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Abstract

Governments and enterprises strongly rely on incentives to generate favorable outcomes from social
and strategic interactions between individuals. The incentives are usually modeled by payoffs in
evolutionary games, such as the prisoners dilemma or the harmony game, with imitation dynamics.
Adjusting the incentives by changing the payoff parameters can favor cooperation, as found in the
harmony game, over defection, which prevails in the prisoner’s dilemma. Here, we show that this is
not always the case if individuals engage in strategic interactions in multiple domains. In particular, we
investigate evolutionary games on multiplex networks where individuals obtain an aggregate payoff.
We explicitly control the strength of degree correlations between nodes in the different layers of the
multiplex. We find that if the multiplex is composed of many layers and degree correlations are strong,
the topology of the system enslaves the dynamics and the final outcome, cooperation or defection,
becomes independent of the payoff parameters. The fate of the system is then determined by the initial
conditions.

1. Introduction

Strategic interactions between individuals are at the root of society. It is highly beneficial to a population if these
interactions lead to large-scale cooperation [1, 2]. A widely used approach to promote cooperation relies on
economic incentives. Examples include performance based bonuses in enterprises, reduced costs for the
disposal of sorted waste to encourage recycling, or sharing the financial impact of climate change [3]. Large-scale
cooperation can emerge through individual strategic interactions that are commonly described by evolutionary
game theory [4-6], where incentives are incorporated into payoffs that individuals earn from playing games with
their neighbors in a network of contacts [7—11]. The impact of structured populations in a single domain on the
evolution of cooperation is well understood [12—16]. However, in reality, interactions take place in different
domains, such as business, circles of friends, family etc. Such interactions can be captured by multiplex
networks, which are systems comprised of several network layers, where the same set of individuals are present
[17-21]. The impact of multiplexity on the outcome of evolutionary games is of high importance for the
emergence and stability of cooperation in real systems and has recently attracted a lot of attention [22—34].
Especially the interplay between the structural organization of the different domains in the multiplex—for
example whether there are correlations between the importance of an individual in the business and social
domain—and evolutionary game dynamics is still not well understood.

In this paper, we show that the interplay between evolutionary dynamics and the structural organization of
the multiplex can have dramatic consequences for the effectiveness of incentive schemes. In particular, if the
degree of nodes (which may abstract their importance) is correlated among different domains, which is the case
in most real multiplexes [19-21, 35-37], the evolutionary dynamics can become enslaved by the topology
(topological enslavement). This means that the hubs may dominate the game dynamics. In this case the ability of
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incentives to control the system breaks down completely and the outcome becomes independent of the payoffs.
This phenomenon can be interpreted as an encrusted society which is insensitive to incentives.

2. Results

Social and strategic interactions naturally occur in different domains, such as business, friends, family etc. Each
of the interaction domains is given by a network of contacts. These networks are usually heterogeneous—often
scale-free—as well as highly clustered [38], i.e. they have alarge number of closed triangles [39]. The
simultaneous presence of individuals in different domains is naturally represented by a multiplex network [40].
A multiplex is comprised of several network layers, each of which consists of the same set of nodes. In real
multiplexes, the topologies of the different layers are not independent from each other. Specifically, real
multiplex networks have been shown to be far from random superpositions of their constituent layer topologies.
Instead, they exhibit a large number of overlapping edges [40], the degrees of nodes between different layers are
correlated [19, 35, 36], and nodes tend to connect to similar nodes in different layers [20] (similarity
correlations).

Let us first focus on the effect of degree correlations. We construct correlated and uncorrelated multiplexes
using Barabasi—Albert networks in the individual layers. From these networks, we construct multiplexes either
by randomly matching individuals between the two layers, in this case there are no degree correlations, or by
matching individuals according to their degree rank, which leads to maximal degree correlations. We now
simulate the evolutionary game dynamics. Individuals play games with their contacts in each layer of the
multiplex. In each layer, individuals have two strategic choices: they can either cooperate (C) or defect (D). The
payoff of each two-player game is then described by the payoff matrix

C D
M=cC 1 S. (D
DTO

Parameters T'and S define different games [4]. T < 1and S > 0 defines the ‘harmony’ game, T < 1and S < 0
corresponds to the ‘staghunt’ game, T > 1and S < 0yields the ‘prisoner’s dilemma’, and finally for T > 1and
S > 0we obtain the ‘snowdrift’ game. One round of the game consists of each individual playing one game with
each of her neighbors in each layer in the multiplex. Furthermore, we consider the evolution of the system to be
governed by imitation dynamics [41], reflecting that individuals tend to adopt the strategy of more successful
neighbors. After each round of the game (synchronized updates) each node i chooses first one layer, /, at random
and then—within this layer—one neighbor j at random, and copies her strategy with probability P; ;._;, specified
by the Fermi—Dirac distribution [41] (in analogy to maximum entropy considerations in Glauber dynamics)

1

Pric = T —mmx @
Herein,
1 &
Hi = — 1 (3)
M=

measures the aggregated payoff of node i given by the sum of the payoffs 7; ;of node i in layer l over all layers,
which we normalize by the number of layers. Parameter K plays the role of a temperature and quantifies the
irrationality of the players. In the supplementary material, available online at stacks.iop.org/NJP/20/053030/
mmedia, we show that different update rules yield qualitatively similar results. After all nodes updated their
strategy simultaneously, we reset all payoffs. In this paper, if not stated otherwise, we always start with 50%
cooperators, which are randomly assigned. Later, we will investigate and discuss the impact of different initial
fractions of cooperators. As order parameter, we use the mean final cooperation as

1 &
c=— Z R (4)

M=

where ¢;denotes the final mean cooperation in layer /, and n; is the number of layers.
The results show that a sufficiently large number of layers and the existence of degree correlations give rise to

a particularly interesting phenomenon. If the number of layers is low we obtain a qualitatively similar behavior
as compared to the outcome in single networks, see figure 1(a). The results for a single network are shown in the
supplementary materials. In the absence of degree correlations, increasing the number of layers only leads to
mild changes, see figure 1(b). However, if degree correlations are present and the number of layers is large
enough, in the whole T' — S parameter space considered we now observe a mean final cooperation of ¢ = 0.5,
which is nearly independent of the game payoff parameters T'and S (see figure 1(c)). We now consider more
realistic multiplexes, for which we use the geometric multiplex model developed in [20]. This model has several
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Figure 1. Mean final cooperation (color coded) as a function of the game payoff parameters T'and S. Layers have always N = 4000
nodes. Results are averaged over 400 realizations. (a) 2 layers BA multiplex with degree correlations. The case for 2 layers without
degree correlations in qualitatively similar and shown in supplementary figure 3. (b) 16 layers BA multiplex without degree
correlations. (c) 16 layers BA multiplex with degree correlations. (d) 16 layers GMM multiplex with degree correlations (v = 1), no
similarity correlations (g = 0), power-law exponenty = 2.6, and mean local clustering coefficient 0.4.

advantages: we can tune the degree of heterogeneity of the layer topologies (power-law exponent ), we can
generate networks with realistic mean local clustering coefficients, we can tune the strength of degree
correlations between the layers by varying parameter v € [0, 1] (0 means no degree correlations, and 1 maximal
correlations), and finally we can also tune similarity correlations that have been found to exist in real multiplexes
by varying parameter g € [0, 1] (the combination of these correlations controls the amount of overlapping edges,
another important property of real multiplexes). As shown in figure 1(d), using these more realistic multiplexes
yields similar results as discussed before. Interestingly, the behavior does not change significantly as one varies
the overlap (or parameter g respectively, see supplementary materials). These findings suggest that degree
correlations are responsible for the observed phenomenon.

The mechanism at play is ‘topological enslavement’. Individuals only have knowledge of the aggregated
payoff but imitate the strategy of other individuals in a particular interaction domain. This imitation process is
blind to where the actual payoff came from, which could have been earned in another layer following a different
strategy. Hubs have the potential to earn higher payoffs because they play more games. Furthermore, due to their
high number of links, nodes are more likely to select hubs as imitation candidates. If degrees are correlated
between the layers, hubs in one layer are also hubs in another layer. Let us consider the harmony game with
S = 0.5, T = 0.5asan example. Assume that we have a hub that is initiated as cooperator in layer 1 and defector
inlayer 2. Then, in the first round, in layer 1 the hub earns an expected payoff of k/2 - 1.5 (recall that we assign to
each node the initial state of cooperate with 50% probability). In layer 2 it earns k/2 - 0.5, which yields an
aggregated payoff of k/2 according to equation (3). For the sake of simplicity, assume that we have, apart from
the hub, in each layer k other nodes that are exclusively connected to the hub. These nodes then earn a payoffin
therange [0.5, 1.5]. Now, if k > 1, the other nodes will always imitate the hub, and not vice versa, and hence in
layer 2 where the hub started as a defector eventually defection will prevail, although this could not happen in the
harmony game in isolation. As we have seen in this toy example, hubs can accumulate a high aggregated payoff,
and if degree correlations are present, the topology dominates the game dynamics. The consequence is that the
actual game payoffs T'and S become irrelevant [42]. Instead, the outcome is determined by the initial conditions.
The behavior is similar in the prisoner’s dilemma game. In figure 2(a) we present a toy example to illustrate the
mechanism for T = 1.5and S = —0.5. Let us focus on the green link in the figure connecting nodes A and B in
layer 1. In this layer, node A cooperates and earns a payoffof1 - 1 4+ 3 - § = —0.5. Node B defects and earns a
payoffof1 - T = 1.5. However, the aggregate payoffs as defined in equation (3) are [T, = 5.5/3 and
[Tz = 0.5/3. Hence, even if the defector B earns a higher payoff than A in layer 1, the aggregate payoff of A is
significantly higher and B is likely to imitate the cooperating hub. This is due to the multiplex topology, in
particular the existence of degree correlations (A is a hub in all layers). In other words, especially in the early
rounds of the game, the high payoffa hub earns in layers where it defects makes its strategy worth imitating even
in layers where it cooperates. This effect leads to topological enslavement, where the initial state of the hub
determines the outcome of the entire layer (we show this with numerical simulations in the following). Let us
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Figure 2. A simple toy example of a three layer multiplex with one hub and four leave nodes to illustrate topological enslavement. Red
denotes defectors and blue cooperators. Payoffs that selected nodes have earned in the prisoner’s dilemma (T = 1.5and § = —0.5)in
each layer are displayed on top of the nodes. Dashed lines connect the same node in different layers. (a) Strong degree correlations are
present, hence node A is the hub in all three layers simultaneously. (b) No degree correlations. Node A is the hub in layer 1, but a leave
node in layers 2 and 3. Here we omit the dashed lines for all nodes except A and B for better readability.
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Figure 3. Mean final cooperation (color coded) for (a) the harmony (T = 0.5and S = 0.5 game) and (b) the prisoner’s dilemma

(T = 1.5and S = —0.5) asa function of the number of layers ;and the strength of degree correlations v. Networks are generated with
the geometric multiplex model described in the text. Layers have N = 4000 nodes, power-law exponentsy = 2.6, and mean local
clustering coefficient 0.4. Results are averaged over 400 realizations.

now consider the case without degree correlations as illustrated in figure 2(b). Node A is still a hub in layer 1, but
aleave node in the two other layers. In the example presented in the figure, the aggregated payoffs of nodes A and
Barell, = —1/3andIlp = 1/3 respectively. Hence, it is likely that node A, the hub, switches to defection and
subsequently defection will spread across the system. In this case, the hub is not able to drive the entire layer to
cooperation, and topological enslavement is not observed.

Topological enslavement emerges and triggers payoft irrelevance as we increase the number of layers and the
strength of degree correlations. In a single domain, defection is the prevailing strategy in the prisoner’s dilemma
and cooperation flourishes in the harmony game. This also applies to the topologies considered here, see
supplementary materials. In the following we choose these games because they are prototypes of very different
situations, where the outcome in a single domain is either cooperation or defection. However, even in these
complementary cases, we find that if the number of layers is large enough and degree correlations are strong
enough, topological enslavement makes the final outcome of these two games indistinguishable. This is shown
in figure 3. If degree correlations are weak (small v) and/or the number of layers is small (low 1;), we recover the
known result from a single domain, namely cooperation in the harmony game and defection in the prisoner’s
dilemma. However, if degree correlations are strong enough and the number of layers is large enough, both
games show the same outcome: a mean cooperation of ¢ & 0.5 (see green area in figure 3).

Finally, topological enslavement is not restricted to pairwise games like the prisoner’s dilemma or the
harmony game. Let us consider the public goods game as an example, where individuals play in different
overlapping groups. A node with degree k participatesin k + 1 groups centered around each of its neighbors and

4
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Figure 4. Mean final cooperation (color coded) in the public goods game as a function of the number of layers ;and the strength of
degree correlations v. Networks are generated with the geometric multiplex model. Layers have N = 4000 nodes, power-law
exponentsy = 2.5, mean local clustering coefficient 0.4. The synergy factor is r = 1.6. Results are averaged over 400 realizations. (a)
No similarity correlations (g = 0). (b) With similarity correlations (g = 1).
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Figure 5. Mean final cooperation (color coded) averaged over 400 realizations for (a) the harmony (T = 0.5and S = 0.5) and (b) the
prisoner’s dilemma (T = 1.5and S = —0.5) game as a function of the initial density of cooperators ¢, and the strength of radial
correlations v. Multiplexes are generated with the geometric multiplex model and have 16 layers. Layers have N = 4000 nodes,
power-law exponentsy = 2.6, and mean local clustering coefficient 0.4. (c) Histograms of the cooperation density ¢, in different layers
1. We show results for the uncorrelated as well as the correlated case for the harmony game and prisoner’s dilemma as indicated in the

plot titles.

itself [43]. Cooperators contribute to the common pool with a total amount that they divide equally among the
groups they participate in. The total amount in the common pool of each group is multiplied by a factor rand
distributed equally among all members of the group. The game is played independently in different layers, and
the total payoffs are aggregated for each node (see supplementary materials for details). The results are shown in
figure 4. For the given synergy factor, cooperation density is large in the absence of degree correlations, (>70%),
but if the number of layers is large and degree correlations are present, cooperation density drops to a value close
to 50%. The behavior is insensitive to a change of parameter g, and hence of the overlap in the multiplex, in
contrast to recent findings in lattice topologies [26]. In other words, the effect of heterogeneity and degree
correlations is the dominant factor. These findings suggest that topological enslavement can occur in a broad
range of games.

Moreover, topological enslavement implies that the initial conditions play an important role for the final
outcome. If we start for example with 30% cooperators, the hubs will also be initially cooperative with 30%
probability and, following the aforementioned mechanism, on average 30% of the layers will become
cooperative, whereas the remaining 70% will become defective. Indeed, we observe that initial conditions
determine the outcome if degree correlations are strong. We show this in figure 5, where we vary the initial
cooperation ¢, from 10% to 90%. For weak degree correlations, in the harmony game we observe mainly
cooperation, and in the prisoner’s dilemma mainly defection. However, as the strength of degree correlations
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increase, the final outcome aligns very well with the initial density of cooperators, approximatively
independently of the game that is played.

Finally, the numerical results confirm that topological enslavement separates the layers into two groups with
either near full cooperation or defection respectively. This behavior is shown in figure 5(c), where we have set
¢o = 0.5.Inthe absence of degree correlations (v = 0), in the harmony game we find that cooperation is high in
all layers, whereas in the prisoner’s dilemma defection prevails for the parameters T'and S considered here.
However, if degree correlations are strong (v = 1), we observe that in both games layers are either highly
cooperative or nearly fully defective. The probability of a random chosen layer to be highly cooperative is then
approximatively equal to ¢y, and hence in this case 50%. In the supplementary materials we show this behavior
for different values of ¢, and v.

3. Discussion

To conclude, humans constantly interact in different domains where they can adopt different strategies in
evolutionary games. A player who interacts with an opponent in one domain may not have knowledge of the
opponent’s behavior in the other domains. Therefore, the success of the opponent in terms of her aggregated
payoff can be the result of interactions in other domains, where she may have played a different strategy. Because
these interactions are ‘hidden’ from the player, she will attribute the success of the opponent to her strategy in the
domain where the two interact. We have shown that the degree of cooperation cannot be modulated by the
payoft parameters of the game if the system meets certain topological conditions, which are found in most real
multilayer systems. This means that payoff-based incentive schemes can become ineffective in environments
with multiple domains of interaction.

In particular, the different domains can be represented as a multiplex network. In these type of systems,
individuals are simultaneously present in different network layers with different topologies. In reality, the
topologies of different layers are often related, commonly featuring a large edge overlap, degree correlations, and
correlations between the similarity of nodes. We have shown that if degree correlations between different
heterogeneous layers are strong enough and individuals engage in many domains, incentives that represent the
payoftin strategical games can fail. In this case, the final outcome is strongly determined by the initial conditions.
This phenomenon, which we call topological enslavement, occurs because nodes that are hubs in different layers
can accumulate a high aggregated payoff such that other nodes will tend to imitate their strategies in a specific
domain, regardless of whether their payoff was earned in this domain. Hence, if individuals interact in multiple
domains in a way that imitates more successful behavior, the payoff of strategical games can become irrelevant
for the final outcome.

The resulting situation can be interpreted as an encrusted society, which is insensitive to payoff-based
incentives. Mixing the influence individuals have in different domains destroys the correlations between the
layers and hence is an effective measure to avoid this situation, but might not be practical in reality. Therefore, it
constitutes an important task for future research to investigate whether the transition from such payoff-based
incentives, where one incentivizes ‘how to act’, to topological incentives, which promote ‘with whom to act’,
could provide a cure for an encrusted society. Finally, it would be interesting to conduct experiments with
human subjects to verify our theoretical results.
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