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Abstract
We report on the ability of themeteoriticmaterial schreibersite to catalyze the generation of higher
sugars from simple carbohydrates in the formose reaction network. Since the analysis of carbonaceous
meteorites like theMurchisonmeteorite it has become generally accepted that a substantial amount of
organicmaterial has been delivered to the early earth and, therefore, ought to be considered in
scenarios for the origin(s) of life. Also for the open question of accessible phosphorus sources, an
extraterrestrialmaterial called schreibersite has been identified that is capable of releasing soluble and
reactive phosphorus oxyanions that would react with organics to form for instance nucleotides and
membrane associatedmolecules.We have reinvestigated thismaterial using capillary electrophoresis
tomonitor its corrosion process inwater and probed its ability to phosphorylate awide range of
organics. Although showing a poor reactivity of schreibersite, we have found that thematerial
catalyzes the aldol reaction of small carbohydrates forming larger sugarmolecules. This reaction in the
formose reaction network is a prebiotically likely route to biologically relevant sugars. The results of
our study present one of thefirst instances of connecting extraterrestrialmaterial to prebiotic
chemistry on the early earth.

1. Introduction

1.1. Chemical networks and chemical evolution
Ever since the pioneering work ofOparin [1], Haldane [2] andMiller [3], the scientificfield of the origin(s) of life
has amplified in its spectrumof theories, experiments and results starting from the ‘warm little pond’ idea of
CharlesDarwin [4] to discoveries of extra-solar (super-)earth planets [5, 6] and specific abiotic pathways to
relevant building blocks of life [7–18]. Even though thefield is now evolving for almost a century, there still is
uncertainty about fundamentals like the definition of life and the applicability of the phrase plausible prebiotic
condition [19–24]. That is because scenarios for the origin(s) of life are conceivable for a wide range of different
parameters, e.g. temperature, pressure, irradiation flux and availability as well as concentration of feedstock
molecules. Possible scenarios for the origin(s) of life include various settings such as hydrothermal vents [25],
volcanic locations [26, 27], primordial soup [28, 29] and drying lagoons [30–32]. The difficultywith the
characterization of life, on the other hand, lies with themany open questions of its evolvement. If one could
precisely retrace the steps of the emergence of life on earth, it would become apparent where to draw the line
between inanimate and alive. A popular periphrasis, though, was given in 1994 byNASA and says that life is ‘a
self-sustaining chemical system capable ofDarwinian evolution’ [23].

A possible sequence of events leading to systems covered by that definition and givingway to the last
universal common ancestor (LUCA) is depicted infigure 1. After the formation of the Earth 4.5 billion years ago
inwhich all organicmatter was pyrolyzed, smallmolecules were not only formed through atmo-, hydro- and/or
lithospheric chemistry but also delivered by extraterrestrial bombardment. Those smallmolecules are prone to
construct complex reaction networks under changing conditions of versatile energy flux (out-of-equilibrium
chemistry) and give rise tomore complexmolecules of certain features (redox-, photo- and catalytic activity,
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amphiphilic properties for bilayer assembly). Those reaction networks likely succumb to evolutionary principles
such as isolation, competence and adaption although their survival is notmeasured in reproduction or based on
heredity but in self-sustainment and complexity. That phase, thus, can be termed chemical evolution. In such a
first self-sustaining system, the emergence of functional polymers becomes probable and levels the transition to
Darwinian evolution. Once first protocells are formedDarwinian evolutionmanifests and allows the generation
of LUCA.

Along thatway, however, there is amultitude of open questions that require several scientific disciplines to
answer them. The authors’ focus lies with the reaction pathways in context with the formation of small
molecules and their reactivity towards complex reaction networks.

The present contribution deals with themeteoriticmaterial schreibersite Fe3P as a source for reactive
phosphorus oxyanions and its behavior during aqueous corrosion in the presence of organicmolecules. It,
therefore, focuses on the possible emergence and reactivity of smallmolecules and their transition into complex
reaction networks. Specifically, the ability of thementionedmaterial to catalyze the formation of carbohydrates
from small precursors, aldol/retro-aldol reactions in the formose reaction network, is studied. This way, a
connection between extraterrestrial and terrestrialmaterial is drawn and the impact ofmeteoritic bombardment
not only for delivery but also for inducing reactions is highlighted.

1.2. Schreibersite as a possible phosphorylation agent
Phosphorus is one of the key elements of life and amounts up to 1%of theweight of dry cells [33]. It is part of the
backbone ofDNA/RNA, essential component of the phospholipids in cellmembranes, energy storage in form
of adenosine triphosphate, constituent of coenzyme such as flavine adenine dinucleotide, nicotinamide adenine
dinucleotide and coenzymeA aswell as crucial derivatization group inmetabolic pathways. Its significance in
biological life is contrasted by its natural availability. There is no volatile phase or versatile redox chemistry of
phosphorus under terrestrial conditions. The stable and predominantly occurring form is orthophosphate

-( )PO4
3 which exhibits poor solubility in presence of divalent cations in aqueousmedium [34]. Phosphorus,

therefore, is a limiting ingredient for the origin(s) of life. It is assumed that 95%of the Earth’s stock of
phosphoruswas concentrated in the core of the Earth leaving the continental crust with about 650 ppm
phosphorus [35]. An inventory of the possible phosphorus sources in the hadean eon is given in table 1 as posed
byHazen [36] and expanded by Pasek [37].

Themajority of theminerals listed in table 1 exhibit only a low solubility inwater and, hence, do not have the
ability tomake phosphorus accessible in aqueousmedia on the early earth. The low abundance of free
phosphorus is accompaniedwith its generally low reactivity towards organicmolecules in itsmost stable form,
orthophosphate. It is still highly discussed bywhat chemical pathway phosphorus could have been incorporated
into organicmolecules [37, 38]. Besides reactions in non-aqueousmedia such as formamide [39–44] and
eutecticmedia [45] as well as by use of condensing agents (urea [46–49] and cyanamide [50–52]) or activated
phosphates (pyro-, tri-, poly-, cyclic- or diamidophosphate) [16, 27, 53–55], one scenario is based on the
meteoriticmaterial schreibersite (Fe,Ni,Cr)3P [56]. Statistics assume that around 0.1%–10%of the Earths
phosphorus inventory was delivered bymeteoritic bombardment [57]. Thismaterial which contributes about

Figure 1.Possible steps of the formation of the Earth towards the last universal common ancestor (LUCA). Scientificfields involved
with the studies of the origin(s) of life as well as specific features andmolecules of each step are shown, too.
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0.2–0.4 wt%of iron-richmeteorites [58] contains phosphorus in a reduced oxidation state allowing it to be
corroded bywater and to release reactive phosphorus oxyanions through a radicalmechanism [59]. This
material has already been examined in literature regarding the composition of the released phosphorus
oxyanions (see table 2) and its ability to phosphorylate organicmolecules. It was found that schreibersite is
capable of phosphorylating glycerol and nucleosides in yields of 2.5% and 5.7%, respectively [60, 61]. The
corrosion rate of schreibersite in saline solution is about 0.2%perweek and 10%per year [57].

1.3. Formose reaction
Carbohydrates are essential components of life. They are part of nucleotides in formof deoxyribose or ribose
and are, therefore, crucial forDNA, RNAand cofactors. They are also vital constituents inmetabolic pathways in
all organisms, e.g. glycolysis. A plausibly prebiotic formation of carbohydrates of different length and
compositionwas first discovered by Butlerov in 1861 [10] and interpreted on amolecular level by Breslow in
1959 [64] and is termed the formose reaction. The formose reaction is the oligomerization of formaldehyde in
aqueous solution in the presence of a basic catalyst. It results in a complexmixture of straight-chain and
branchedmonosaccharides, polyols and polyhydroxycarbonic acids. The specific outcome and product
distribution depends on the concentration of involved feedstockmolecules, temperature and reaction time. Its
mechanism is not yet fully understood [65–68]. The formose reaction comprises amultitude of reaction paths in
which carbohydrates not only self- and cross-add to one another in an aldol reaction type, but also split in retro-
aldol reactions, disproportionate or oxidize, especially when performed under oxygen [69–72]. An over-
simplified reaction network alongwith a list of unbranched sugars of up until 6 carbon atoms that all are
products of the formose reaction network is given infigure 2. If started from formaldehyde, formally the
simplest carbohydrate, the formose reaction can only be catalyzed either in the presence of a co-catalyst capable
of enediolization, e.g. higher sugars such as glycolaldehyde and glyceraldehyde (aminimumof 3 ppm [66]),
thiazolium salts activating formaldehyde for electrophilic attack [73] orUV-irradiation [74, 75]. As for the basic
catalyst, a wide range of compounds are suitable such as Al(OH)3, NaOH, borates, FeO and typically Ca(OH)2
and have already been studied in literature [72].Most of the inorganic and organic substances known to be
efficient catalysts for the formose reaction network, however, are not considered to be present in the hadean eon
for the origin of life [36]. A disadvantage of the formose reaction, also, lies with its poor selectivity. Biologically
significant carbohydrates such as ribose are only formed in low yield. Besides, the longer the formose reaction

Table 1.Mineral diversity in the hadean eon on the basis ofHazen [36]
and Pasek [37]. Additions by the latter one are given in italics.

Name Formula Classification

Nickelphosphide Ni3P Phosphide

Perryite (Ni,Fe)8(Si,P)3
Schreibersite (Fe,Ni,Cr)3P

Beusite Mn(II)Fe(II)(PO4)2 Phosphate

Bobbierite Mg3(PO4)2·8H2O

Childrenite Fe(II)AlPO4(OH)2·H2O

Chlorapatite Ca5(PO4)3Cl
Farringtonite Mg3(PO4)2
Fluorapatite Ca5(PO4)3F
Galileiite NaFe(II)(PO4)3
Graftonite (Fe(II),Mn(II),Ca)3(PO4)3
Hydroxylapatite Ca5(PO4)3OH
Johnsomervilleite Na10Ca6Mg18Fe(II)(PO4)36
Luneburgite Mg3B2(PO4)2(OH)6·8H2O

Merrillite Ca9NaMg(PO4)7
Monazite-Ce CePO4

Newberyite MgHPO4·3H2O

Sarcopside Fe(II)3(PO4)2
Stanfieldite Ca4Mg5(PO4)6
Struvite NH4MgPO4·6H2O

Triplite (Mn(II),Fe(II))2PO4(F,OH)
Vivanite Fe(II)3(PO4)2
Wagnerite Mg2PO4F

Wavellite Al3(PO4)2(OH)3·5H2O

Whitelockite Ca9Mg(PO4)6(PO3OH)
Xenotime (Y,Yb)(PO4)
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Table 2.Overview of phosphorus oxyanions products of schreibersite corrosion and determined concentrations in various experiments in literature.

Name Hypo-phospite Phosphite Diphos-phite Hypo-phosphate Phosphate Pyro-phosphate Triphos-phate Trimeta-phosphate

Formula [H2O2P]
− [HO3P]

− [H2O5P2]
2− [O6P2]

4− [O4P]
3− [O7P2]

4− [O10P3]
5− [O9P3]

3−

Oxidation state of P +I +III +III +IV +V +V +V +V

Charge/P 1 1 1 2 3 2 1.6 1

A (μM) — 700 — 280 1100 150 — —

B (μM) — 100 — 18 130 23 — —

C (%) 0 59 — 2 31 1 — —

D (%) 61 26 — — 5 — — —

E (%) 87 11 — — — — — —

F (μM) — 1100 — 360 430 450 — —

G Yes Yes No No Yes No No No

A: 1 g Fe3P, 25 mlDIwater, air, 1 d; 293 K; quantification byNMRafter addition ofNaOH [56].
B: 1 g Fe3P, 25 mlDIwater, argon, 1 d; 293 K; quantification byNMRafter addition ofNaOH [56].
C: 0.5 g Fe3P, 25 ml 0.1 MH2SO4; 7 d, 298 K; quantification byNMRafter addition ofNa2S [62].
D: 0.5 g Fe3P, 10 mlH2O;UV; 3 h, 77 K; quantification byNMR after addition ofNa2S [62].
E: 19.1 gmeteorite, 20 ml EtOH:H2O1: 1 v/v; UV, 15 h, 77 K; quantification byNMR after addition ofNa2S [62].
F: 1 g, 25 mlDIwater, air, 1 d; 293 K; quantification byNMR after addition ofNaOH [59].
G: 0.5 g Fe3P,N2, 1week; 293 K and 343 K; evaluation by IC-ESI-MS [63].
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proceeds themore carbohydrates are turned into awater insoluble tar discernable from an intensifying yellow–
brown color of the solution [70]. It was shown, however, that the presence of borate [69, 76] or phosphorylated
carbohydrates [77, 78] overcome that selectivity issue.

2. Chemicals andmethods

2.1. Chemicals
All chemicals have been used as received except for aqueous sugar standards that were lyophilized to obtain the
compounds as solids. Synthetic schreibersitematerial was purchased fromAlfa Aeser (99.5%metal basis) and
Sigma-Aldrich (99.5% tracemetals basis). Formaldehyde (37%wt inH2O), cyanamide (99%), dicyandiamide
(99%), sodium sulfide nonahydrate (99%), thiourea (99), stearic acid (98.5%), ethanolamine (99%), choline
(98%),O-ethylhydroxylamine hydrochloride (99%),N-methyl-bis(trifluoroacetamide) (MBTFA) (99%),N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) (99%), pyridine (99%), glycolaldehyde dimer (mixture of
stereoisomers), D-threose (60%), D-erythrose (75%), L-erythrulose (80%), dihydroxyacetone dimer (97%),
D-allose (98%), L-arabinose (99%), D-mannose (99%), D-fructose (99%), D-galactose (99%), D-ribose (98%),
salicylic acid (99%)BIS-TRIS (98%) and sodiumhexafluorophosphate (99%)were supplied by Sigma-Aldrich.
Methanol (HPLCgrade) and acetonitril (HPLCgrade)was bought fromFisher Chemicals andVRWChemicals,
respectively. Urea (99%) andD-xylose (99%)were obtained fromMerck. Sugar standardswere largely
purchased fromCarbosynth Limited. Those sugars include: D-xylulose (98%), D-piscose (98%), D-idose (99%),
L-ribulose (97%), D-altrose (99%), D-lyxose (99%), L-gulose (98%), D-tallose (99%), D-tagatose (99%),
L-sorbose (98%), beta-D-galatoheptose (99%). D-glucose-1-hydrate (99%)was supplied by PanReac
AppliChem ITWReagents.Meso-inositil (99%)was bought fromRoth.Dimethyl sulfoxide (DMSO) and
ammonia (2M)were obtained from the chemical shop of the department of chemistry and pharmacy of the
Ludwig–MaximilianUniversity,Munich.Water was deionized (DI) by aVWRPuranity PU15 (VWR, Leuven,
Belgium).

Figure 2. Simplified reaction scheme of the formose reaction and unbranched aldoses and ketoses of up to 6 carbon units. Black
arrow: addition of C1; blue arrow: additions of C2; green arrow: additions of C3; violet arrow: addition of either C1 orC2; red arrow:
addition of either C2 or C3.
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2.2. Instrumentations
2.2.1. Capillary electrophoresis (CE)
Monitoring of schreibersite corrosion and screening of phosphorylation reactionswere performed on anAgilent
3DCE 1600 apparatus (Agilent Technologies,Waldbronn, Germany) controlled by theChemStation software
Rev. B.04.03.Measurements ran on a fused silica capillary (ID 50 μm,OD360 μm) purchased from
MicroQuartzMunich (Munich, Germany).

2.2.2. Gas chromatography (GC)
Separation of silylated sugars from the schreibersite induced formose type reactionwere achieved on aTraceGC
Ultra systemhyphenated to either a PolarisQMS (quadrupole-ion trapmass spectrometer (MS)) or a ISQ single
quadrupoleMS (Thermo Scientific, San Jose, California, USA) operated byXcalibur software 1.4 SR1 or 2.2 SP1,
respectively. Injections utilized a split/splitless injector (splitmode; at 250 °C).MS detectionwas, routinely,
complemented by flame ionization detection thatwas operated at 250 °Cand carbon-corrected.

2.2.3. Scanning electronmicroscope with energy dispersive x-ray analysis (SEM-EDX)
Synthetic schreibersitematerial was analyzedwith a FEIHeliosG3UC system equippedwith aX-Max-N 80
detector using the AzTec software.Measurements were conductedwith 20 kV accelerating voltage at 4 mm
working distance.

2.2.4. X-ray photoemission spectroscopy (XPS)
Schreibersitematerial was loaded into aUHVchamber equippedwith aVSWTA10 x-ray source providing non-
monochromatic Al Kα radiation and aVSWHA100 hemispherical analyzer. Due to charging of the sample peak
shifts were corrected by setting theNa 1s peak to 1072.1 eV. Spectra were acquired before and after cleaning of
the sample byAr+ sputtering (1 kV; 7 μA). The recorded peakswere fittedwith aDoniach–Sunjic line shape
convolutedwith aGaussian and linear background subtraction for analysis [79].

2.2.5. pHmeter
Determination of pH values was conductedwith the SCHOTT instrument pHmeter Lab 850 by SI Analytics
GmbH (Mainz, Germany).

2.3.Methods
2.3.1. CE
Separation conditionswere predicted and optimized by the Peakmaster 5.3 Complex software [80]. The
background electrolyte (BGE) chosen consisted of 20 mMsalicylic acid and 30 mMBIS-TRIS (pH6.2 and IS
20 mM). Samples were injectedwith 200 mbar·s, and 0.1 vol%DMSOwas used at outlet position before
separation as electroosmotic flow (EOF)marker. Separation voltagewas set to−30 kVwith 40 mbar pressure
assistance. The apparentmobility of the EOFwas determined to be approximately
μEOF=11·10−9 m2V−1 s−1. The capillarywas conditioned each day using a sequence of water flush (2 min),
0.1 M sodiumhydroxide flush (2 min), waterflush (2 min) andBGEflush (5 min). In betweenmeasurements,
the capillarywas rinsedwith BGE for 2 min. Indirect-UV electropherogramswere recordedwith 10 Hz at 210
and 230 nmwith a bandwidth of 4 nmand ran at 25 °C. Peak positionswere determined by fittingwith the
Haarhoff–Vander Linde function usingOriginPro 2017 SR2 (OriginLabCorporation,Northampton,USA). For
identification and calibration,measurements with phosphorus oxyanions standards of different concentration
were conductedwith sodiumhexafluorophosphate as internal standard in triplicates to determine effective
mobilities and linearization graphs.

2.3.2. GC–MS
For the separation of sugars, two complementary derivatization strategies were used. Around 4 mgof residue of
filtered and lyophilized reaction solutionwas dissolved in 400 μl pyridine,mixedwith 400 μl of a 40 mg ml−1O-
ethylhydroxylamine hydrochloride solution and heated to 70 °C for 30 min on a rocking shaker. One half of that
solutionwas further derivatizedwith 120 μl BSTFAwhile the other onewas subject to 50 μlMBTFA. Either step
was followed by incubation at 70 °C for 30 min on a rocking shaker. BSTFAderivatized sugarswere separated on
a SE-52 column (14 m length, ID 250 nm, 250 nmfilm thickness)with 80 kPa helium and a temperature
program starting at 50 °C for 2 min and increasing temperature by 10 Kmin−1 to 140 °C and then 5 Kmin−1 to
240 °Cand keeping that temperature for 2 minMBTFAmodified sugars weremeasured on aOC225 column
(30 m length, ID 250 nm, 250 nmfilm thickness)with 80 kPa heliumusing the following temperature gradient:
80 °C for 5 min, 2 Kmin−1 to 160 °C, 10 Kmin−1 to 200 °C and keeping that temperature for 12 min.
Chromatogramswere baseline corrected and peakswere integrated usingOriginPro 2017 SR2 (OriginLab
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Corporation,Northampton, USA). Integration results were corrected by the number of carbon atoms and used
for relative quantification of components inmixture. Retention times and fragmentation patterns of standards
of all unbranched aldose and ketose sugars up until 6 carbon atomswere used for identification of sugars in
reactionmixture.

2.4. Corrosion experiments
2.4.1.Monitoring of schreibersite corrosion
1 g of commercially available Fe3Pwas placed in glass CE vials andmixedwith 500 μl water. Vials were capped,
sealedwith a crimper and kept at 5 °C, 25 °C, 80 °Cor 150 °C for different periods of time. Formonitoring of
reaction process, vials were shortly removed from the heating block, opened andmeasured. Right after sample
injection, reaction vessels were closed as described and put back into the heating block.

2.4.2. Reaction of organics in the presence of schreibersite
Glass CE vials were chargedwith 250 mg of synthetic schreibersitematerial and 0.5 ml of 0.020M solution of an
organic. If solubility of organics prohibited addition at desired concentration, the substance was added as a solid
and themixture was suspended in the given volume ofDIwater. The reactionmixturewas capped, sealedwith a
crimper and heated to either 80 °C for 7 days or 150 °C for 1 day.

2.4.3. Schreibersite induced formose type reaction
Glass CE vials were filledwith 1 g of synthetic schreibersitematerial and 1 ml of 0.250Mcarbohydrate solution.
In cross reactions the concentration of each component was 0.125M.Vials were capped and sealedwith a
crimper. Reactionmixtures were heated at 80 °C for either 1 or 7 days before being filtered, lyophilized and
derivatized forGC separation.

3. Results

3.1. Verification of quality of schreibersite surrogate Fe3P
The synthetic and commercially available Fe3Pwhichwas shown to be a reasonable chemical proxy for
schreibersite was probed via SEM-EDX andXPS to confirm that thematerialmeets the quality of natural and
artificial samples described in literature [81]. Full SEM-EDX andXPS data can be found in the supporting
information (figures S1 and S2 is available online at stacks.iop.org/NJP/20/055003/mmedia). Either
measurement validates that thematerial employed in all experiments is Fe3P of high purity that has already
undergone aerobic hydrolysis on the surface. It has been shown that this alteration does not corrupt the results of
corrosion experiments performed thereafter [62, 81].

3.2. Analysis of schreibersite corrosion
Based on the results of Foster et al (see table 2) that showed that the outcome of the analysis of schreibersite
hydrolysis depends on the subsequentwork-up of the sample, the author’s focus laywith the development of a
separationmethod that would allow the continuousmonitoring of the corrosion process under inert conditions
so that pH-sensitive phosphorus oxyanions would be detected unambiguously. For that purpose, a CEmethod
with indirect UV-detectionwas established that separates the common corrosion process products in about
12 min utilizing a BGEof the pH value of 6.2 underwhich the targetedmolecules would be both stable and
charged in order to allow separation. It shall be highlighted thatmany of the phosphorus oxyanions of low
oxidation state are instable and hydrolyze under high and lowpH.A representative separation is shown in
figure 3(A).

Since sample consumption is in the nL regime and sample work-up is usually not required inCE separation,
the schreibersite corrosion process becamemonitorable in a straightforward fashion. This way, we could screen
the process under various conditions of different temperature, pressure, concentration and atmosphere.We
observed that the corrosion process proceeds rather slowly at 5 °Cand 20 °Cbut is sufficiently fast at higher
temperatures. A typical electropherogramof thematerial after 14 days at 80 °C is depicted infigure 3(B). On the
contrary to literature results summarized in table 2 (entries A–C, F), we did not observe hypo- or pyrophosphate.
This, however, is in agreement with Foster et al [63] (see table 2, entryG). Additionally, we detected a signal of the
effectivemobility of−(54.5±0.5) 10−9 m2 V−1 s−1 which could not be unambiguously attributed to either
triphosphate or diphosphite -( )H P O .2 2 5

2 As triphosphate would be accompaniedwith its hydrolyzes product
pyrophosphate, which has not been detected, and a radicalmechanism involving -PO3

2 radicalsmakes the
formation of diphosphite -( )H P O2 2 5

2 likely [59], we can assign the peak of the givenmobility to be diphosphite
-( )H P O .2 2 5

2 The progress of the changes in concentration for 20 °C and 80 °C for the threemain products of the
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corrosion process are shown infigures 2(C)–(E). It is highlighted that phosphite -( )HPO3
2 is themajor

dissolved product accumulating over time.
Furthermore, studies on the influence of inert atmosphere did not result in observations other than already

published [56]. Pressurewas found to have no effect on the outcome of the corrosion and the amount of added
water solely changed the concentration of the products, not the product distribution. Unlike stated in literature,
however, we found that the pH value of corrosion experiments changed drastically and immediately on contact
withwater. Aftermixing Fe3Pwithwater, we observed an instant increase of the pH value to around 11 that
slowly decreased over time to 9. In order to exclude any impurities of thematerial to be the cause for that
observation, wewashed Fe3Pfive timeswithwater before conducting the pHmeasurement of the corrosion
process. Even then the pHvalue rose to 9 in about 20 min and stagnated.We attribute the immediate increase of
pHwhen notwashing thematerial to the release of tribasic phosphate -( )PO4

3 that has formed on the surface
due to hydrolysis by the humidity of the air.

Besides screening at 5 °C, 20 °Cand 80 °C,we conducted corrosion experiments at 150 °C in sealed glass
vials. Theywere in alignment with the previously statedfindings but allowed the corrosion process to progress
faster. Typically, a corrosion for 14 days at 80 °C equaled one for 1 day at 150 °C in product distribution.
Representative electropherograms can be found in the supporting information (figure S4).

3.3. Screening of phosphorylationwith organics
As a result of our studies that showed that the corrosion process is sufficiently fast at 80 °Cand 150 °C,we
screened several organicmolecules for their reactivity towards phosphorylation or condensation of phosphates
to polyphosphates under the given conditions. However, we could notfind detectable amounts of new species in
most of the electropherograms. Table 3 gives an overview of the probedmolecules. Only for the tested
carbohydrates, we observed additional peaks aswell as a yellow discoloration of the samples. In combination
with the results of Pasek et al [59] that described a tar like residuewhen reacting glycolaldehyde with
schreibersite that they, however, could not analyze, we checked those reaction samples for products associated
with the formose reaction.

3.4. Schreibersite catalyzed formose type reaction
The analysis of the carbohydrate samples from the reactivity studies of Fe3P in the presence of organics
confirmed to contain higher sugars such as formed in a formose type reaction.We, therefore, examined the four

Figure 3.Results on schreibersite corrosion. (A)A representative separation of eight likely schreibersite corrosion products.
Separation conditions are given in section 2.3.1. (B)Electropherogram of corrosion process after 14 days at 80 °C.Chloride is an
impurity coming from thematerial. IS is the internal standard. Concentration progress of (C) diphosphite -( )H P O ,2 2 5

2 (D) phosphite
-( )HPO3

2 and (E) phosphate -( )PO4
3 over the course of 14 days at 20 °Cand 80 °C.
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carbohydrates formaldehyde (C1 sugar), glycolaldehyde (C2 sugar), glyceraldehyde (C3 sugar) and
dihydroxyacetone (C3 sugar) in single and cross-reaction setups and analyzed the product distribution.
Separation of the reaction products was performed byGCutilizing the derivatization of carbohydrates with
BSTFA andMBTFA that allows a relative quantification and identification of detected products. The results of
our experiments are shown infigure 4. Typical gas chromatograms can be found in the supporting information
(figure S5).

Formation of sugars was only observed in presence of schreibersite. The comparison of the product
distributions of all performed reactions shows the self- and cross-addition of substrates as expected in a typical
aldol reaction such as in the formose reaction network. Glycolaldehyde as aC2 carbohydrate predominantly
formsC4, C6 andC8 sugars (see figure 4(A)), whereas glyceraldehyde and dihydroxyacetone asC3 sugars
generate C6 carbohydrates (see figures 4(B), (C)). The results, further, demonstrate that dihydroxyacetone is less
reactive than glyceraldehyde as is indicated by its smaller consumption in the reaction. For dihydroxyacetone,
we, also, detected products of C6 constitution that did notmatch any of the unbranched carbohydrates

Table 3.Overview of organicmolecules tested in their effect during the schreibersite corrosion.

O containing

molecules

N containing

molecules

S containing

molecules Carbohydrates

Membrane relevant

molecules

Methanol Ammonia Sodium sulfide Formaldehyde Stearic acid

CH3OH NH3 Na2S CH2O H3C-(CH2)16-COOH
Urea Acetonitrile Thiourea Glycolaldehyde Ethanolamine

H2NCONH2 CH3CN H2NCSNH2 HO-CH2CHO HO-C2H4-NH2

Formamide Cyanamide Glyceraldehyde Choline

HCO-NH2 NC-NH2 HO-CH2-CH(OH)-CHO (H3C)3N
+-C2H4-OH

Dicyandiamide Dihydroxyacetone Inositol

(H2N)2C=N-CN HO-CH2COCH2-OH C6H12O6

Figure 4.Product distribution of schreibersite catalyzed formose and formose type reaction in the presence of (A) glycolaldehyde, (B)
glyceraldehyde, (C) dihydroxyacetone, (D) formaldehyde and glycolaldehyde, (E) glycolaldehyde and glyceraldehyde and (F)
glycolaldehyde and dihydroxyacetone. Greek labeling denotes the following compounds:α—glyceraldehyde,β—dihydroxyacetone,
γ—erythrose, δ—threose, ε—erythrulose. Higher sugars cannot be quantified individually as a result of overlapping peaks. Therefore,
the bulk is quantified. For reaction conditions see section 2.4.3. Reaction time is 1 d. Relative errors of abundance are on average 1%
and are omitted for clarity.
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standardswe used for establishing theGC separationmethod suggesting that branched sugars [70] are formed
under these conditions.

We did not observe any conversion to higher carbohydrates within a daywhen only formaldehyde (C1 sugar)
was employed. It can be, hence, concluded that schreibersite is not capable of activating formaldehydewhich
would require anUmpolung reactions. It is being consumed, though, in the presence of higher sugars (see
figure 4(D)). In our cross-reaction experiments (seefigures 4(D) to (F)), we could, further, observe a
predominance for the formation of C5 sugars with the biologically relevant ribose being aminor constituent. C6
sugars formedwere primarily ketoses rather than aldoses.

As it is known that the product distribution of the formose reaction changes with time, we examined the
generation of higher carbohydrates for the glycolaldehyde sample after 1 and 7 d. The results are depicted in
figure 5.

The results of this study are in agreementwith previous observations of the formose reaction [70, 72]. Under
prolonged reaction time the product distribution changes in favor of higher sugars. Also,more retro-aldol
products such asC5 sugars become abundant and substrate is transferred into highermolecular structures
resulting in a tar likematerial of lowwater solubility. Compared to analogous reaction conditions, however, the
formation of tar and the associated decomposition of carbohydrates set in significantly later with schreibersite
[70, 72]. The conditions introduced by the corrosion process presumably pose amild environment inwhich the
generation of sugars even over longer period of time is facilitated.

All identified and detected unbranched sugars of the performed experiments can be found in the supporting
information (table S3).

4.Discussion

4.1.Monitoring of schreibersite corrosion
Wecould show that CE is a suitablemethod formonitoring the corrosion process of artificial schreibersite
material as sample consumption isminimal and pretreatment unnecessary. Separationswere performed under
neutral conditions (pH6.2) to exclude any bias connected to the pH sensitivity of phosphorus oxyanions. Our
results on the composition of the aqueous phase of the Fe3P corrosion are in general agreement with previously
published results.Main constituents are phosphite -( )HPO3

2 and phosphate -( )PO4
3 [56, 59, 62]. In contrast to

earlier work, we could not detect pyrophosphate or hypophosphate but diphosphite -( )H P O .2 2 5
2 In case of the

former, thismight be due to a lack of sensitivity. Limits of detectionwith the indirect UV-detection are around
10–100 μM. In the latter case, it is assumed that diphosphite -( )H P O2 2 5

2 has not yet been observed as it
hydrolyzes with a half-life of 3 min at 20 °C in 0.1 NNaOH solution [82, 83]. The general procedure of detection
and quantification of corrosion products in literature, though, involves treatment of the samples with either
NaOHorNa2S in order to remove Fe(II) and allowNMRanalysis. This practice significantly raises the pH value
andwould quench any available diphosphite -( )H P O .2 2 5

2 On that note, it shall be highlighted that also
phosphite -( )HPO3

2 is prone to hydrolysis generating phosphate -( )PO4
3 andmolecular hydrogen, but this

process only becomes relevant at high temperatures [84]. The differences in observations ofNMRbased
methods and our approach is supported by Foster et alThey performed ion chromatography of the corrosion

Figure 5.Product distribution of schreibersite induced formose type reaction after 1 and 7 d.Greek labeling denotes the following
compounds: γ—erythrose, δ—threose, ε—erythrulose. Higher sugars cannot be quantified individually as a result of overlapping
peaks. Therefore, the bulk is quantified. For reaction conditions see section 2.4.3. Relative errors of abundance are on average 1% and
are omitted for clarity.
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products without pretreatment of the samples and could not detect diphosphate -( )P O2 7
4 and hyphosphate

-( )P O2 6
4 either [63].

Besides, the results of our CEmethod provide insight into the progress of the corrosion process for different
temperature.Whereas the phosphate -( )PO4

3 concentration increases sharply in the beginning and then
decreases to stagnate at a plateau of around 0.5 mM, concentrations of phosphite -( )HPO3

2 and diphosphite
-( )H P O2 2 5

2 increase steadily over time for corrosions performed at 80 °C. At 20 °Cdiphosphite -( )H P O2 2 5
2

reaches a steady state concentration already after around 7 days while phosphite -( )HPO3
2 keeps increasing

slowly. The immediate rise of the phosphate -( )PO4
3 concentration in the beginning regardless of the

temperature is attributed to the already oxidized surface of thematerial containing phosphate -( )PO4
3 when

stored under air. The advanced decrease of the concentration can be explained by the low solubility of iron(II)
phosphate that over the cause of the corrosion is formed and depleting the solution of phosphate -( )PO .4

3 The
more soluble phosphite -( )HPO ,3

2 on the other hand, accumulates.
The immediate release of phosphate -( )PO4

3 is, also, held responsible for the observed quick rise of the
pH value in the beginning of the corrosion. Such an increase can only be explained by phosphate -( )PO4

3 in its
tribasic state (as inNa3PO4). As themechanismof the corrosion is still elusive in detail, we argue that any
phosphorus oxy compound formedwill be in its fully deprotonated form as free protons of any acidic product
would be reduced immediately by either iron or phosphorus in Fe3P to formmolecular hydrogen. The
determined concentrations of phosphate -( )PO4

3 in the corrosion processmatch the observed pHvalues in this
context. A concentration of 2 mM tribasic phosphate -( )PO4

3 as in the beginning of the corrosion experiments
when other possibly buffering species are absent equals a pH value of around 11 as was observed.We believe that
the basifying conditions of schreibersite have yet not been described in literature since experiments were
performedwith littlematerial in 25–50 times thewater volumewe employed in our experiments. Such a dilution
corresponds to a decrease in pHby 1.5 units. As the pHdeclines over time to a value of around 9 due to buffering
reactions by iron (formation of insoluble Fe(OH)2), published experiments likely observed a neutral pH of
around 7.5.

4.2. Screening for phosphorylation and condensation to polyphosphates
The conducted reactions of organics in presence of schreibersite corrosion have shownno detectable amounts of
both phosphorylated products or condensed phosphates. This demonstrates the low reactivity of themeteoritic
material as is also reflected in the low yields of published but successful phosphorylation reactions with
nucleosides [61] and glycerol [60]. It is very likely that the efficiency of those reactions could be enhanced by
reducing the amount of water present.Water serves as a quenching agent for reactive phosphorus oxyradical
intermediates [59] and, thus, hinders phosphorylation. As phosphorylation reactions inwater are disfavored
thermodynamically, such an approachmight be beneficial inmany regards.

4.3. Schreibersite catalyzed formose reaction
As discussed in section 4.1., corroded schreibersitematerial basifies the aqueous phase inwhich it is immersed
by creating a buffer composed of phosphite -( )HPO ,3

2 phosphate -( )PO4
3 and iron(II) ions (Fe2+). In such a

medium,we observed that simple sugars react in an aldol reaction scheme to generate higher carbohydrates.
This formose reaction network is a known abiotic pathway to biologically relevant sugars.We, therefore, tested
the reactionwith formaldehyde, glycolaldehyde, glyceraldehyde and dihydroxyacetone all of which have been
linked to terrestrial [8, 85] and extraterrestrial [11, 86–88] origins. In all cases except for pure formaldehyde, we
found typical formose network product distributions after one day. The fact that formaldehyde did not show any
reactivity under the given conditions is in full agreementwith previous observations in literature [70]. In order to
activate formaldehyde, it has to undergo anUmpolung reactionwhich cannot be achieved by base catalysis.
Formaldehyde, however, is being consumed in the presence of an organic co-catalyst. Any organicmolecule
with the ability to enediolize like glycolaldehyde can serve as such. Therefore, in cross-experiments that would
constitute formaldehyde and glycolaldehydewe observed a full consumption of the carbonmaterial enriching
specifically C5 sugars. As typical of formose reaction networks the conversion itself shows little selectivity, and
biologically important carbohydrates such as ribose are onlyminor components. It has been shown, though,
that phosphorylation of carbohydrates drastically influences the stability of reaction products and, hence,
changes the formose network outcome [77, 78]. In our future experiments, wewill, therefore, examine
possibilities to realize the generation and phosphorylation of sugars simultaneously by employing Fe3P since the
corrosion of thismeteoritematerial creates a phosphor oxyanion enrichedmilieu and, thus, supplies all the
necessary ingredients for such a reactivity. Unlike any other catalyst in the context of the formose reaction
network studied so far in literature this is a unique feature of Fe3P. Schreibersite, also, belongs to the few likely
members of a hadeanmineral inventory capable of triggering this network besides examples such as Al(OH)3,
Ca(OH)2 and borates [36, 72]. Furthermore, we showed that Fe3P creates a reaction environment inwhich the
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generation of carbohydrates as well as the formation of tar occurmore slowly in comparison to published
experiments [72]. Stabilizing effects of the phosphate -( )PO ,4

3 phosphite -( )HPO3
2 and iron(II) enriched

environment will be the focus of future studies. In any event, our studies present indication that schreibersite
could be involved in a prebiotic scenario that gives rise to enriched aqueous phases of accessible dissolved
phosphorus and carbohydrates simultaneously. As those are significant ingredients formetabolism,
schreibersite could be conceived as a trigger for chemical reaction networks to form and chemically evolve to
complex self-sustaining systems.

5. Conclusion

In the present contribution, we established a separationmethod based onCE tomonitor unbiasedly the
corrosion process of schreibersite and report on the ability of thematerial to catalyze the formation of
carbohydrates fromprebiotic precursors in a formose type reaction. Themethodwe present distinguishes itself
frompreviously reported approaches as it does not require any pretreatment steps that are believed to adulterate
the product distribution. This is due to the severe pH sensitivity of phosphorus oxyanions. The introduced
method utilizes pHneutral conditions (pH6.2) and is performedwithin less than 12 min.With it we could
detect phosphite -( )HPO ,3

2 phosphate -( )PO4
3 and presumably diphosphate -( )H P O .2 2 5

2 We, further,
recorded their concentration profiles for corrosions performed at 20 °Cand 80 °Cand found that phosphite

-( )HPO3
2 is themajor component accumulating over time. Based on thosefindings, we tested the corrosion

process in the presence of different organics aiming at triggering the formation of either polyphosphates or
phosphorylated organicmolecules.We, however, could notfind any hints for the success in those reactions but
observed in carbohydrate samples the formation of higher sugars. Further studies revealed that schreibersite
basifies thewater inwhich it is immersedwhich togetherwith released Fe(II) cations catalyzes reactions in the
formose reaction network. This reaction is a prebiotically route to biologically relevant sugars.We could show
that all simple carbohydrates like formaldehyde (only in presence of organic co-catalyst), glycolaldehyde,
glyceraldehyde and dihydroxyacetone are susceptive to the reaction conditions introduced by the corrosion of
schreibersite. In the reaction samples that containedmixtures of the given feedstockmolecules preferably C5
sugars such as the biologically relevant ribose were formed, though ribosewas only aminor constituent. In
conclusion, our results demonstrate that schreibersite efficaciously catalyzes the aldol reactions in the formose
reaction networkwhile creating a phosphorus enrichedmilieu at the same time. It is the only knownmember of
the hadean eonmineral inventory to show that ability. Our findings, thus, implicate a prebiotic scenario in
which phosphorus and sugar chemistry are connected. It poses one of the few instances in literature so far in
which interplanetarymaterial is directly involved in prebiotic chemistry on the early earth.
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