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Abstract
We introduce a bang-bang shortcut to adiabaticity for theDickemodel, whichwe implement via a
two-dimensional array of trapped ions in a Penning trapwith a spin-dependent force detuned close to
the center-of-mass drumheadmode. Our focus is on employing this shortcut to create highly
entangled states that can be used in high-precisionmetrology.Wehighlight that the performance of
the bang-bang approach is comparable to standard preparationmethods, but can be applied over a
much shorter time frame.We compare these theoretical ideaswith experimental data which serve as a
first step towards realizing this theoretical procedure for generatingmulti-partite entanglement.

1. Introduction

Thefieldof quantummetrologyhas thepotential to drastically improveprecisionmeasurements from the standard
quantum limit to theHeisenberg limit. These techniques rely on the ability to create entangledquantumstates and
employ them, via interferometricmethods, toproducehigh-accuracymeasurements. A rangeof different techniques
canbe employed toharness themetrological applicationsof a variety of entangled states [1–5].

Creating thesemetrologically useful states is generally a difficult task.One promisingmethod is adiabatic
state preparation, where the system starts with a simpleHamiltonian that has an easily produced product state as
its ground-state and is then adiabatically evolved to the entangled ground-state of a complexHamiltonian by
slowly varying an external parameter. The challenge is that the adiabatic state preparationmust be done slowly
compared to the relevantminimumenergy gap to reduce unwanted diabatic excitations during the evolution.
For systems that have vanishing gaps in the thermodynamic limit, theminimal gap for afinite systemoften
decreases inversely with the system sizemaking adiabatic state preparation particularly difficult for larger
systems. Current quantum simulators cannot evolve the system long enough to be able to fully carry out this
process, as they are limited by decoherence and technical noise. This constraint, of a short evolution time,
inevitably produces diabatic excitations, which can be significant and can seriously affect the fidelity of the target
entangled state. The challenge lies infinding balance between decoherence errors entering on long timescales
and the diabatic excitations entering on short timescales.

One potential solution to this problem is a shortcut to adiabaticity—the system is evolved non-adiabatically
so that it ends up in the entangled ground-state at the end of the evolution. These techniques reduce the total
state preparation time, whichmake them attractivewhen dealingwith decoherence effects. Lately, there have
beenmany theoretical breakthroughs in this area [6–8]. One technique, based on adding counter-diabatic fields
to theHamiltonian, guarantees that the system evolves to the correct entangled ground-state. It does this by
adding an auxiliary term to theHamiltonian, which is designed to exactly cancel the excitations that would take
place, ensuring that the system always remains in the instantaneous ground-state. The strength of this term goes
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to zero at the end of the ramp,which results with the system in the entangled ground-state of the target
Hamiltonian. Unfortunately the auxiliary terms thatmust be employed require a large number of nonlocal and
time-dependent interactions to be added to theHamiltonian, which are difficult to implement due to their
complexity. Recent advances [9] show that while exact counter-diabatic drivingmay not be realized in real
systems, local counter-diabatic termsmay be applied to reduce the diabatic excitations. These techniques would
increase the ground-state fidelity, but for this work the terms used to construct them generally break a parity
symmetry that protects the entangled states.

An alternative approach is to try tominimize the diabatic excitations by ramping quickly when the
instantaneous energy gap is large and slowlywhen it is small, given the constraint of the total experimental run
time. Implementing this logic continuously results in a ramping scheme termed the locally adiabatic (LA) ramp
[10]. Here, the ramp speed for the external parameter is optimized by ensuring the diabatic excitations are
created at a uniform rate throughout the ramp. It requires knowing the instantaneousminimumenergy gap
within the same symmetry sector as the ground-state, so it is challenging to implement for systemswhere this
gap is not known a priori. There is a conjecture that this is the best continuous rampprofile to use for a given
experiment if the energy gap in the given symmetry sector is known and the experimental run time is long
enough to achieve reasonablefidelity [10].

Thebang-bangprotocol [11, 12], presentedhere, is amorewidely applicable alternative, because it does not
require one toknow theminimal energy gap as a functionof time. It consists of (i) initializing the system in a
convenient product state (usually chosen tobe the ground-state of the initial ‘simple’Hamiltonian); (ii)quenching
the external parameter to an intermediateHamiltonian (whichoftenhas a gap close to theminimal gapof the system)
andholding for a periodof time and (iii) thenquenching the external parameter to thefinalHamiltonianof interest.
Theprocedure involves optimizing twoparameters: the external parameter for the intermediateHamiltonian and the
holding time. In earlierwork, the protocolwas shown toworkbetter for longer-range interactions [12].

In this work, we experimentally implement the bang-bang and LAprotocols in a systemof∼70 trapped Be+

ions forming a two-dimensional (2D) planarCoulomb crystal. The trapped-ion system realizes a quantum
simulator of theDickemodel, which describes the behavior of a large collective spin coupled to a single radiation
mode in the presence of an additional transverse field coherently driving the spin [13, 14]; here the radiation
mode is the center-of-mass (COM) phononmode. Themodel possesses a quantum critical point separating two
distinct quantumphases: the superradiant phase characterized by amacroscopic population of the radiation
mode and ferromagnetic spin correlations and the normal phasewhere the radiation field remains in vacuum
and the spins are aligned to the strong externalfield.We investigate the performance of each protocol when
preparing the ground-state of theDickemodel in the superradiant phase, which is amulti-partite entangled state
optimal for quantum sensing protocols [15].We experimentally characterize the performance of each protocol
using collective spin observables and full spin distribution functions and compare them to extensive theory
calculations. The latter also allow us to benchmark the performance of the protocols based on ground-state
fidelity and quantumFisher information (QFI). In section 2we first outline theDickemodel, following [14].We
present experimental observations for the implemented ramps and accompanying theoretical calculations in
section 3. In section 4we discuss how the protocolsmay be optimized for the production ofmetrologically useful
entangled states. Lastly, in section 5wemake concluding remarks.

2. Formalism anddescription of the system

Weconsider a trapped-ion systemof laser-cooled 9Be+ ions in a Penning trap. The interplay of theCoulomb
repulsion and the external electromagnetic trapping potentials stabilizes a 2Dplanar crystal. The valence
electron spin states in the ground-state of the ion encode the spin-one-half degree of freedom,while the normal
vibrationalmodes of the self-assembled Coulomb crystal form the bosonic degree of freedom (phonons). In the
4.46 Tmagnetic field of the Penning trap, the electronic states are split by 124 GHz. A pair of laser beams couple
the spin and phonon degrees of freedom. By adjusting the detuning of the lasers close to theCOMmode of the
crystal, only thismode is excited and the spin–phonon coupling becomes uniform throughout the system. In
this regime, the experimental system can be described by theDickeHamiltonian, defined to be
   = + +( ) ( ) ( )t t tDicke Ph int B , with

 w= ˆ ˆ ( )†a a , 1Ph COM COM COM

 m= - +( ) ( ˆ ˆ ) ˆ ( ) ( )†t
g

N
a a S t

2
cos , 2zint COM COM

 =( ) ( ) ˆ ( )t B t S . 3x
xB

Here âCOM ( ˆ †aCOM) are the phonon annihilation (creation) operators for theCOMmodewith frequency ofωCOM

( =[ ˆ ˆ ]†a a, 1COM COM ), g is the spin–phonon coupling strength,μ is the beat-note frequency of the Raman lasers
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driving the system andBx(t) is the time-dependent transverse field (wework in units withÿ=1 and geffμB=1).
As the coupling is uniform, the spin degree of freedom is described by collective operators where
^ ^å s=a

a/S 2
i i and saˆ i is the Pauli spinmatrix at site iwithα=x, y, z ( s s d s=a b

abg
g[ ], 2ij k jk j ).Moreover, as

theDickeHamiltonian conserves the total spin, wemay restrict ourHilbert space to theN+1Dicke states that
span themaximal spinmultiplet (since the ground-state is the global ground-state over all possiblemultiplets),
enabling us to numerically simulate the quantumdynamics of large systems.When the transverse field goes to
zero, Ŝz commutes with theHamiltonian and the spin components of the eigenstates take the formof Ŝz

projectionswithin themaximal spinmultiplet (subject to possible degeneracies of different spin projections).
Our calculations are facilitated further by implementing the rotatingwave approximation (RWA)within the

frame rotatingwith an angular velocityμ. In this frame, we recover theDickeHamiltonian given by

 d= - - + +( ) ˆ ˆ ( ˆ ˆ ) ˆ ( ) ˆ ( )† †t a a
g

N
a a S B t S , 4z

x
xDicke

RWA
COM COM COM COM

with δ=μ−ωCOM.We always have δ<0, so that thefirst term in theHamiltonian is positive. Note that the z
and x projections are interchanged from the standard formof theDickeHamiltonian [16].

While it is not possible tofind an analytic expression for the ground-state of theDickeHamiltonian
generally, it is possible to do so in certain regimes.We begin by rewriting theHamiltonian in equation (4) as

^ ^ ^ ^d
d

= - + +( ) ( ) ( )†
H t b b

g

N
S B t S , 5z

x
xDicke

RWA
2

2

where ^ ^ ^d= + ( )/b a g N SzCOM . In this form, the ground-state can bewell understood in two distinct regimes:
theweak-field d ∣ ∣/B gx 2 (superradiant) and strong-field d ∣ ∣/B gx 2 (normal) limits. A quantum critical
point separates these phases at d~ ∣ ∣/B gx 2 .

In theweak-field limit, d ∣ ∣/B gx 2 , the energy of theHamiltonian isminimized by aligning all spins

alongêz and coherently displacing the phonons via the spin-dependent displacement of a d » ( ∣ ∣) ˆg N Sz .
This leads to a cat-like spin–phonon ground-state

y a a a ñ = ñ º ñ Ä + ñ + - ñ Ä - ñ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )B N N, 0 CAT , 0 2 , 0 2 , 6x
z zph ph

where a añ = ñ∣ ˆ ( )∣n D n, is a displaced Fock state and *a a a= -ˆ ( ) ( ˆ ˆ )†D a aexp COM COM is the displacement
operator.

Conversely, in the strong-field limit, d ∣ ∣/B gx 2 , the nature of the ground-state will be dominated by the
transverse field and is characterized as all spins aligned against the field, i.e. pointing along-êx (herewe assume
Bx>0 for simplicity). Given this spin-orientation, the displacement of the phonons vanishes and the spin–
phonon ground-state is

y ¥ = Ä -∣ ⟩ ∣ ⟩ ∣ ⟩ ( )/B N, 0 2 . 7x
x

A schematic representation of different low-energy eigenstates is given infigure 1 for the phonon like regime.
The capability of a ramping protocol to satisfy the adiabatic condition in our system is intimately determined

by the energy gap of theDickeHamiltonian. This is particularly relevant for the LAprotocol which, as wewill
detail in the following section, requires full knowledge of the energy gap.Wenote also that while the bang-bang
protocol is not a smooth rampbut rather a double quench, we still expect that a smaller gapwill generatemore
unwanted excitations following the quench, thus reducing the efficiency of ground-state production. For the
DickeHamiltonian, the size of the gap generally depends on δ in a complexmanner as discussed in detail in [14].
However, in qualitative terms the gap increases with detuning δ, as long aswe can keep the effective coupling
strength d∣ ∣g 2 fixed.

While the size of the energy gap can be problematic for adiabaticity, theDickemodel also possesses
symmetries which increase the efficiency of ground-state preparation. Specifically, theDickeHamiltonian is
symmetric with respect to the transformation of the spin operators ˆ ˆS Sx x ,  -ˆ ˆS Sy y, and  -ˆ ˆS Sz z (this is
equivalent to aπ rotation of the spins about the x-axis), and a transformation of the phononmomentum and
position operators (  -ˆ ˆp p and  -ˆ ˆx x), or equivalently the raising and lowering (  -ˆ ˆ† †a aCOM COM and

 -ˆ ˆa aCOM COM). This symmetry allows us to characterize the eigenstates as even or odd parity under the spin
reflection operation (when expressed in the z or y spin bases) plus an inversion of the phonon coordinates, with
associated conserved quantity pá - + ñ[ ( ˆ ˆ )]n Sexp i xCOM . This symmetry restricts the availableHilbert space to
states with the same parity.More explicitly, if the system is initialized in the ground-state at largeBx

( ñ Ä - ñ∣ ∣ N0 2 xph ), then states are restricted to the even parity sector ifN is even, and restricted to the odd
parity sector ifN is odd during the ramp. This implies that the relevant gap to determine the rate of diabatic
excitations is the energy gap to the first excited state in the same symmetry sector as the ground-state. In the
presence of diabatic excitations, this enlarged energy gap helpsmaintainmulti-partite entanglement and
metrological utility in the final state. Note that if a longitudinalmagnetic field (in the z-direction) is added to the
Dickemodel, breaking the spatial-spin reflection parity symmetry, this can rapidly lead to a degradation of the
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entanglement in the system. In the experiment, stray longitudinal fields do occur andwill need to be controlled
in order to achieve optimal cat state production [14].

3. Experimental results

Wenowpresent a comparison between the experimental observations and theoretical simulations for the bang-
bang and LA protocols. The theoretical simulationswere carried out by time evolving the total quantum state
while assuming perfect state preparation, spin operations, andmeasurement readout.We note that despite the
imperfections in the experiment, computational complexity prevents us from fully incorporating decoherence
into the theoretical simulations.

The experimental sequence uses resonant 124 GHzmicrowave pulses to create arbitrary collective spin
rotations. These allow the initial state to be completely polarized along the x-axis. Resonantmicrowaves are also
used to generate the transverse field. Projective collective spinmeasurements are performed at various times by
first rotating the desired spin axis to the z-axis and then using global ion fluorescence to image the spin states (the
up spins are bright and the down spins are dark).

The experiment was operated at g=2π×0.935 kHz and at a detuning of δ=−2π×1 kHz from the
COMmode, where the spins and the phononmodel are uniformly coupled and the RWA is valid. The initial
transverse fieldwas set toBx(t=0)=2π×7 kHz.Wenote that the proximity of δ to the critical point atBc
makes ground-state preparationmuchmore difficult, as discussed in section 2 [14]. However experimental
considerations, in particular current decoherence rates, restrict us to operate the experiment in this parameter
regime.

The experimental sequencewas as follows: the initial state was preparedwith all spins aligned along the x-
axis. In the case of the bang-bang protocol, this was followed by a quench to an intermediate transverse field.
This intermediate quenchwas optimized in the lab to give the spins the largest possible projection onto the z-
axis. Note that, as shown infigure 2, the transverse fieldwas not quenched to zerowhen the peakmagnetization
along the z-axis was reached.

The LA ramp profile was implemented according to the equation g= D˙ ( ) ( )B t t 2 , for

ò
g

t
=

D

( )( )
( )

Bd
, 8

B

B

ramp

0

0 1
x

2

whereΔ(t) [Δ(B)] is the energy gap of the instantaneousHamiltonian (at instantaneousfield strength) and τramp

is the total rampduration. Essentially, the LA profile ramps the transverse field rapidly when the gap is relatively
large, and is slowest when the gap reaches aminimum. Further discussion of the ramp and corresponding details
of the experimental optimization procedure can be found in [14].

In the absence of decoherence, we expect the final state to be the spin–phonon cat state (modified by the fact
that the initial phonon population has =n̄ 6), but we cannot tell whether such a state was actually formed from
our data becausewe onlymeasured the spin properties.We did notmeasure the spin–phonon entanglement.

Figure 1. Schematic diagramof the ground-states of theDickemodel for the normal and superradiant phases. (a)The energy
eigenstates of the normal phase are represented by the phonon Fock states, ñ∣n , and the spins oriented along the x-axis. IfBx>δ
(plotted here), the low lying excitations are phonon like, and ifBx<δ (not shown) they are represented by spinflips along the x-axis.
(b)The energy eigenstates in the superradiant phase, where the phonons are represented by displaced Fock states, a ñˆ ( )∣D n , and the
spins are aligned in the±z-direction. In this region, the low lying excitations are phonon like if g2/δ>δ (plotted here) and are
represented by spin flips along the z-axis if g2/δ<δ (not shown). The symbol êi denotes the unit vector in the i direction.
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Typical examples of the bang-bang and LA ramps are shown infigure 2.We note that the bang-bang ramp is
similar to an extreme limiting case of the LAprotocol, where the field is held constant near the critical point
during the ramp.

The spinprojectionplots infigures 3(a) and (b) showgoodqualitative agreement. Both the experimental and
theoretical data showanoptimal peak in the Sz-projection around1mswhen the transversefield is initially quenched
toBx=0.4J. Amoredetailed comparison canbe seen infigures 3(c) and (d)where á ñ∣ ∣Sz and á ñSx areplotted as
functions of time.Theseplots give close agreement between experiment and theory for times t<0.4ms, but even at
longer times there is goodqualitative agreement.

In the case of the LA ramp, the qualitative behavior of the experimental datamatches what is expected by the
theory, as shown infigures 4(a) and (b). Figures 4(d) and (c) show á ñ∣ ˆ ∣S Nz and á ñŜ Nx as a function of ramp

time.Here, the LA ramp achieves a slightly larger á ñ∣ ˆ ∣Sz at the end of the 2ms ramp than the bang-bang data

reaches at 1ms, as expected. Figure 4(d) shows a deviation of experimental and theory plots of á ñŜx at short
times, which hints that certain decoherence processesmay also be present.

Although the theory provides a qualitative understanding of the experimental results, there are clearly
dynamics taking placewhich are not solely described by pure evolution under theDickeHamiltonian.We
expect that decoherence effects are themain contributor to this discrepancy. The twomain sources of
decoherence present in the experiment are Rayleigh andRaman scattering [14, 17]. Rayleigh scattering causes
the off-diagonal elements of the densitymatrix to be damped in the Ŝz-basis, an effect also know as dephasing.
Raman scattering produces spontaneous emission and absorption.Hence, Rayleigh scattering is expected to be
themain source of decoherence in these experiments [17]. The dynamics of the densitymatrix is dictated by a
master equation that satisfies, r r r s rs= - Gå - [ ˆ ] ( ˆ ˆ )Hi , i i

z
i
z , whereΓ is the single particle decoherence rate

due to Rayleigh scattering (measured in the lab to be 60 s−1 atBx=0).
While including the effects of decoherence alongwith the phonons and spins is too computationally costly

for the system sizes considered in the experiment, in certain limits, one can create phenomenologicalmodels for
the effects of decoherence. In particular, when =B 0x , the coherences between different spin sectors, ñá∣ ∣m mi j ,

in the densitymatrix decay as - - G( ( ) )m m texp i j wheremi is a given eigenvalue of Ŝz [18]. Unfortunately, this
means that the coherence of an ideal spin–phonon cat state will decay exponentially with a rate that increases
with ion number since = ∣ ∣m N 2 . In the opposite regime, we attribute the rapid depolarization of Ŝx at short
times, in the presence of a dominant transverse field and for a state along the x-axis (á ñ  á ñ -Gˆ ˆ [ ]S S texpx x ), to
decoherence.We note that this condition is not present in the bang-bang experiment as the system is never in the
largeBx regime. If d~ ∣ ∣Bx , we are unable to develop a phenomenologicalmodel for the effects of decoherence.
However one expects that decoherence will still result in a reduced finalmagnetization.We have found that a
generically longer ramp time correlates to a larger discrepancy between the experimental data and the theory
estimates of á ñ∣ ˆ ∣Sz .

The experiment did not attempt to disentangle the expected spin–phonon entanglement and transfer it to a
spin-only entanglement, nor did it directlymeasure the entanglement of thefinal state. These are generally

Figure 2.Rampprofiles for the time-dependent transverse field in theDickemodel.We show the LA ramp and the bang-bang ramp.
The LA and bang-bang ramps have been optimized to produce the highest ground-state fidelity for a simulation time less than or equal
to 2ms. The theoretical and experimental bang-bang hold times are optimized at about 1ms (open circle). The experimental data was
sampled out to 2mswith the same quench field.
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complex tasks whichwill be pursued inmore detail in future experiments. Nevertheless this spin projection data
does serve as afirst step in understanding the evolution and state characterization of this system.

4. Theoretical optimization of cat state production

As discussed in the previous sections, and evidenced by the experimental data, a key challenge in the preparation
of a cat state is understanding the interplay between diabatic excitations and decoherence. In simpler terms,
mitigating diabatic excitations generically requires longer ramp times, but longer ramp times in turnmagnify
the effects of decoherence. In this section, we follow the approach taken in [14] and propose an ideal test case for
the next generation of experiments.

We start by considering a detuning δ=−2π×4 kHz, such that the spin–phonon resonance at d» ∣ ∣Bx , is
well-separated from the critical point atBc. This increases the size of theminimal energy gap, while the spins are
still—to an excellent approximation—uniformly coupled to theCOMmode.Moreover, we assume that the
initial thermal phonon occupation can be reduced to n̄ 0.2, such that we can—to a good approximation—
ignore this thermal contribution in the following calculations. This parameter regime allows us to explore the
potential of the bang-bang protocol, both for producing the ground-state, as well as for using it as a robust path
to generatingmulti-partite entanglement.

Infigure 5, we plot the preparation fidelity and the collective spin observable á ñ∣ ∣S Nz for detunings of
δ=−2π×1 kHz and δ=−2π×4 kHz and for four different system sizes. Thefidelity is calculatedwith
respect to the ground-state of theDickemodel in the superradiant phase, and is given by

 y= á ñ∣ ∣ ∣ ( )CAT . 9CAT
2

Wefind that for the largermagnitude δ=−2π×4 kHz, the bang-bang shortcut performs best for
experimental parametersBx≈0.5J and thold≈0.5ms. This is evidenced by themaximal CAT as well as the

Figure 3.Comparison of experimental data and theory estimates for the optimal quench of the bang-bang experiment for a system of
75 ionswith coupling constant J=2π×0.875 kHz, and detuning from theCOMmode of δ=−2π×1 kHz. The spins are
initialized to the state - ñ∣ N 2 x and theCOMmode is in a thermal state with an initial occupation of »n̄ 6. Figures (a) and (b) show
plots of the experiment and theory, respectively, for the total spin projections in the x, y, and z directions. Figure (c) shows themean
value of á ñ∣ ∣S Nz . A noticeable growth of á ñ∣ ∣Sz is observed after the initial quench. Figure (d) shows themean value of á ñS Nx which
exhibits fast demagnetization. For this observable, however, dephasing plays a non-negligible role and the disagreement between
theory and experiment becomes larger. The statistical error bars are on the order of the size of the data points.
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peak in á ñ∣ ˆ ∣S Nz . Thefidelity ranges from0.45 for 20 ions to 0.2 for 80 ions.We highlight that this optimal ramp
duration is short compared to the timescales onwhich decoherence has significant effect.

In contrast, for smallermagnitude detuning d p= - ´2 1 kHz, we do notfind a significant correlation
between themaximal fidelity and themaximal polarization of the spin. In fact themaximal fidelity is only 0.14
for 20 ions and is as small as 0.016 for 80 ions, while the polarization remains large in the 0.4 range for all cases.
We reconcile this observation by noting that while diabatic excitations only slightly reduce the polarization
(mex<mCAT=N/2), they drastically reduce the ground-state fidelity since the excited states are orthogonal to
the cat state.

In order to fairly evaluate the performance of the bang-bang protocol, we provide comparisons to the LA
ramp.Guided by the previous calculations, we restrict to a system size of 20 ions and d p= - ´2 4 kHz where
the LA ramp can produce rather large fidelities within 2ms.

As shown infigure 6, the bang-bang shortcut always has a higherfidelity for t<0.9ms. The LA ramp
produces betterfidelities for t>0.9ms.However, we note thatwhen themaximalfidelity reached is< 0.5 it is
insufficient to independently demonstrate non-trivial overlapwith the entangled cat state. Specifically, afidelity
of 0.5 can also be obtainedwith a statisticalmixture of all spins up and all down. In the absence of decoherence,
onemay distinguish between the cat state and themaximallymixed state bymeasuring the amplitude of the
coherence r =-∣ ∣ 2N N2, 2 CAT .We note that, for a spin–phonon cat state, this coherence can bemeasured
only after the disentangling procedure discussed in [14].When significant decoherence is present, the
verification of cat state coherence requires full characterization of the state.

Infigure 7, we show the scaling of the ground-state fidelity with system size.We find that, forfixed ramp
times, both protocols performworse as the system size increases. However the bang-bang protocol appears to be
less sensitive to increasing system size for shorter ramp times.

Figure 4.Comparison of experimental data and theory estimates for the LA ramp for a system of 76 ionswith coupling constant
J=2π×0.875 kHz, and detuning from theCOMmode of δ=−2π×1 kHz. The spins are initialized to the state - ñ∣ N 2 x and the
COMmode is in a thermal state with an initial occupation of »n̄ 6. Figures (a) and (b) represent false color plots of the experiment
and theory, respectively, for the total spin projections in the x, y, and zdirections. Both of the Sz plots show good qualitative agreement.
Figure (c) shows the values of á ñ∣ ∣S Nz . A noticeable growth of á ñ∣ ∣Sz is observed in the superradiant regime. Figure (d) shows the
mean value of á ñS Nx which exhibits fast demagnetization. Similar to the bang-bang case in this observable dephasing plays a non-
negligible role and the disagreement between theory and experiment becomes larger. The statistical error bars are on the order of the
size of the data points.
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So farwe have considered idealized conditions for the ramping protocols. However, a common
experimental imperfection to consider in a Penning trap is a residual longitudinal field, which can break the
degeneracy of the ground-state and thus degrade the preparation of the cat state. Infigure 6, we illustrate the
effect of afixed uniform longitudinal field,µ ˆB Sz z

, on the coherence of the spin–phonon cat state. Here, the
coherence of the spin–phonon cat state is defined as a r aá á - ñ - ñ∣ ∣ ∣ ∣N N2 2 . As the spin–phonon reflection
parity is no longer a symmetry of themodel, the initially purely odd or even parity ground-states begin tomix as
the state is evolved forward in time. In this example, the state is initialized in the even paritymanifold. One can
see that the longitudinal field causes thefinal coherences to decaywith the effect beingmore dramatic for the LA

Figure 5. False color plots of thefidelity and the polarization for the theoretically calculated bang-bang protocol with system sizes of
20, 40, 60 and 80 ions. These plots can be employed to optimize the bang-bang experimental profile. The top rows of eachfigure
optimize thefidelity of theDicke ground-state while the bottom rows optimize the value of á ñ∣ ∣S Nz . Left columns of each figure are
optimized using the near-critical detuning of δ=−2π×1 kHzwhile the right columns are for a detuning of δ=−2π×4 kHz.

Figure 6.Theoretical predictions for a system of 20 ionswith J=2π×0.875 kHz, δ=−2π×4 kHz, and an initial phonon vacuum
state. Panel (a) shows themaximumground-state fidelity as a function of ramp time for both the bang-bang and LA ramps. The bang-
bang approach outperforms the LA ramp for times less than 0.9ms. Panel (b) shows the effects of adding a small longitudinal field on
each ramping protocol for the case with 20 ions. The coherence of the cat state is obtainedwhen a small longitudinal field is added to
theDickeHamiltonian. A 2ms LA ramp is compared to an optimized bang-bang hold time of 0.485ms. The slower decay in the bang-
bang plot is due to the shorter experimental run time.
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ramp than for the bang-bang experiment. The slower decay of the spin–phonon cat state coherence is a result of
the bang-bang experiment having a shorter hold time [14].

Our discussion up to nowhas focused on the ground-state fidelity to characterize the performance of each
protocol. However, an equally importantmeasure is themetrological useful entanglement, whichwe quantify
using theQFI. For a pure state the Fisher information is given by

= á D ñ( ˆ ) ( )F S4 , 10Q n
2

whereD ( ˆ )Sn
2 is the variance of Ŝn , and


n the spin direction thatmaximizes theQFI [19]. TheQFI is an effective

witness ofmulti-partite entanglement in the following sense: F NQ implies that entanglement is present in
the system and fullN-body entanglement is classified as F N 2Q

2 .Maximal entanglement, in this context,
refers to a saturation of the bound for theQFI, FQ=N2, which represents the result for the spin–phonon cat
state. Infigure 7(b), we show the behavior ofQFI as a function of system size.Wefind thatQFI ismuch less
sensitive to the size of the system, implying that the number of diabatic excitations do not degrade theQFI as
severely as the ground-state fidelity. This occurs, in part, because we are symmetry restricted to the spin
multiplet, whichwhen B 0x exhibitsN-partite entanglement for every eigenstate, due to the parity symmetry.
It is interesting to note that while the bang-bang entanglement quickly drops off at smallN, it appears to
approach a constant value of 0.65N2, which is still a quite large entanglement depth for systems on the order of
hundreds of ions, and for short ramp times.We do not knowwhy the bang-bang ramp approaches this limit.

Finally, we note that both the fidelity andQFIwill be affected by decoherence processes as discussed in the
previous section.Whilemodeling the exact effect of decoherence is beyond the scope of this work, it is expected
that the impact will scale with the experimental time. As such, while the bang-bang protocolmay not be able to
create experimentally usefulfidelities, it will be a valuable approach for generating largeQFI even in the presence
of appreciable decoherence. Clearly faster protocols aremore resilient to decoherence. Furthermore, since the
effects of decoherence aremagnified as the number of ions increases, the bang-bang protocolmay provide a
robust, and experimentally feasible path to creating states for quantum enhancedmetrology.

5. Conclusions

Wehave shown that the bang-bang protocol as applied to theDickemodel can be easily realized in Penning trap
quantum simulators. This shortcut to adiabaticity is clearly superior to the alternative LA approach in terms of
the creation ofmetrologically useful entangled states on short timescales. The bang-bang approach also scales
better with larger system sizes when compared to the LA ramp. The ability to generate entanglement rapidly for
large systems has crucial implications for future experiments, where decoherence is a key consideration.
Specifically the bang-bang protocol has the potential to easily create highly entangled states of hundreds or even
thousands of ions.

Figure 7.Panel (a) shows how the ground-state fidelity of theDickeHamiltonian scales as a function of system size for bang-bang and
LA ramps of 1.0, 1.5 and 2.0ms. The bang-bang approach outperforms the LA ramps of 1.5ms at 90 ions. Panel (b) shows how the
multiparticle entanglement depth scales as a function of system size.
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