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Abstract

We present an example of a thermal process (TP) for a system of d energy levels, which cannot be
performed without an instant access to the whole energy space. This TP is uniquely connected with a
transition between some states of the system, that cannot be performed without access to the whole energy
space even when approximate transitions are allowed. Pursuing the question about the decomposability of
TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we
investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we
determine the set of extremal points of these operations, as well as the minimal set of operations needed to
perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the
structure of the set depends on temperature, which is associated with the fact that TPs cannot increase
deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We
also connect the decomposability problem with detailed balance symmetry of an extremal TPs.

1. Introduction

One of aims of quantum thermodynamics is to provide such a description of quantum systems interacting with
environment that would enable assessment of their usefulness for tasks such as work extraction. Therefore, a
question about possible transitions between quantum states, and their energy cost, lies in the center of interest. This
question can be posed at a general, model-independent level, when we neglect a precise structure of the system-
environment interactions in favor of more general assumptions we impose on them (e.g. energy conservation), and
aim at obtaining bounds imposed by quantum mechanics on the performance of quantum systems under these
restrictions.

One of these generalized approaches can be expressed in the language of the resource theory of thermal
operations [1] (see also [2]), where, apart from the assumption about the commutation of system-environment
interactions with local Hamiltonians, we allow for free addition and erasure of environment state in equilibrium.
When restricted to transitions between states diagonal in the basis of a local Hamiltonian, the allowed
transformations are described by thermal processes (TPs)—left stochastic matrices that preserve a Gibbs state.
They act on vectors storing states eigenvalues. Thermomajorization criterion [1, 3, 4] brings an answer to the
question about which states can be achieved from a given initial state under these assumptions and with defined
amount of work.

The thermodynamical description of quantum diagonal states within the resource theory of TPs has
appealing simplicity. However, a priori implementation of TPs requires access to an entire environment.
Therefore, apart from unitarity and energy conservation, the only thermodynamically-motivated restriction is
that the state of environment is a Gibbs one. Such an approach is clearly suitable to derive ultimate bounds,
however it might be questionable of whether it can be called thermodynamics, since the latter not only poses
limitations on efficiencies of heat engines, but also allows to achieve these limitations (at least in theory) with
coarse grained operations, that refer only to several relevant macroscopic parameters, such as temperature or
pressure.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Nevertheless, quite recently it was shown that the resource theory of TPs is indeed thermodynamics in the
latter sense. Namely, in [5] it was proved that, for diagonal states, all transitions allowed by TPs can be obtained
by having microscopic access only to a single qubit of the heat bath. The rest of the bath serves only for simple
partial thermalization processes which require just weak coupling between bath and the system [6]. This is
combined with changing of the Hamiltonian of the system. Thus, while the system (and the single additional
qubit of the bath) have to be manipulated microscopically, the heat bath is treated just as in traditional
thermodynamics. The proposed class of operations (called in [5] ‘coarse operations’), while fundamentally
simple, may still be not optimal in practice. In particular, some processes on a single qubit system require quite a
non-trivial sequence of manipulations on two qubits.

In contrast, in [ 7] Lostaglio proposes a straightforward implementation of qubit TPs by considering
coupling of a system to a bath via Jaynes—Cummings interaction, and poses the question to what extent qubit
TPs can be universal, i.e. whether a TP on higher-dimensional system can be decomposed into a convex
combinations of sequences of TPs, where each of the TP acts non-trivially only on a selected pair of the energy
levels of the system. This leads to a fundamental problem of specifying some basic TPs, such that: (i) they can be
easily implemented physically, (ii) all transitions allowed by the resource theory of TPs can be obtained from
these basic bricks. However, considerations in [7] turn to be based on the assumption of the reversibility of the so
called embedding map [8]. This assumption does not hold in general, unless the domain of the map is restricted.
Therefore, the question about decomposability of TPs remained open. This assumption was dropped in the
recent version of the paper [9], published in parallel with this manuscript, and decomposability of TPs into two
level TPs was characterized with use of different methods.

In this paper we consider two ways of obtaining all transitions from the basic ones: through compositions of
TPs and through convex mixing (possibly interlaced). Our main result is that there is no upper bound on a
dimension of the basic bricks, i.e. for system with d energy levels, there must be a basic operation that involves all
dlevels. This holds even for approximate transformations, when we allow for the output state to differ from to
goal state up to some small value in statistical distance. Note that this result is not in contradiction with [5],
where thermalizations involve only two levels at a time, because there (unlike here) one also is allowed to change
Hamiltonian of the system.

The no-go example for composing TPs out of sequences of TPs acting actively on lower dimensional
subspaces leads to a question about the allowed transitions under operations restricted in this way: what states
can be achieved from a given state diagonal in the basis of Hamiltonian of a d-level system, if the allowed
operations can be composed as mixture of products of thermal operations each acting actively on at most
d’-levels of the system? The second part of this paper is a step to answering this problem by exploring the
structure of the set of TPs through calculating and describing properties of extremal points of TPs of 3 level
systems. It enables us to identify all the basic TPs, that allow to obtain arbitrary TP by compositions and mixtures
for three level system.

When it comes to answering the above general question, the structure of d = 3 TPs suggests properties that,
if proved general, may be crucial of determining the geometry of the set of TPs for arbitrary d, and identifying
transitions allowed under the above-mentioned restrictions. Namely, for three level systems, one can determine
all extremal TPs using a simple geometrical construction. Furthermore, the geometry of the set of TPs for three
level systems changes at the single threshold temperature, where some of the extremal TPs cease to exist. We
prove that this property is closely related with the prohibition of increasing deterministically extractable work
from the system under TPs, and provide formulas determining values of threshold temperatures for arbitrary
d-level systems. Finally, we show that the structure of the set of extremal points of TPs might be highly simplified
by the symmetry associated with the detailed balance condition. Namely, we conjecture that every TP that is not
self-dual with respect to this symmetry and that is not representable as a simple sum of TPs from subspaces of
lower dimensions, cannot be expressed as a mixture of compositions of TPs from these subspaces.

2. Preliminaria

We start with characterization of processes that describe transitions between states of system S with fixed
Hamiltonian Hy, that result from its interaction with bath R. Later, we will be interested in restrictions on
allowed transitions between states of the system, which arise due to limitations we impose on the number of
levels of the system that these processes can act actively on.

The interaction with environment is modeled by thermal operations. We consider system and bath with
respective Hamiltonians Hg = Z?;()l Ej|E;) (Ej|and Hp. We denote Gibbs states of the heat bath and the system

by pg = e s / Tr[e "M and pi = e s / Tr[e #%], where 8 = é, where k is Boltzmann constant, and T'is

temperature. We now consider the following operations: we can apply to the initial state of the system pgand the
Gibbs state of the heat bath pg an arbitrary unitary Uwhich conserves the total energy: [U, Hs + Hjp] = 0, and then
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trace out the bath. We obtain a trace preserving, completely-positive map onasystem E(p) = Trz[U (p @ p3) U'],
where Try denotes partial trace over the environment. ‘

Itis visible that the map preserves the Gibbs state pfg. From the assumption of energy conservation it follows
() of the matrix p = 3°, p), suchthat p® = %>, v _ p, . |E,) (E,|are transformed
independently: £(p“)) = E(p)“ [10] (see also [11]). In particular, it shows that if one starts with p such that
[p, Hs] = 0 (no coherences in the eigenbasis of the system Hamiltonian), one cannot obtain coherences through
thermal operations. Therefore, we define the basic object of interest of the paper:

that elements p

Definition 1. Take states pand o such that [p, H;] = [0, H;] = 0, and eigenvalues in the eigenbasis of Hg of
these vectors are represented by vectors p and r, respectively. A TP is a stochastic map T: Tp = r that
corresponds to a thermal operation £(p) = o.

From above itis visible that every TP can be represented as a left stochastic (i.e., with elements summing to 1
within each column), Gibbs preserving matrix T: Tg = g, where g: g; = gq; /25900 Without loss of generality
here and in the whole paper we assume that the ground state energy of the system is zero: Ey = 0. We index rows
and columns of matrices from 0 to d — 1. We will also use a shorthand notation g, , = e~7E«~E), Conversely,
every left stochastic, Gibbs preserving matrix leads to a thermal operation on a diagonal state [4]. Therefore, the
set of TPs and a set of left stochastic, Gibbs preserving matrices are equal, and we focus on the latter.

3. Anon-decomposable TP in an arbitrary dimension

Below we show that for a d level system, one can always find a pair of states p and r such that they are connected
byaTP P(p) = r,and such that there is no other process connecting the states, and P cannot be decomposed
into a convex combination of compositions of TPs, each acting on at most d — 1 dimensional subspaces.

In section 5 we show that a state 7 cannot be achieved by 2 level TPs from p even approximatively: there
exists € > 0 such thatall states r’ achievable from p by 2 level TPssatisty ||[r — /|| > €.

We take

d-1
1 1 - Z 90
0 i=1
p=|olr= 90 . 1)
qZ,O
0
4i-10

Note that, in order to assure that r represents a state, we have to assume ¢~ q;o < 1.One can always find
temperature low enough such that the above is satisfied. In the following section we will provide examples of
non-decomposable transitions for higher temperatures. Note also that r does not represent a Gibbs state g:

8 = 4;0/2; 4;,o- Nevertheless, proportions between occupations onlevels 1, ..., d — 1remain the same as

for g.

From P(p) = r we see that the Oth element of the Othrow of P (i.e. Pyp)isequalto1 — Zf;ll g; ¢ (see
equation (2)). The Gibbs preserving condition (Z;-i;(} Pidio = q;,) applied to the zeroth row (i = 0) implies
then that other elements of this row are equal to 1 (i.e. Vj-o Py; = 1). In turn, the stochasticity condition
(VjZ?:_ 01 P,; = 1)applied to columns j > 0 implies then V;-.¢ j~o P;; = 0. Then, the Gibbs preserving condition
applied to rows i > 0 uniquely determines P, o, and every TP transforming p into r has to take a form

d—1
1= g, 1 1 .1
i=1

P= ql,o 00 .. 0 . (2)
42,0
Ay 0 0 .. 0

Now we show that P cannot be decomposed as a composition of TPs, each actingonatmostd — 1
dimensional subspace. Every such decomposition would take a form P = AB, where both A and Bare TPs. We
will show below that if A and B are left stochastic and Gibbs preserving, then one of the matrices has to be equal
to P. Therefore, it is impossible to decompose P into two TPs that act non-trivially on at most d — 1 dimensional
subspaces. It follows that the above conclusion holds for a decomposition constructed as a product of an
arbitrary natural number of TPs: if it was possible to decompose Pinto k TPs, each actingonad — 1
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dimensional subspace, then one could compress k — 1 of them into a matrix that will be a TP, but from the
above we see that it has to be equal either to P or to an operation that acts trivially on Oth level. If it is an operation
that acts trivially on Oth level, it can be decomposed only to such operations. Ifit is equal to P, we proceed in
decomposing it into TPs, at every step dividing the decreasing number of processes into two groups: one
composed of one TP, and the other composed of remaining ones. In this way we see that for arbitrary natural k,
for every decomposition of Pinto k TPs, it has to be of the form X; ... X,,, PY] ... Y, where TPs X, Y, for
i=1,...,mj=1,..,nandn + m = k — 1,acttrivially on the Oth level.

We begin to show that a decomposition P = AB leads to one matrix that acts trivially on Oth level and one
thatis equal to P. Let us notice that the condition V;-.¢ j~o P,; = 0 implies that the product of an ithrow (i > 0)
of Aand jth column (j > 0) of Bhas to be zero. As these matrices can store only non-negative entries, this
implies that V;-¢,j~0A;0Boj = 0. Assume now that there is some k > 0 such that By ; = 0. This implies
Vis0A;o = 0sothat VA, By = 0 canbe fulfilled. But then, from the stochasticity condition applied to the
Oth column of Awe have Ay = 1, and, from Gibbs preserving condition applied to the Oth row of A,

Vis0Ag,j = 0.Aswe already saw before, this implies Boy = 1 — Zfl;ll e P8 which enforces B = P, and leads
to the thesis. On the other hand, if thereisno k > 0 such that By ; = 0, then, from Gibbs preserving condition
applied to the Oth row of B, we have By o = 1, which implies V;-. B; y = 0 from stochasticity condition applied
to the first column of B. In order to have P = AB, we must then have Agy = 1 — Zf;ll e B8, which
impliesA = P.

Finally we will show that Pis an extreme point of TPs, and therefore, cannot be formed as a convex
combination of other TPs. The set of TPs is convex, which follows from its equivalence to the set of left
stochastic, Gibbs preserving matrices—both stochasticity and Gibbs preserving properties are linear. One can
easily show that, ina case of d x d TP, there are always 2d — 1linearly independent restrictions on this process
(arising from d stochastic conditions applied to the columns and d Gibbs preserving conditions applied to the
rows). As every linearly independent restriction applied to the set of matrices can only increase by 1 a number of
non-zero elements in every extremal point of the set of such matrices, every TP with less than
d?> — (2d — 1) = (d — 1)? zero elements is not an extreme point of the set [12]. One can therefore construct the
set of all extremal points of TPs by fixing (d — 1)? elements to be zero, and continue fixing to zero more
elements until the remaining ones are fixed by stochasticity and Gibbs preserving conditions—a sign that the
corresponding processes cannot be decomposed into a sum of other processes with at least (d — 1)? zero
elements. As fixing P, ; = 0 Vi~ j~o implies values of the first row and the first column of P, it shows that Pis an
extremal point of the set of TPs for d level system.

Again, let us stress that the condition for all the elements of the matrix P to be non-negative implies that
temperature has to be low enough to ensure >4~ ! gio < 1.

4, Structure of the set of extremal TPs

By following the procedure outlined above, one can, in principle, find all extremal points of TPs for arbitrary
dimension d. These extremal points will be further denoted as EPTP(d). Alternatively, one can apply a procedure
of generating the whole set of extremal points from a trivial extremal point (identity), presented in [13]. In any
case, obtaining this set explicitly is demanding for increasing local dimension d. At the end of this section, we
point out a property of extremal points of TPs for three level systems that, if it holds for arbitrary d, would
provide an intuitive, graphical way of obtaining extremal points of d level TPs.

For a2 level system, the structure of the set is straightforward, with only two extremal points:

l—qlol
EPTP(2) = {Id(2), ’ , 3
2 {()( - 0]} (3

where by Id (d) we denote the identity d X d matrix.

4.1. Structure of the set for d = 3 level systems
Forad = 3 level system, the geometry of the set becomes temperature dependent (see figure 1). Below a
threshold temperature Ty = 1/k(, defined by the following relation

Qo+ Do =€ M + e M =1, 4)
it can be expressed as

EPTP(3)%>% = EPTP(3)*V | J {Aq}, (5)
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Figure 1. Presence of extremal points of TPs for d = 3 level systems, indicated by arrows, for different temperatures (vertical axis).
indicated by a connecting gray horizontal arrows and braces. In infinite temperatures (3 = 0), extremal points are permutation
trivially on at most 2 levels are represented by green arrows. Red arrows are associated with processes valid below the threshold

temperature, and the blue arrow corresponds to a process above this temperature. Brown color distinguishes a non-decomposable
process present in the whole temperature range.
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Some extremal points exist only in a selected temperature range. In zero and infinite temperatures, some processes coincide, which are

matrices, in accordance with Birkhoff theorem [14]. All extremal points decomposable into a product of extremal points acting non-

whereas in the remaining regime
EPTP(3)%<% = EPTP(3)*™ | J {Aiw0, A11, A1z, A3}
The set
EPTP(3)"™Y = {Ay, A1, Ay, A3, Ay, As, Ag, A7, As)

of extremal points that are present for the whole spectrum of temperatures contains an identity matrix
Ay = Id(3) and two level TPs (A1, A, and A5):

1—q, 0

Ar=1 aq o)
0 01
1 0 0

Ay = 01— dy1 1 ,
0 g, 0
1—q, 01

A; = 0 1 0}
Gy 00

apart from extremal processes that can be expressed as products of two level processes:

l—q, 10
Ay =BA =|q0— D0 0 1,
da0 00
=g, a, O
AS = A3A2 = 0 1 - %,1 >
90 0 0
1 =g, 1—q,,
Ag = AA; = 10 0 0],
0 UER|

(6)

@)

®

©

(10)

(11

(12)

(13)
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1 =g, 0 1
A; =MAs =] 4y 1 —1qy, Of (14)
0 dy1 0

The last member of EPTP(3)""¥ cannot be expressed in such a way:

I =g+ dyy 1 =45, 0
Ag =| dip — 920 0 1. (15)
0 41 0

The remaining extremal points are present only in temperatures higher or lower than the threshold
temperature T, of (4), which is associated with the requirement, coming from stochasticity of the matrices, that
all of their elements take values from arange [0, 1]. For temperature above the T, we have four extremal points:

0 L gp, =y,
Ap=| dp 0 0 , (16)
1 =g, 01—4y,+4,
0 1 Qoo — 12
All =|1l- qz,o 01— qO,z + q1,2 5 (17)
920 0 0
0 o1 — 42,
Ap = 410 0 0], (18)
=g, 1—qy,+4q, 0
0 Qo1 — D
Ay =|1—=a,0 1 =gy, +4q,, 0f (19)
a0 0 0

Below threshold temperature, all the above four points disappear, and instead a single extremal point emerges,
which is the map P from the previous section:

L —q,5— a5
Ag =P(3) = 10 0 0] (20)
Q20

We have already shown that A cannot be decomposed to a product of two level TPs, and that there exist
states p and r such that Agp = r. The same remains true for maps Aq, A1, Ajpand A;s:if, for 8 < Fpand an

arbitrary 0 < a < 1, one takes
1 0
p - 0 b r = a bl
0 1—a

itis clear that the only TP Rsatisfying R(p) = r,hasto have Ry = 0, and therefore is a convex combination of
Ajg — Aj3. Asno such a process can be constructed as a product of two level TPs (A; — Aj;), also these TPs lead to
an example of operations allowed by thermal operations resource theory, that cannot be performed as a convex
combination of processes that act non-trivially only on pairs of energy levels.

Therefore, we arrive at

Proposition 1. For a 3 level diagonal system, the set of operations that, by mixtures and compositions, enables to perform
an arbitrary transformation allowed by thermal operations, is { Id (3), Ay, Ay, As, Ag, Ao} fortemperatures that satisfy
e PB4 e B L L and {1d (3), Ay, Ay, As, As, Ao, Avy, A, A3} for temperatures PB4 e B2 > 1,

4.2, Detailed balance symmetry

Below we point out a symmetry of extermal points of TPs that can be associated with detailed balance condition.
For a system with a Hamiltonian H, let us define a scalar product (X|Y )3 between two observables X and Y by
(X|Y)s = Tr[XYp,], witha Gibbs state p; = e~ / Tr[e "H]. One defines a conjugate of an operator with
respect to this scalar product: (A(X)|Y)3 = (X|A(Y))s. Itfollows that A; ; = AjT e PE=E) Tt can be rewritten

as A = MpﬁATMlzl, where M, = diag[1, q, , ..., q,_, (] is @ matrix storing on its diagonal values proportional

6
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Figure 2. Extremal points of TPs for three level systems. Arrows indicate a transformation between selected levels occurring with non-
zero probability. A conjugation A; — A; is equivalent to redirecting arrows. Pairs of extremal points connected via the conjugation
are contained within red frames. Note that none of the non-trivial self-dual three level extremal processes are decomposable into a
sequence of three level processes.

to occupations in a Gibbs state. Self-duality with respect to such a scalar product (A = A) served as a definition
of detailed balance for generator of dynamical semigroup [6, 15, 16]. The conjugation is linear and maps left
stochastic and Gibbs preserving maps into themselves, and conserves the number of non-zero elements in their
matrix representation. Furthermore, as the conjugation is its inverse, the orbits of maps associated with the
conjugation are composed only of 1 or 2 elements. Therefore, all extremal points of TPs are mapped to extremal
points of TPs. If it was not true, then we can could write A =M, + (1 — M)A, for A = A),0< A< land
some extremal A, from which we would have A = M\A; + (1 — \)A,, which contradicts the thesis that A is
extremal (as A; = A, implies A, = A,).

Below we describe dual properties of TPs for the case d = 3. We see that extremal points of TPs from the set
{A1, Ay, As, Ag, Ag, Ay, Aps}are self-dual with respect to this conjugation, while (A4, Ag), (As, A7), (A1}, A1p)
form pairs of extremal points of which one element is a conjugate of another. From the physical point of view,
the conjugation of a TP reverses the direction of every transformation between levels of the system that the TP is
defining. This is shown in figure 2, where self-dual and non self-dual extremal TPs for three level systems are
grouped with respect to the ability of composing them from two level TPs. Note that, among elements that act
non-trivially on all levels, there are no extremal TPs that are self-dual and can be decomposed as a sequence of
extremal TPs from a lower dimensional space. Therefore we propose the following conjecture:

Conjecture 1. If an extremal TP C for d dimensional space is decomposable into a sequence of extremal TPs A, B,
each acting non-trivially on at most d — 1 dimensional space: C = AB, and Cis nota direct sum of extremal
TPs from lower dimensional subspaces, then Cis not self-dual with respect to the conjugation associated with
the operator scalar product.

Above, by demanding that Cbe not a direct sum of TPs from lower dimensional spaces, we account for cases of
self-dual A and B acting on disjoint subspaces, trivially leading to a self-dual C. The main concern in describing the
set of TPs for arbitrary d is the construction and characterization of structures that emerge with the increasing space
dimension. Proving the above conjecture might be helpful in shedding more light onto this problem.

In the next section we present another useful property of extremal TPs for three level system—their
connection to certain type of transformations of curves on the so called thermomajorozation diagrams.

4.3. Connection to thermomajorization diagrams

The continuity of the transition between Agand Ay — A;3 extremal pointsat 3 = [, is even more visible when
one takes into account properties of states that are transformed by these extremal processes. In order to examine
this, we invoke the notion of thermal order, associated with thermomajorization criterion.
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Definition 2 (Thermomajorization curve). Define a vector s = (qyg, qy0> dy» - +> 44 1,0)- FOT every state p
commuting with Hg, let a vector p represents occupations p; of energylevels E;, i = 0, 1, ..., d — 1. Choosea
permutation 7w on p and s, such that it leads to a non-increasing order of elements in a vector d,
K (o),
dp = (é’f“iﬂp))’ ), k=0, ...,d — 1.Asetof points {Z:-(:()(ﬂ'p),‘, Zi-;o(ﬂ's),‘} Z;(l) U {0, 0}, connected by straight
i=0{7S)i
lines, defines a curve associated with the state p. We denote it by 5 (p) and call a thermomajorization curve of
state p represented by p.

Points {Zfzo(wp)i, Zfzo(ws)i } ,’f;é will be called elbows of a curve 3(p). The curve is convex due to a non-
increasing order of elements in d. Let us note that there might be more than one permutation leading to a
creation of a convex curve 3(p). The vector 7 (1, ..., d)T will be called a S-order of p. It shows modification of
the order of segments that had to be done in order to assure convexity of 3(p).

All transitions between diagonal states under TPs are described by the following criterion:

Proposition 2. [4] A transition from p to r under TPs is possible if and only if 3 (p) thermomajorizes 3(r), i.e. all
elbows of 3(r) lieon B(p) or below it.

From the structure of extremal points of TPs for 2 and 3 level systems, the following proposition can be
shown:

Proposition 3. For every extremal TP R for 2 and 3 level systems, there exists a permutation k such that all states p
with (3-order k(1, ..., d)T aretransformed by Rp = r into states of the same 3-order k' (1, ..., d)T. Moreover, all
elbows of ((r) lie exactly on 3 (p).

The proof of the above property for every extremal TP A can be expressed with the help of a matrix that will
be denoted A’ and that describes the transformation performed by the process A on slopes of the
thermomajorization curve of an initial state. Below, we show the exact calculations for the case A = As.

Foravector p, defineanassociated vector dp: 9p; = p,q, ;. It represents slopes of segments of 3(p); Ip;isa
slope of a segment associated with the level i, with population p;. It can be easily shown thata map A’, associated
withamap Ap = r andsuch that A°0p = Or, takes the form A* = M Py 'AM o, It satisfies A* = A" andisa
counterpart of A, in a sense that it satisfies stochasticity condition for every row:

TR Y TR
1 P s 1 £ di-1,0 % i1, 1 ’

and Gibbs preserving condition for every column:

(AS)T 1 :MP@ATM/;l 1 :MpJAT 1 — Mﬂ«, 1 — 1 , (22)
da-1,0 "\4a-10 1 \1 di-1,0

where third equalities in (21) and (22) come from (row) Gibbs preserving and (column) stochasticity of A,
respectively.
Therefore, the TP Ag:

a a(l — g+ 4,0 + (1 — ‘b,l)b
AS
p= [b) —r= a(q g — 4y0) T ¢ (23)
c

b 5,

is associated with the following transformation of slopes of the segments of 3 (p):

o0y . (1= g+ G + @ — 4,07
op = (Z) o= (I =gy )a+q,,6 : (24)
Y

Let us assume that S-orderof pis (3, 1, 2),1i.e.6 > a > 7. Asitimplies (1 — q, ) + q,,0 > (1 — q,, +
B + (95 — dy0)7 = 7> wesee from (24) that -order of  is fixed to be (2, 1, 3). Moreover, the last elbow of
B(r)hastolieon B(p), because the slope of a flattest segment () is conserved by the transformation. In order to
have the firstelbow of 3(r) on 3(p), itis now enough thatq, elementis equal to dp,(q, , — 4, ) + p;- Butthis
isexactly thevalue a(q, , — g, ) + c thatis guaranteed by the transformation Ag (23).
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Table 1. Extremal points A; that map a state p with a given 3-order to a state r
with a fixed (3-order, and such that all elbows of 3 (r) lie on 5(p). Transitions
performed by Ag in low temperatures can be achieved by {Ajg, A1, A1z, Aj3}in
high temperatures. For the transitions performed by Ay, slopes of the last two
segments of r are equal, henceforth the degeneration of the 5-order. Information
about all possible transformations stem from the above table and an observation
that reversing B-order of p is reflected in the reversed S-order of r: e.g. for p with
[3-order (213) we obtain, through A,, a state r with S-order (123).

(-order of p Extremal point A;and S-order of r = A;p
8= 5o (312) A1(321), A3(132), A4(231), A7(123), Ag(213)
(321) A (312), Ay(231), A5(213), Ag(132) V (123)
(231) Ay(321), A3(213), Ae(312), Ag(132) V (123)
B< By (312) A(321), As(132), A4(231), A;(123), Ag(213)
(321) A(312), Ay(231), A5(213), A12(132), Ay3(123)
(231) A, (321), A5(213), Ag(312), Ajp(132), Ay (123)

1.0 —

0.8

0.6

0.4

0.2

0.0 I

0.0 12 1.4

Figure 3. Thermomajorization curves of a state p = (0, 0.9, 0.1) with $-order (2, 3, 1) (solid red), and states obtained from it by
applying extremal TPs: A, (dashed blue), A5 (dot-dashed orange), A, (dotted black), A¢ (medium-dashed brown), A¢ (long-dashed
green). We have chosen a Hamiltonian such that SE; = land BE, = 2, whichimplies g, , + ¢,, < 1.1i.e. that weare in temperature
range 3 > (3. Curve 3(A4p) does not have all elbows on the initial curve 3(p); p with another 3-order would be required for
B(A4p) tohave all elbows on G(p) (see table 1). Due to alow temperature regime, degeneration of 3-order of 3(Aqp) occurs—both
vectors (1,2, 3) and (1, 3, 2) are the correct F-orders (see figure 5).

By proceeding in the same way with all extremal points of TPs, we can verify that for each extremal TPs A;
there exists a §-order such that for every p with this S-order, r = A;p has -order dependent only on A;and
B-order of p, andall elbows of 3(r)lie on F(p) (see table 1). Some curves formed by the action of chosen
extermal TPs on a state of 3-order (2, 1, 3) are shown in figure 3.

Connection between Ag and { A, A1}, A1z, A3} isunderlined by the fact that they transform states with the
same order into each other (see figure 4). The difference is that, in lower temperatures, the condition
910 T a4y < 1implies that two last segments of the state formed by the process maximizing slope on the first
segment will be the same. This degeneration is reflected by the collapse of four extremal points Ao, A1, Arz, Ars
into a single one: A,.

It remains an interesting question whether generalization of proposition 3 holds. L.e., if for arbitrary d, every
extremal TP A can be matched to an initial state p such thatall elbows of 3(Ap) lieon 3 (p). If this was true, then
it would be possible to calculate all extremal points of TPs for d dimensional systems directly from
thermomajorization diagrams. Namely, for a selected temperature (3 it would be enough to investigate all
thermomajorization curves with distinct and non-degenerated §-order, for each curve determining the
transformation that maps it to the curve with different 5-order and whose all elbows lie on the initial curve.
Every such a construction would be valid for a selected temperature range, therefore knowledge about values of
threshold temperatures would be of a crucial importance. In the next section, we provide a construction
determining the value of threshold temperatures for a given system Hamiltonian H.

4.4. Deterministic work extraction
Here we would like to point out a connection between temperature dependence of the structure of the set of TPs
and deterministically extractable work. Threshold temperatures that indicate change in the convex structure are

clearly associated with relations between sums over components of a partition function: 37, \q; , 2 > ;05
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AN A13
Ay — Ao
B2 —¢(1,3,2)
12 11
AB
[ ]
(2,1,3)
b) B = P,
(3,1,2)
[ ]
A8
(23,1)° * (1,2,3)
A9
3B21)" *(132)
A8
[ ]
(2,1,3)

Figure 4. Mapping between states of given 3-order provided by non-decomposable extremal points of TPs, for (a) high and (b) low
temperatures. Ao is low temperature counterpart of Ayg, Aj1, Ajz, Ajs; slopes of last two segments of r = Agp are the same (for p of
the F-order presented in the picture). Braces mark a resulting degeneration of 3-order of r. Connections between states provided by
decomposable maps are not marked; they remain in agreement with table 1.

q1,0 qdz2,0

Y
0,0

Figure 5. Thermomajorization diagram for initial state p (red solid curve), goal state r (blue dashed curve) and state Ag,;p (green
dashed-dotted curve), emerging from p after applying a 2 level extremal TP mixing levels 0 and 1. Through termomajorization
condition it is visible thata curve of astate r’ = Ayest/Ag,1p, where A,y is a TP, can lie only within gray region, and therefore point Q
belonging to the curve of r will be always separated from it at least by a distance D > 0.
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where A and B are disjoint set of indices,and A, B C {0, ..., d — 1}. Now, an incomplete sum of components
of partition function is strictly related to min-free energy
Enin(p) = —kTIn )~ q;, (25)
ip; =0

introduced in [4] to describe the deterministically extractable work from a given state. The latter is given by
Wextr (P) = Fanin(P) — Fain(p3) = —kT' In Zi:p¢0‘1i,0 — (—kT In Z), where Zis a partition function. Therefore,
the order asserted by
Z 9 = Z 90 (26)
icA jeB
has an operational consequence as it determines the order among some states, in terms of work that can be
extracted from them. Namely, (26) is equivalent to

Wextr (3) < Wexer (Pp)> (27)

where the states p, and pj are arbitrary states which occupy solely levels belonging to A and B, respectively. For
example, the range of temperatures above the temperature Tj, of equation (4) is thus determined by the condition that
the extractable work from ground state is greater than extractable work from state occupying second and third levels.
TPs cannot lead to a transition which increases deterministically extractable work, as such a transition would
violate the thermomajorozation condition (proposition 2). Therefore, if there is an extremal TP that transforms
states with occupations on A set of levels to states with occupations on B set of levels (with A and B being non-
empty disjoint subsets of {0, ..., d — 1}), then we know that this TP cannot exist in the temperature regime in
which 35 44, ¢ > 3 ,cp4,0- On the other hand, for every pair of such disjoint sets A and B that admit
Yaeadao < 2pepdsy,o fOr some temperature range one can always construct an extremal TP that transforms
states occupying levels from the set A to states occupying levels from set B (we give the exact construction below).
Therefore, if thesignof 3°, 49, o — > pcpds,o for @ given Hamiltonian depends on temperature, then a system
with this Hamiltonian admits the extremal TP only in the temperature range in which it would not violate the
principle of non-increasing of deterministically extractable work. Hence we arrive at

Proposition 4. For a system with a given Hamiltonian Hs = %"\ E||E) (Ei and for Qyom = e PEED Ey =0,
everyterm - 1, o — >pepdy,o With asign depending on inverse temperature (3, where A, B are non-empty
disjoint subsets of {0, ..., d — 1}, defines a threshold temperature, i.e. a temperature 30: 3", x4, o = Ypepy,o SHCh
that there is at least one extremal TP valid for B > [, and invalid for B < [, and at least one extremal TP valid for
B < By and invalid for 5 > (.

Construction of an extremal TPs associated with given threshold temperature.

Letusstart witha term of the form 3, 1q, o = >} 59, o from the proposition above. Let us divide sets
A = {n} U I, B = {m} ] into subsets such that n and m are the smallest numbers from sets A and B,
respectively,and I = {7, ..., iy }and J = {j,, ""jlll}’ and i, < i, ifk < m,thesame for setJ. Then, aslong as
Qoo T 2iciio Z Qo T 2je)j00 itis always possible to constructa TP of the form

m I Tyl
" 0 v 0 0
nle 1=>4q,, -1 1
icl
" 0 v 0 0
ilo . 000000
0 0 0
" 0 v 0 0
[0 4y, 000000
0 0 0

This is because the Gibbs preserving condition applied to the n row demands (1 — 3, 14; 4,0 +
Yl + v = q,pand,aslongas y = q,  — 4, o + X/ — Zjesd;o = 0 0necanalways set the values
of not-shown elements of the matrix such that the matrix is left stochastic and Gibbs preserving. This stems from
the fact that every left stochastic and Gibbs preserving matrix, multiplied by a diagonal matrix M, , can be
turned into a transportation polytope [17]—a matrix of non-negative elements with a property that elements of
k column and / row sum to some number, ¢y and r;, respectively. In our case, 1, = ¢ = g; (- Asetof
transportation polytopes satisfying the given summation criteria is always non-empty aslongas >~ ¢y = > 7.
This is visible from the fact that, if }_, . = 0, the conditions are satisfied by a matrix with all elements equal to 0.
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Otherwise, a matrix A with elements A;; = r;¢c; /5", 1 satisfies it. The existence of respective transportation
polytopes is guaranteed also for a set of conditions that arises from fixing values of some matrix elements of the
original matrix, as long as one fixes to 0 all other elements of the row(column) that the element was in, and
subtracts the value of the fixed element from ¢, (r;). This is exactly a process that describes fixing of shown matrix
elements in the TP above. As there is a solution for the respective transportation polytope problem, there will be
one as well for the case of the above left stochastic and Gibbs preserving matrix.

Note that the above TP maps all states with occupations onlevels {1, i, ..., i } into states with occupations
onlevels {n, j, ..., j; }—a property that does not depend on the temperature. However, from (27) we see that
every process with such a property could lead to an increase of deterministic extractable work from a state
whenever q, , + 3%ic ;0 < 4,9 + 2je ;- Therefore, all processes with such a property, including the above
process, have to cease at the temperature for which g, + 3ic14; 0 = 9,0 + Zjesd0-

Itis instructive to see that the above construction generates the appropriate extremal TPs for three level
systems. There, wecanhave A = {0}and B = {1, 2} under theassumption g, > ¢, , + 4, . Thisleads to
n = 0,m = land j, = 1and generates Ay extremal TP. On the other hand, if one takes A = {1, 2} and
B = {0} under theassumption q,, < q,, + g, onegetsn = 1,i; = 2andm = 0, whichleadstoa TP
described by a convex combination of extremal TPs A;; and A 5.

The number of threshold temperatures depends on the Hamiltonian of the system. If we assume no
degeneracies, then for dlevel systems it is equal to the number of possible allocations of elements from the set
{ay, ay,...,a4} with known order a; > a, > ... > a, into two disjoint non-empty sets, such that the above order
does not determine sum over elements from which set is bigger or equal to a sum over elements from the other
set. Total number of possible allocations is given by %Zil;ll Zz_:kf m = %(Sd — 2%+1 4 1), witha
term under sums being number of possible different allocations of k; elements into first set and k; allocations
into the second set, and a factor % accounts for indistinguishability of the first and the second sets. Direct
calculation of number of allocations satisfying the above criteria yields that the number of threshold
temperatures for d = 3, 4, 5, 6 levelsisequalto 1, 6, 26, 106, respectively.

5. Approximate transformations

In section 3 we gave an example of a transition that cannot be performed exactly by TPs acting on 2 levels of the
TP(2)
system: p— r.A question arises about how the set of allowed transitions changes when we accept some error

in the output state. Namely, we ask if for arbitrary ¢ > 0 there exists a state r’ such that: ||[r — /|| < € wehave
TP(2) . L. . .
p — r’.Belowwe show that for p and r taken from section 3 such a state does not exist, i.e. there is some finite

neighborhood of a state r that TPs acting on 2 levels cannot lead to, and therefore they cannot be used to
approximate r from p up to an arbitrary precision.

We will first sketch the idea of the proof for three level systems (d = 3). An abitrary 2 level TP can be
represented as a convex combination of sequences of extremal 2 level TPs. Let us start with investigating such
sequences separately, and later generalize the result to the case of an arbitrary TP acting on two levels of the
system. Since for two levels, there is just one extremal point (apart from identity), see equation (3), and there are
three different pairs of levels, the sequence consists of one of three maps. One finds that for the chosen state, the
map acting on two highest levels does not change the state. Hence, it is enough to consider sequences which start
with one of the maps acting onlevels 0 and 1 or 1 and 2 (denote them by A, ; and Ay ,).

Consider one of these maps, e.g. Ag; (for the other, the argument is the same). We shall now analyze the
thermomajorization curve of the state r’ resulting from an arbitrary sequence starting with this map. Our aim
will be to show, that such a curve will be bounded away from from the curve of the target state r. This will be
enough, because, if the curve of the state #’ cannot lie arbitrarily close to the curve of target state, then also the
state r’ itself cannot lie arbitrarily close to the target state in statistical distance.

Now, let us argue that curve of ' must be indeed bounded away from that of r. Let us focus on the point Q
(see figure 5) on the curve of r. After applying A ; to p, it can be seen that the curve of the emereging state is
bounded away from the curve of the target state r, as the separation D between the point Q and the curve A p is
always positive: D > 0. Moreover, we see that subsequent application of another TP, call it A, cannotlead to a
curve of ' = Ayt Ao, 1p which converges with the curve of 7: e.g., the point Q on the curve of r remains
unattainable, and will be always separated from the curve of A, Ao, p atleastbya distance D > 0, setby the
curve A p. This stems from the fact that every curve A\, p lies no higher than the curve A ;p dueto
thermomajorization condition (see proposition 2).

Now, as thermomajorization curves of all states formed from p by a sequence of 2 level TPs lie below the line
of the target state, we see that convex combination of these sequences cannot make the thermomajorization line
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of the corresponding state approach the target line. Therefore, the transition cannot be performed up to an
arbitrary precision by TPs acting on two levels.

Below we present a calculation of the lower bound of this minimal separation for arbitrary dimension d. We
chooseametric||p — r|| = X_;|p, — rl. The proofis based on the transformations of vectors which describe
slopes of segments of given states on thermomajorization diagrams, as defined in section 4.3. The relation
Ox; = x;q, ; foragiven vector x and its associated ‘slope’ vector Ox, when applied to initial p and final r states,
gives

d—1
1 1 - Z 90
0 i=1
81) =1lo| or = 1 . (28)
1
0
1

As explained in section 4.3, every TP A such that Ap = r isassociated with a map: A*0p = Or such that A is
aright stochastic matrix. In particular, every non-trivial, extremal TP on 2 different levels k and m, (see
equation (3)), that we will denote E (k, m), has the associated map E*(k, m) of the form

E*(k, m) = (1 _lq’"’k q"g") © 1d, (29)

where Id acts on the subspace of remaining levels. It implies that a slope of the higher level after transformation is
equal to the slope of the lower level before the transformation, and the slope of the lower level is averaged.

From the right-stochasticity of maps transforming slope vectors we see that, by performing a sequence of
TPs, one cannot create a slope vector with increased maximal value. If we aim at obtaining a state r’ close to r, we
have to apply some TPs connecting level 0 with other levels, as this is the only way to obtain non-zero values of
Orj,j=1,...,d — 1.Otherwise, ||[r — r'|| = 23, _q; ,- Therefore, we investigate possible impact which 2 level
TPs applied to this state have on the distance. We concentrate on investigating sequences of extremal TPs, and
show at the end, that allowing for mixed TPs cannot improve the distance. For the extremal case, based on the
structure of E*(k, m), we conclude that the distance cannot be reduced to zero.

We have to start with some transformation E (0, i), wherei = 1, ..., d — 1. Wewill describe casesi = 1
andi > 1separately.

Casei>1. The following transformation of the initial slope vector takes place:

1 —g;,

E*(0,i),i>1
—_—

cicoocoio
cior~oio

where 1 in the output vector is at position 7. We see that further transformations are required, as at the moment
wewouldhave||r — /|| > |,y — 1| =g, 10 > 0. Furthermore, we cannot leave anilevel untouched, as it
would limit the achievable value 071 < 1 — q;0 => i1 =q,_, (1 — ;) => |Ir — /|| > Iy — 14| =
19 10— 101 — q;0)|=q;_1,4;¢ > 0. But performinga 2 level extremal TP on alevel i diminishes the
maximal value present in the slope vector, with minimal reduction, tovalue (1 — q;; (1 — q;0) + ¢;; | =

1 — g, + q; ¢4;;_, happening for transformation between i — 1and ilevels, that follows after filling the level

i — 1 with the highest value possible:

uptol — q;, uptol —gq;,
uptol — q;, uptol —g;,
uptol — q;, B = L) uptol — g, + 4,091
1 uptol — g, ’
uptol —gq;, uptol — q;,
uptol —q;, uptol — q;,

Therefore, wehave 01,1 <1 — q; 0 + ;o4 = i-1< §;_10(1 — G + 4095 ) = llr — 7'l
>, -1l = qil o(1 = q;;_) > 0.Therefore, we see that by starting with E(0, 7) for i > 1, we cannot
approach state r arbitrary close.
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Casei = 1. We start with the transformation

1 I 910
E*(0,1)
0 —

If no transformations that touch level 1 followed, we would have ||r — #/|| > |, — 13| = q, 44, , > 0.The
following transformations cannot as well mix level 0 with level 1, as this would decrease the maximal slope
present in the vector atleastto (1 — ¢, ,)* + ¢ ;, and therefore would setabound on the distance
lr — 7| > |n—nl = qlzjo(l — q;,) > 0. Therefore, the only option to increase Or, is to allow for some
transformation connecting level 1 with level 2:

a a

1| pay | — ‘b,l)b + 4y
b| — 1 ’
c

c

wherea, b, ¢,... > 1 — 9y0-

But if no transformation followed, this would set a bound on distance ||r — /|| > | — | = Qo —
901 — g, Db + q51) = q,4(9, 0 — G59) > 0.Inorder to decrease the distance, we have to increase the slope
of Or;, which can happen only by mixing levels 1 and 2, as all other levels have smaller slopes:
A =aq,)b+ gy >
(1 — g, ). Butitreduces the maximal slope present in the vector. It the same mannerasin the case i > 1,itcanbe
shown thatitleadsto 0 < (1 — g, )((1 — g, V(1 — g, 0) + g5 ) + 5, =1 — 2q,; — g, ,(1 — qzz)l), which
implies|Ir — /|| = I — | = g,y — (1 — 245, — dy4(1 — qil)) = 9,024, + 9,0(1 — g, ) > 0.
Therefore, starting with Ey ;, we cannot approach r arbitrary close.

Therefore, by collecting all the bounds obtained above, we see that every sequence of 2 level extremal TPs
applied to astate p leads to astate r/ thatsatisfies ||r — /|| > min;>[q;_, (q; > q’ Lol = ;s> 4o 00
4’y (1 = 410) 410 — do)> 41021 + d10(1 — g5 )] > 0. Now itis enough to realize that performing a
convex combination of arbitrary TPs is equivalent to performing a convex combination of sequences of extremal
TPs. However, such a combination cannot lead to a state closer to r than a state obtained by the most optimal of
these sequences. This is because the bound on the distance calculated above relies on terms |r; — r/|for i > 1,
and therefore, as in our case for all 7/ that can be obtained from p by 2 level extremal TPs, the value of r; — ! for
i > 1isalways non-negative, one cannot obtain reduction of the bound by allowing for ' = ar’® + (1 — a)r'?®
for 0 < a < 1,where '™, ¥’ result from two sequences of extremal 2 level TPs.

6. Discussion and conclusions

We have presented a construction of thermal operation for arbitrary d-level system, that cannot be performed
without executing a joint operation on all energy levels. The extremal TP that performs the transformation exists
for all temperatures low enough to allow for Z?;ll e PE < 1tobe satisfied. For three level systems, we have also
identified counterpart processes for the remaining temperature range, showing their non-decomposability into
a convex combination of composition of TPs acting non-trivially on 2 energy levels. We speculate that these
processes can be generalized to an arbitrary dimension by exploiting the bipartite-graph structure associated
with these matrices [17]. We also point out that some extremal points satisfy quantum detailed balance
condition, whereas others form pairs with respect to conjugation according to an associated scalar product. The
conjectured non-decomposibility of self-dual extremal points of TPs may be a helpful property in the analysis of
the geometry of the set of dlevel TPs.

One can try the solve the general decomposibility problem of TPs by analyzing the convex structure of the
set, which probably would require determination of its extremal points. While pursuing the method of their
computation that relies on fixing all matrix elements by some minimal number of zeros can be infeasible for
larger d, exploitation of observed symmetries associated with quantum detailed balance condition and or/and
gradual generation of extremal points of the set may lead to establishing a precise description of the geometry of
the set of TPs that would take into account its decomposability into convex combination of products of more
‘local’ processes. In this, establishing a connection between the set of TPs and a set of all states possible to be
obtained through thermal operations from a given initial state may be important. One should note e.g. that all
states r such that 3 (r) has all elbows on 3 (p) and is thermomajorized by it, constitute all extremal points of this
set [18]. Due to inability to increase the deterministically extractable work under TPs, in order to determine the
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full set of extremal points for systems with non-degenerated Hamiltonian it should be possible to focus on just
two temperatures: one satisfying 1 > Zf;ll e Fi and the other 1 < e #Fa-2 4 e FFi,
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