is useful to focus on the dependencies on xg and xz. We wish to compare the CBOD terms with the exact CD
term without resorting to the BOA. Assuming the system is exactly solvable the CD is

) 5 3 D 00V s &6 ) Gl

Hexact,l - . . 5 (31)
n— Cm

m=n n
with Hy| X = €lX,.)> |x) the exact eigenstates and e, the exact eigenvalues. Due to the interactions between
slow and fast degrees of freedom, which are not separable in the {xs, x¢} space, the operator I:Iexact,l canbe
complicated to implement, as it involves a generally complex coupling between the two sub-spaces (or two
particles).

Therefore, CBOD provides a computational advantage over the exact STA approach. Indeed, it circumvents
the need to deal with the full spectra, proceeding, instead, in two-subsequent steps; treating first the fast degrees
of freedom and then the slow ones. CBOD thus benefits from the dimensional reduction of the problem to
engineer the CD term for the fast sub-system driving, equation (29).

In addition, CBOD may simplify the required drivings by potentially removing or reducing the coupling
between the two sub-spaces. In such a case, CBOD controls will be simpler to implement than the exact CD
terms. For the slow sub-system, equation (30), the off-diagonal terms are coupled via the time derivative of the
energy for the fast sub-system. This is the potential surface which the slow sub-system experiences due to the fast
sub-system, and it is of no surprise that to enforce adiabatic evolution it is required to drive off-diagonal terms
with this as the scaling. The coordinate dependence of slow sub-system CD, equation (30) is simplified in
comparison to the exact driving, equation (31), as the potential energy surfaces can only depend on xg.
Therefore, the slow sub-system driving only requires operators which act on the slow sub-system space and will
have no cross-terms between the two sub-spaces. Therefore, CBOD readily simplifies the required control term
for the slow sub-system, without further approximations.

4.2. CD with the relaxed BOA
In what follows we derive the modified driving controls when the relaxed BOA is used, as discussed in
section 2.2. The required CD terms for the fast and exact systems are the same as in equations (25) and (27);
alternatively, by (29) and (31). The slow sub-system has a modified Hamiltonian resembling that of a particle in
an electromagnetic field, see equation (11).

To obtain the CD under the assumption of no degeneracies in the spectra according to equation (22), we first
need to obtain the time derivative of the Hamiltonian

A . . n?
0:Hs = [2i(0:A) Vi, + 2A(0A) + i(Vy,0.A)] + 0:g, + Oien. (32)
21’}’15 mgs
The latter admits the compact form
n i .o o
Ols(xs 1) =~ (A, R D, Vi) + ViRs, 1), (33)
s
with the potential term given by
- n? . N in? Co h? . .
‘/n(XS) t) = _An(xsa t)An(XS) t) - _vf(sAn(XS) t) + 8tgn(XS) t) + atgn(XS) t)) (34)
mg 2msg 2ms
where { - ,- } denotes the anti-commutator and .A = 9,.4. The slow sub-system CD is therefore given by
A . 1 <~ (ih o . N
Hgy=ih) > —[Pm,S(_{An(XS) 1), Vst + VuXs, f))Pn,s], (35)
m=n n Eﬂ - Em UN

where ﬁm, s = |mg) (mg]|. As aresult, even with the relaxed BOA, the slow sub-system CD term only depends on
operators related to the slow coordinate xg.

4.3. Applicability of CBOD
CBOD, as an approximate technique, does not necessarily enforce the evolution of the system Hamiltonian to
follow the adiabatic trajectory exactly. It resorts to the CD terms constructed via the BOA to drive the (exact)
system, which includes couplings between slow and fast sub-systems beyond BOA. Said differently, CBOD is
constructed to drive the fast and slow Hamiltonians of the BOA Hamiltonian (as opposed to the exact system
Hamiltonian) exactly through the adiabatic manifold. We will assess the validity of CBOD using the fidelity
between the resulting state and that of the exact adiabatic evolution after a modulation of the system
Hamiltonian in a prescheduled time.

The implementation of the CBOD technique, in general, involves the following steps:

6
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1. Check the validity of BOA, i.e., that there are two separated energy scales in the region of interest.
2. Derive the CDs using the BOA.

3. Apply these (approximate) control terms to guide the dynamics of the (exact) system Hamiltonian.

We will consider next an example discussing each step in detail and certify CBOD by comparing its performance
to the exact CD evolution.

5. Coupled harmonic system

To illustrate CBOD, we next consider the engineering of STA to drive two coupled harmonic oscillators, that can
represent, e.g., two atoms in a harmonic trap interacting via a spring-like term. This model has been previously
used to assess the BOA [78], admits an exact solution [79—-84] and is realizable in controllable quantum systems
of ion traps [85—88]. It, therefore, constitutes a natural test-bed for CBOD.

Specifically, we consider the Hamiltonian

B

Hy(t) =
0( ) 21’)15 2mF

1 1 1
+ Eks(t)fs + EkF(l‘)fp% + Ekl(f)(fs — Xp)?, (36)

with continuous variables X5 and Xr in one spatial dimension. Alternatively, it can be rewritten as
~2 ~2
bg Py

—_ _|_ -

Ho(t) =
ms 2mF

1 51 ~ N
+ Eﬁg(t)xsz + Eﬁp(t)xﬁ — k() ZsZp, (37)

with kg = ks + krand kp = kr + kj, which makes explicit the bilinear coupling. For the sake of generality, we
first provide a derivation of the CDs for this system when all spring constants are time-dependent.

The spectral properties can be studied by diagonalizing the system in terms of two independent harmonic
oscillators, the normal modes. We denote by 7., p,, and ; (i = 1, 2) the corresponding normal-mode
coordinates, conjugate momentum and spring constants, for which explicit expressions are derived in the
appendix. In terms of them, the system Hamiltonian can be simply written as

BB 1 1
Hy(t) = - + == + ~mO)P* + —ra(F2 38
o(®) TR 107 5 207 (38)

The BOA leads to an approximation of the system Hamiltonian Hy also in terms of two independent harmonic
oscillators, whose eigenstates under the conventional and relaxed BOA coincide, as the Berry connection
identically vanishes and the quantum geometric tensor reduces to a time-dependent constant; see the appendix
for further details. Note, that in order for the slow sub-system of the BOA Hamiltonian to have a real harmonic
frequency itis required that s (t) kp (t) > k;(¢)%.

Knowledge of the exact and BOA eigenfunctions allows us to establish the validity of the BOA whenever
mg/mg < 1. To this end, we consider the fidelity between an exact eigenstate of the two coupled harmonic
oscillators Wy, and the corresponding BOA Wpo s

F= |<\I/Exact|\pBOA> |2- (39)

The Born—Oppenheimer method provides a good approximation for the coupled harmonic oscillator problem
for a small mass ratio mp/ms, see figure 1. As the trapping frequency of any of the two sub-systems—slow or fast
particles—is increased, the accuracy of the BOA increases, as shown in figures 1(a)—(b). This is consistent with
the fact that the energy scale separation between the two sub-systems is increased for a given mass ratio as the
sub-system spring constants are made larger, making the two sub-systems more decoupled. By contrast, when
decreasing the interaction strength, see figure 1(c), the state Wpo approaches Wi, as quantified by the higher
values of the fidelity. Naturally, the coupling between both sub-systems increases with the interaction spring
constant, leading to a breakdown of the BOA at large values of k;.

We next derive and compare the auxiliary control terms required to enforce adiabaticity in an arbitrary
prescheduled time using the exact CD and CBOD.

5.1. Exact CD

The exact solution of the coupled system (36) can be written in terms of the two independent harmonic
oscillators, the normal modes, described by Hamiltonian (38). Knowledge of the CD term for a single harmonic
oscillator [23, 89] readily yields the exact CD term for the coupled system
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a)l b) “ﬁ\t"\\
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k=125 k=125 k=75 v

F [ |---x=100 weekp=100 «e-k=50! (WAY
—x=75 — =75 —k=25 \

\

0.75 X

3 -3 -3
10 m;,/mg 10 10 m;/mg 10 10 m;,/mg 10

Figure 1. Ground state fidelity between the exact and BOA wave functions. Fidelity between the exact ground state wave function
of two coupled harmonic oscillators and the corresponding BOA wave function, as a function of the mass ratio in alog-scale.

(a) Increasing the slow spring constant, enhances the accuracy of BOA (xr = 100, k; = 50). (b) Similarly, increasing the fast spring
constant increases the fidelity (ks = 100, k; = 50). (c) As the coupling between the slow and fast sub-systems is enhanced by
increasing the interaction spring constant, the BOA begins to break down (with ks = 100 and kg = 100).

o) . wz(t)
2o PP T 0w

as the sum of the generators of the squeezing operator for each normal mode. As such, they are spatially non-
local due to the momentum dependence. Alternative controls can be obtained by means of the unitary

transformation
1w (t) . ipws (t) .
U=c¢e - e _ s 41
Xp( i (t))! ) Xp( 4on(t) ? “

A1) = - ——={D,, b} (40)

which acts on the position and momentum operators in the Hamiltonian as

N UJ71,2UT =N

- - 1 w1 @i (t) 7
— U] —
D P U =Dy, o z(t)
2. t)z
S UPLUT = p ”( ©2On o 5y oy B0 5 2
P pl 2 pl 2 @) —— Pl i 42 ()2 >zp (42)
Given that 9, = 0 the full driving Hamiltonian H = H, + H,is transformed according to
H — Ay = UAUT — iZUU'. (43)
while the original wave function ¥ is mapped to
Making use of (42), it is found that the transformed Hamiltonian Hr, unitarily equivalent to H, takes the form
a2
A 1% b, 1 N
Ar() =+ + =% MwT (O + —pwr (DY, (45)
21 2,u 2
with the corresponding frequencies being
3wi,(1)? o1 (t
07 = e — 2220 G (46)

4w (0 2wia(t)

Therefore, the exact CD of coupled harmonic oscillators can be implemented by a modification of the normal
mode frequency of the original system Hamiltonian Hy. However, this modification will require independent
control of the slow, fast and interaction spring constants.

5.2.CBOD
Within the BOA the Hamiltonians of the slow and fast sub-systems are that of two harmonic oscillators, and the
corresponding CBOD terms are given by

Fra (1) = —= L/ONTHE Y (47)
4wr ()

Asa(0) =~ LUONTHSSY (48)
4ws(t)

ki (t)
KE(t)
For the coupled harmomc oscillators the CBOD auxiliary controls under the conventional and relaxed BOA are

equivalent, as the wave functions coincide. We will consider a case in which the fast sub-system is also driven to

where X = (9% ) and p; = py is the corresponding conjugate momentum operator, see the appendix.

8



10P Publishing

New J. Phys. 20 (2018) 085003 CW Duncan and A d Campo

enforce adiabaticity by CBOD. However, within the BOA the fast sub-system is usually assumed to evolve
adiabatically and, in that case, the control Hg ; would not be required. The driving Hamiltonian with the CBOD
control terms reads

~2 ~2

p p 1 L1 R Wy OF .
=S4 k()R —kp(DFF — k(D) Rskp — ——{&s, P} — —— (&7, Pp)- (49)
2mg 2mp 2 2 dws dwp

H(1) =
The evolution under this Hamiltonian is not necessarily adiabatic with respect to the exact Hj, eigenbasis, as the
CBOD auxiliary terms are approximate. As a result, an STA designed by CBOD cannot be arbitrarily fast. The
direct exact solution of the Schrédinger equation with this Hamiltonian is hindered by the term £ p resulting
from the last anti-commutator. However, this term can be absorbed into the fast momentum. Dropping the
time dependence for simplicity, one finds

52 . . 2 . 272
Py wpkp .~ ~ wrkr wrki o
— + Xspr = Pp + mg X| — Mp———5Xg

2mp 2Wp KE 2mp 2Wp Kf 8wrKE
52 L2712
P weki

~—t g i 12 xSZ, (50)

sz SWFKJF

where in the final line we have made an approximation consistent with the BOA, that the fast sub-system
momentum will dominate over the additional momentum term which is a function of the slow sub-system
coordinate. The driving Hamiltonian takes then the form

pe o1 w2k? 1 @ W
Ht) = —— + — 4 —|ks(t) — mp—a |22 + —kp()X2 — ki (D) Zskp — ——{&s, P} — —— (%> Pp}-
() s e T2 s(®) e ()X — ki (£)XsXp 4w5{ $ Ps} 4w1:{ P> Pr}
(51)
In a similar manner to the previous scenario, we can use the unitary transformation of
. vs(t Ur(t
U= exp| —i s s( )xsz + i O ( )xf (52)
4/uws(t) 4/uop (t)
to obtain the unitarily equivalent Hamiltonian
~2 ~2
N p p 1 R 1 N ~ A
H(t) = = + = + —5(DX + = (O)%F — k(1) Xs%r (53)
2ms  2mp 2 2

which is that of two oscillators with bilinear coupling, i.e., the original system Hamiltonian (51), with modified
spring constants

3m5d}52 mpwfklz MsWs
_ L , (54
4wy 4WEKE 2ws

Ys = Ks

3 .2 .
VF = KF — e L el (55)

4wt 2wr

Therefore, CBOD simplifies the engineering of STA in the system by driving the slow and fast sub-systems
independently. In addition, it succeeds in doing so without the need to tailor the interaction term between the
two-sub-systems. This is contrary to the exact CD, which involves a controlled modulation in time of all the
potential terms in the original Hamiltonian, including the interaction.

As CBOD relies on the BOA, the dynamics generated by the Hamiltonian (53) is not strictly adiabatic. The
exact solution to the corresponding time-independent Schrodinger equation can be obtained in a similar
manner to that shown for the exact solution in the appendix, with a separation into two independent normal-
mode harmonic oscillators. The nonadiabatic evolution of each normal-mode harmonic oscillator can then be
described exactly by a self-similar transformation of the corresponding wave function ® at the start of the
evolution. For a harmonic oscillator of mass m and frequency w(¢) the scaling symmetry determines the
evolution of the ground state according to [1, 23, 89, 90]

B 1 mb(t) 2 %o t ’ 1 x .
d(t) = m exp (IZﬁb(t)x i ; ](; dt _b(t/)z)q)(b(t)) 0), (56)
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Figure 2. Fidelity under counterdiabatic Born—-Oppenheimer dynamics (CBOD). The ramping of a single spring constant of two
coupled harmonic oscillators is considered, according to the time modulation in equation (58). Under exact CD, a system initialized in
the ground state evolves into the ground state of the final Hamiltonian upon completion of the ramp. CBOD approximates the
required controls to assist adiabaticity, facilitating their implementation. The fidelity between the final state evolved under the exact
CDand CBOD is shown (for t = Ty = 1) in three different cases, corresponding to the modulation of one of each of the spring
constants in the systems Hamiltonian: (a) ramping rg, with k; = 50, kr = 100, ky = 50. (b) Ramping kp, with k; = 50, kg = 100,

ko = 50. (c) Ramping kj, with kg = kp = 100, ko = 1.

where wy = w(0)and b(¢) > 0isascaling factor obtained by solving the Ermakov equation

2

b(t) + w(t)b(1)? = b‘:;;y (57)

with boundary conditions b(0) = 1and b(0) = 0. By solving the above Ermakov equation numerically for the
parameters of Hamiltonian (53), the exact evolution of the system under CBOD can be obtained via
equation (56).

5.3. CBOD validity
To investigate the validity of the CBOD technique we consider the following modulation of the spring constant

T,
K@) = ko + 22 r - 2 gn| 26| |, (58)
Tf 2 Tf

where ky and k; are offset and strength parameters of the ramping, respectively, and Tjis the time-scale of the
modulation, with a single modulation after t = T This ramp has first and second derivatives that vanish at
t = 0and Tj favoring adiabatic evolution [91], e.g., over alinear ramp. We will consider a ramping of the
individual terms in Hamiltonian (36), i.e. kg, kpand k.

We show the fidelity of the ground state under a ramping of each spring constant in figure 2, i.e.

F = [{Upxaa( 1) [¥cpon(Tp)) I*. (59)

From the assessment of the validity of the BOA in this example, see figure 1, the CBOD technique is expected to
be particularly sensitive to ramping the interaction spring constant. A significant drop off in fidelity is observed
as the interaction strength is increased by the ramp. Overall, CBOD matches with high fidelity the exact adiabatic
evolution. This is reflected by the values F > 0.99 observed in figure 2.

For large ramps of the interaction spring constant, the dotted green lines of figure 2, a slight breakdown of
the validity of CBOD for mp/mg ~ 1 becomes manifest. This is most likely due to the momentum
approximation of equation (50), which was required to decouple the fast momentum and slow coordinates in
the CD control terms within the BOA. This approximation is only valid in the limit of mp/mg < 1 and/or k; <
kg, which are both broken in this scenario. Hence, the lower fidelity of the CBOD protocol for large mass ratio.
The breakdown of the CBOD for m/mg ~ 1 is consistent with the breakdown of the BOA. Provided that the fast
and slow degrees of freedom can so be defined, CBOD can generate high fidelity evolution of states under fast
modulations.

However, by contrast to exact CD, CBOD is not valid for arbitrarily fast modulations. CBOD trades the
possibility of engineering arbitrarily fast STA for the ability to treat interacting systems which may not be exactly
solvable and to simplify the experimental implementation of the required control terms in these systems. The
behavior of CBOD under faster modulations is investigated in figure 3, by the fidelity of the exactand CBOD
techniques at the end of the process t = T As would be expected, the fidelity decreases with faster ramping
times, Tybut the fidelity remains high (F > 0.9) and this trend continues for smaller T}; for which the fidelity
exhibits a plateau. In figure 3, each ramp is of a moderate strength and as this strength is increased the fidelity
decreases, as was shown in figure 2. Therefore, despite the dependence of the fidelity on the modulation time,
CBOD can be used for fast driving of the system.
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a)1

0.94 b

0.2 T; : 1

Figure 3. Speed of counterdiabatic Born—-Oppenheimer dynamics (CBOD). The ramping of a single spring constant of two coupled
harmonic oscillators is considered as a function of the ramping time Ty according to the time modulation in equation (58). The
fidelity between the final state evolved under the exact CD and CBOD is shown in three different cases (for t = T), corresponding to
the modulation of one of each of the spring constants in the systems Hamiltonian: (a) ramping x, with k; = 50, kg = 100, kg = 50.
(b) Ramping k5, with k; = 50, ks = 100, kg = 50. (c) Ramping kj, with ks = Kkr = 100, ko = 1.

6. CBOD in trapped charged particles

CBOD can be used to design of STA in systems that are not exactly solvable, or more generally, easily tractable,
analytically or numerically. To demonstrate this, we consider two particles interacting viaa Coulomb potential,
with the slow particle being confined by a harmonic trap and the fast particle feeling only an attractive Coulomb-
like interaction. This model is similar to that of Hooke’s atom, which is exactly solvable for certain parameter
values. The model Hamiltonian is

i i g
H = S + £ + mswgrsz - (60)
2mg  2mp 2 |7 — Tl

where gis an interaction strength and 7 is the radial coordinate of the spherical coordinate system for each of the
slow and fast particles. To justify a separation of variables under BOA, we assume that mg>>mp. In this section,
we will derive the form of the CBOD drivings for this model.

Under the BOA, the slow and fast Hamiltonian are

2

N p 1 A N

Hs = —= + —mswif§ + (i), (61)
21’1’15 2
132

A= £ — % (62)
2mp | — 7l

The fast sub-system has the form of the hydrogen atom Hamiltonian which has known solutions,

|¢F(rlg’ 0, ¢)> = |Rn,l(r}/?)> ® |Y;,m(0: ¢)>’ (63)

where 7 = z — fs. The solutions to the radial |R,, ;(r+)) and angular |Y;,,,, (0, ¢)) separation of this wave
function can be found by solving the separated Schrédinger equations, see [63, 84, 92], and are characterized by
three quantum numbers (, [, m). The corresponding eigenvalues depend only on the principal quantum
number 7 and take the form

2
mpg
= — . 64
2/ n? (64
The reduced Hamiltonian thus becomes
A2 2
A Ps 1 2,2 MEE
Hg = —— + —mswisis — ——, 65
ST omg 2 USS T (63)
which has harmonic oscillator solutions with energy
B 3 mrpg?
Eu,n = /Zws(u + E) - Zﬁznz' (66)

We consider the driving of the system by modulating the interaction strength ¢ = ¢(#). Under the BOA the
dynamics arises only in the fast sub-system, as the slow sub-systems state is invariant under a driving of g. The
g-dependence of the fast sub-system state is entirely contained within the radial component of the wave function
[84, 92, 93], which takes the normalised form

3 / "\ /
2mpg\2 [(n — 1 — 1)! mpgry \( 2megry | 51y [ 2me8Tg
IR (1)) hn 2n(n + I)! exp hn Rn s W 67)
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where L, (x) are the generalised Laguerre polynomials. In this scenario, it is helpful to write the CD term as

H p(t) = iR (810 R 1) (Rl — (Rt Og R 1) [ R 1 ){Ro1])- (68)

n,l

We obtain the g derivative of the radial component as

, 121 2mpgr}
. ) 3 megr, n—1-2\ "2, g ,
ORu(rp)) == — —— + (=1 =+ D—F—|ZRui(1p), (69)
2 Lz%(@) g
n=I=1\""p2,

where we have simplified the expression using the generalised Laguerre polynomial recurrence relations [94].
The Berry connection, g (R, j|0;R,,1), takes the form of a known definite integral [95] and is found to be

1 n 10+ 2g°mi(n+ DI+ D)D), Q1 + 2)n,1] 0)

. g
RullORupy == — = —
&Rl R g[z 2 2n hin? (n—1=2!n+1D!

with I'(a) the gamma function and (a), the Pochhammer symbol, i.e. (a)y = I'(a + k) /T'(a). Using

equations (69) and (70) itis possible to construct the CBOD fast CDs in general. For the sake of illustration, we
consider the system to be prepared in the low energy states. We can compactly write the form for the CD of single
states for the ground state (1, ) = (1,0)

/
13 Mpgry | ¢
Hpy =i/% (5 - —F]g|R1,o> (Ruol, (71)

72 )g
which is an energy term plus a potential linear in the radial coordinate. The first excited state is degenerate with
(n,]) = (2,0)o0r (n,I) = (2,1),and each has a different CD term, for (2, 0)

. mg(gmy + hrf) 212 ;
Hp,=ih|3 — S L L > ; §|R2,0><R2,0|, (72)
2h W —gmprp ) g
and for (2, 1)
!/ .
. 7 Megry | ¢
Hp,=14|— — =R Ryl 73
F1 =1 (2 Y )gl 21) (Rl (73)

We see that for higher energy states, the form of the CD, equation (68), required can be more complex, with 1/ rﬁ
potentials for the (2, 0) state, as the CD has a term proportional to the ratio of two Laguerre polynomials from the
derivative equation (69).

This example illustrates how CBOD can prove useful to engineer STA in complex systems. In this particular
model, the full Hamiltonian is not easily solvable. Yet, the derivation of the CBOD auxiliary controls is made
possible by relating the sub-system Hamiltonians to well-known solvable models. More generally, we expect that
CBOD helps cracking the complexity barrier in the design of STA by harnessing the separation of energy scales
between different degrees of freedom, whenever present.

7. Conclusions

STA provide control protocols to guide the dynamics of quantum and classical systems along an adiabatic
reference trajectory, without relying on slow driving. A universal approach to designing STA is provided by the
CD technique that guides the evolution of an arbitrary quantum system by means of auxiliary control fields.
However, determining the auxiliary controls requires knowledge of the spectral properties of the system,
hindering its application to complex systems.

In this work, we have introduced CBOD as a framework to design STA in complex systems. CBOD identifies
the required controls to speed up the dynamics of the system by invoking the BOA whenever a separation
between fast and slow degrees of freedom is justified. In such a scenario, the required CD terms for the fast and
slow variables can be obtained in two-subsequent steps, which in the spirit of the BOA, avoids the need to
diagonalize the high-dimensional Hamiltonian of the full system. Thus, CBOD facilitates the finding of the
required Hamiltonian controls to speed up the dynamics, in scenarios where spectral properties are not readily
available. In addition, CBOD also simplifies the implementation of the STA by reducing the need to control the
coupling between fast and slow degrees of freedom. We have demonstrated the validity of CBOD by testingitina
paradigmatic test-bed of the BOA, an exactly-solvable model of two driven coupled harmonic oscillators with
unequal masses for which CBOD competes with the exact CD in the preparation of a target state. We have also
applied CBOD to the design of STA in a more complex Coulomb system. We anticipate that the CBOD
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technique should facilitate the fast nonadiabatic control of the dynamics of complex systems in the plethora of
scenarios in which the BOA has proved useful.
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Appendix. Two coupled harmonic oscillators with unequal masses

A.1. Exact solution
The exact solution to the Schrodinger equation of Hamiltonian (37) is well-known [80]. First, we transform the
position and momentum spaces canonically via the transformations

(131] _ (mp/ms): 0 (ﬁs (AD)
P, 0 (ms/mp)s )\ Pr
and
(»el) _[Gns/mpy 0 (xs) (A2)
% 0 (myp /msyi \ %
This is followed by a rotation of the coordinates
b _ (cosa —sin a) % (A3)
P sinae cosa J\&)
under which the momentum is invariant. To diagonalize the system the rotation angle is found to be
a(t) = % arctan 2k (1) (A4)
mr mg
Ks(1) s KE () .
The Hamiltonian is then diagonalized into normal modes, i.e., two independent harmonic oscillators
2 2
g pl pz 1 i 1 A2
Hoy(t) = — + — + —xmi(0)P° + —r2(D)y;, A5
o(?) ST (D)7 5 20, (A5)
with reduced mass 1 = /mgmig and spring constants
Ki(t) = mE ks(t)cos? o + /ﬂ kp(t)sin® o« + 2k;(t)sin « cos o, (A6)
mg mg
Mg -2 ms 2 .
Ko(t) = |— ks(t)sin“ v + |[—= kp(t)cos* o — 2k;(t)sin «x cos a. (A7)
ms meg

The solution to the time-independent Schrédinger equation of Hamiltonian (A5) is that of two independent
harmonic oscillators in the coordinates y, and y, with total energy

(1) = mm(z‘ + %) + ﬁwza)(j 4 %) (A8)

withi,j = 0, 1,2, ... and frequencies w; »(t) = +/x1,(¢) /1. The full wave functions take the form of the usual
Harmonic oscillator solutions, i.e.

1
1 2w, | w w
Vi 1) = \/W (!EW/;);] eXP(*ﬁ(WIJﬁZ + WZYZZ))Hi( %)’1)%(1[%)’2)- (A9)
ij!

With the exact driving utilised in the main text the time-evolution will be the adiabatic solution

%’(J’p V> )= eXP(_/%fO dtlfij(t,))wij(yp }’2)- (A10)
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A.2.BOA for two coupled harmonic oscillators
We now consider Hamiltonian (37) in the regime of mg >> mp, where the BOA is valid. Following the steps of
section 2.1, the time-independent Schrédinger equation of the fast sub-system reads

~2
[i + lfi's(t)xs2 + lnp(t)f%]%(xF; xs) = enlxs) @, (xp; x5), (A11)
2mp 2 2

ki (t)
kr (1)

.Equation (A11) has solutions of a harmonic oscillator in the xrcoordinate,

with transformed coordinate X = (&F —

ki (1)?
k()

Onloer) = J% (m;f ) P (‘%‘”FX%)H”( = "T)’ a12)

xs), momentum p, = p, and slow sub-system spring constant

Ke(t) = Ks(t) —

with eigenvalues
1 1
(o) = e + 3] + Skt (A13)

and frequency wr(t) =  kp(t) /mE.

The slow sub-system then follows the Schrédinger equation of

~2
l& + ﬁwF(t)(n + %) + %’f/s(l‘)fszlﬂl(xs) = Ey(xg), (Al4)

27)’15

which will have harmonic solutions in xg

1
1 1
Volxs) = sz—vv(m;f?s) e"p(‘%“’s"f )H( - ’“5) (A15)

with frequency ws = / #5(t) /ms. Note, that x4 (t) can be negative, turning the frequency imaginary and the
solutions considered in this work incorrect. We will take care to ensure that we remain in the real frequency
limit, i.e. ks(t) k() > ki (t)?. The total energy of the system will be

E,., = leus(t)(v + %) + fzwp(t)(n + %), (Al6)

and total wave function for a single modes is
\Ijnv = d)n ’(/}v- (A17)

A.3.Relaxed BOA

We next consider the application of the relaxed BOA to the coupled harmonic oscillators. The Berry connection
in equation (12) and geometric tensor given by equation (13) are both integrals of the fast (or reduced) sub-
system wave functions, ¢,,, which are given in equation (A12). In particular, we consider the fast sub-system to
be in the ground state,

M Wp i MpWr 5

=|——| exp| ——x7| Al8
o=t ) el s

The Berry connection identically vanishes
Ao = 1{¢y|O0xsPy) = 0, (A19)

and the geometric tensor simply reads
ki (8)*wr (1) my

= (Ox0plOxsy) = ————. A20
8o = (OxsolOxs0y) 2 ik (t)? (A20)

Excited states of the fast sub-system also result in a vanishing Berry connection and a geometric tensor of similar
form to above. Therefore within the relaxed BOA, the coupled oscillator problem has the same wave functions as
the conventional BOA but with a different total energy. That difference is the value of the geometric tensor
multiplied by a factor, as shown in equation (11). In this example, the relaxed and conventional CDs are
identical, as the wave functions coincide.
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