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Abstract

We consider a metrology scenario in which qubit-like probes are used to sense an external field that
affects their energy splitting in a linear fashion. Following the frequency estimation approach in which
one optimizes the state and sensing time of the probes to maximize the sensitivity, we provide a
systematic study of the attainable precision under the impact of noise originating from independent
bosonic baths. Specifically, we invoke an explicit microscopic derivation of the probe dynamics using
the spin-boson model with weak coupling of arbitrary geometry. We clarify how the secular
approximation leads to a phase-covariant (PC) dynamics, where the noise terms commute with the
field Hamiltonian, while the inclusion of non-secular contributions breaks the PC. Moreover, unless
one restricts to a particular (i.e., Ohmic) spectral density of the bath modes, the noise terms may
contain relevant information about the frequency to be estimated. Thus, by considering general
evolutions of a single probe, we study regimes in which these two effects have a non-negligible impact
on the achievable precision. We then consider baths of Ohmic spectral density yet fully accounting for
the lack of PC, in order to characterize the ultimate attainable scaling of precision when N probes are
used in parallel. Crucially, we show that beyond the semigroup (Lindbladian) regime the Zeno limit
imposing the 1/N°/? scaling of the mean squared error, recently derived assuming PC, generalises to
any dynamics of the probes, unless the latter are coupled to the baths in the direction perfectly
transversal to the frequency encoding—when a novel scaling of 1/N”/* arises. As our microscopic
approach covers all classes of dissipative dynamics, from semigroup to non-Markovian ones (each of
them potentially non-phase-covariant), it provides an exhaustive picture, in which all the different
asymptotic scalings of precision naturally emerge.

1. Introduction

Quantum metrology is a rapidly evolving research field with a potential to soon become a commercial
technology[1, 2]. Over the last decades, it has developed in many different directions encompassing a broad
spectrum of settings in which quantum systems are employed to precisely sense, measure or track physical
parameters [3—6]. Despite other important quantum phenomena enhancing precision measurements [7], its
major part has been devoted to scenarios with multiple probes, whose inter-entanglement allows to surpass
precision limits typical to classical statistics, i.e., the Standard Quantum Limit (SQL) [8]. As a result, the precision
of sensing a parameter (either intrinsic or externally imprinted, e.g., by a field) encoded in each of the probes
dramatically improves with the probe number. In optical interferometry [4], in which the SQL is dictated by the
photon shot noise, the use of squeezed light has allowed for ultrasensitive phase measurements [9], with a
spectacular application in gravitational-wave detectors [ 10, 1 1]. Similarly, in experiments involving multiple
atoms [5], in which the atomic projection noise defines the SQL, thanks to preparation of spin-squeezed [12] or
maximally entangled [ 13] states, novel standards of atomic transition-frequency have been proposed [14-16].
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Figure 1. Quantum metrology scheme—its consecutive stages with sensing probes being disturbed by bosonic baths. (I, blue): the
probes modelled by two-level particles are prepared in a desired entangled state. (II, orange): the probes evolve for time t during which
each of them is driven by an external field and decoheres due to interactions with the bath surrounding it. (111, green): a global
measurement is performed on all the probes, so that a fluctuation of the field may be most precisely resolved based on measurement
outcomes.

On the other hand, large atomic ensembles [ 17] and nitrogen-vacancy centres [18] have become most sensitive
magnetometers to date [6]; optomechanical devices have led to state-of-art displacement measurements [19],
while trapped-ion and optical-lattice atomic clocks have achieved both highest stability and accuracy in time-
keeping [20].

In parallel, novel theoretical methods have been developed in order to quantify the ultimate performance of
quantum metrology protocols and supplement the optimisation of their implementations. In particular, the
techniques of estimation theory [21] and statistical inference [22] have been generalised into the quantum realm,
introducing quantum notions of, e.g.: Fisher Information (FI) [23], filtering [24] or waveform estimation
[25]; which then had to be adapted in order to account for the inevitable quantum noise processes occurring in
real-life experiments [26—29].

The main motivation of our work is to provide a microscopic model that, on the one hand, allows for an
explicit derivation of the up-to-date noisy quantum metrology results while giving them a clear connection with
the microscopic details of the probe-environment interaction; but, on the other, is capable to go beyond what is
known thanks to its rich structure that, however, has an indisputable physical interpretation. In order to do so,
we resort to the canonical qubit-based metrology scheme depicted in figure 1, in which we set the probes to also
be weakly interacting with bosonic baths during the sensing process. As a result, the dissipative dynamics of each
of them is described by the spin-boson model [30] in the weak-coupling regime—a model commonly used in
describing dynamics of open quantum systems, also beyond light-atom interactions, e.g, to model charge
transfer [31], tunneling in materials [32] or magnetic flux in SQUIDs [33]. Importantly, depending on the
coupling geometry and the spectral density of bath modes, the model induces dissipative probe dynamics
encompassing common noise descriptions, whose use has been previously motivated in the metrological
context either phenomenologically [27, 28, 34], or by considering the classical stochastic-fluctuations approach
[35]. It then not only provides a unifying picture, but also gives novel microscopic derivations to some noise-
types, e.g., rank-one Pauli noise [36] that includes transversal noise [37]. Moreover, stemming from the
microscopic picture, it allows to take into account the effect of the dissipative dynamics being dependent on the
parameter being sensed—which we demonstrate to significantly improve the attainable sensing precision at a
single-probe level. Last but not least, it gives a clear interpretation of the phase-covariance assumption [38—40],
which forces the noise terms to commute with the parameter-encoding Hamiltonian, as it is then naturally
guaranteed by the secular approximation within which one discards fast oscillating terms in the master equation
[41]. Hence, by considering the model yielding non-secular dynamics induced by the baths with Ohmic spectral
densities, we are able to explicitly show that it is the Zeno limit (see [42, 43]) that dictates the asymptotic precision
scaling also when the phase-covariance (PC) is broken. To this point, this limit was shown to be universal only in
the case of secular dynamics [44], hence this recent result is generalized for the considered model. Yet it can even
be breached when the coupling of each bath is perfectly transversal.

The present manuscript has the following structure: section 2 contains an extensive introduction to the field
of frequency estimation, illustrates the considered setup and recalls necessary tools for its analysis. The notion of
PCand its characterization in open quantum systems is established in section 3, along with the corresponding
form in terms of a master equation. Subsequently, the microscopic model of choice is illustrated in section 4,
where we demonstrate its capability to realize both PC and non-phase-covariant (NPC) dynamics. The following
sections deal with the metrologic properties of the model. We clarify the effect of NPC dynamics by using a single
probe in section 6, via a short time expansion of the dynamics, independent of the environmental spectral
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density one chooses to be realized by the model. Section 7 contains a thorough study of the asymptotic scalings in
the regime of large number of probes.

2. Noisy quantum frequency estimation

In all quantum metrology schemes employing multiple probes, as the one depicted in figure 1, the parameter to
be determined—e.g., the external field in sensing [6], the photon path-difference in optical interferometry [4],
or the atomic internal transition frequency in spectrocopy [ 14—16]—is crucially encoded onto each of the probes
in an independent manner. As a result, by exploring the quantum entanglement in between them, the SQL can
be breached. In the classical setting, the SQL forces the mean squared error (MSE) of estimation to decrease
according to the central limit theorem [45]—at most as ~1 /N with the number of probes—as the growth of N
can then be effectively interpreted as an overall increase in the size of the measurement data available. However,
when the probes are prepared in an entangled state, such an intuition must be abandoned. In particular, by
entangling all the probes with one another, e.g., by preparing them in a GHZ state [13], the MSE may drop even
as~1/ Nz—attaining the fundamental Heisenberg Limit (HL) on precision [8].

In this work, we consider the task of frequency estimation that is directly motivated by the atomic
spectroscopy experiments [ 14, 15]. However, it applies to any sensing scenario in which the duration of each
experimental repetition should be treated as a resource, while still operating in the regime of large statistics of the
measurement data gatheredS. In such a case, the estimated parameter, w,, corresponds to the effective
magnitude of a Hamiltonian H,, inducing a unitary transformation on each of the probes

Uno(t) = Uy, (1) = UL (1) with U, (£) = e iHaot, (1)

where H,,, = wy hand h is some fixed operator’. The parameter w, can thus be naturally interpreted as the
atomic transition frequency in spectroscopy experiments [46] or, equivalently, the strength of an external field
being sensed, e.g., the magnetic field in atomic [17] or NV-centre-based [ 18] magnetometry setups. Let us
emphasize that within frequency estimation tasks the encoding Hamiltonian, H,,, is assumed to be fixed, what
contrasts the sensing scenarios in which either the parameter wy varies in time and must be tracked [25], or h
itselfis a time-dependent operator [47].

Importantly, in contrast to phase estimation tasks in optical interferometry [4], in frequency estimation one
must explicitly account for the finite time-scale over which wy is imprinted on the probes. In particular, tin
equation (1) that constitutes the encoding time specifies also the duration of a single round (repetition) of the
protocol—we assume throughout this work that both the preparation and measurement stages in figure 1 take
negligible durations (see [48] for a generalisation). As a result, when optimising the protocol to maximise the
precision attained, one must take into account the fact that, although the total duration of an experiment, T, can
always be assumed to be significantly larger than the duration of a single protocol round (T >> 1), by decreasing ¢
the total number of repetitions, v = T/t, is increased. Such a possibility can have a positive impact on the
achieved precision, as the MSE improves then at a classical, ~1/v, rate due to more measurement data being
gathered over the total experimental time T.

2.1. Frequency estimation task as a quantum channel estimation protocol

Any frequency estimation task, and more generally any metrology scheme of figure 1, can be viewed at the
abstractlevel as a quantum channel estimation protocol [49, 50], depicted in figure 2. In particular, the
consecutive stages described in figure 1 can be formalised in the following way. Initially, the N probes are
prepared in a potentially entangled quantum state p™’(0). Subsequently, the frequency wy is encoded onto each
of the probes via the action of a completely positive and trace preserving (CPTP) map [51, 52]—a quantum
channel A, (t)—that specifies each probe dynamics. As a result, the global state of the probes after the frequency
encoding stage of duration ¢ reads

P = Au ()N [p™(0)]. )

In the absence of noise the probe channel corresponds to the unitary wy-encoding introduced in equation (1),
ie, A, (t) = U,,(t). However, in general, it may incorporate the impact of any type of local noise that affects
each probe in an uncorrelated fashion.

Note that in this work we do not consider the effects of global decoherence mechanisms that disturb all the
probes in a correlated manner. Such noise processes are known to impose fixed lower bounds on the achievable
precision in metrology tasks that cannot be circumvented by any choice of probe states and measurements, even

For instance, when maximising the sensitivity of slope detection in external-field sensing scenarios [6].

6., . . . . . Q. r
Without loss of generality, we also require for convenience that maximal variance of # is max,, A%, = 1/4.
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Figure 2. Quantum channel estimation protocol—a formal interpretation of the quantum metrology scheme of figure 1. (I, blue): p™(0)
represents the initial collective state of the N probes. (II, orange): as probes evolve independently, the quantum channel representing global
dynamics factorises, Ag\é) = A‘,ffé\], into tensor product of probe channels, A, which encode the parameter, wy, to be estimated and
incorporate the impact of local noise. (111, green): a global measurement performed on the probes is formally represented by a POVM,

{ M, }x, whose elements determine the probability distribution of the measurement outcomes labelled by x.

in the asymptotic limit of N — 0o [53-56]. As our motivation here is the investigation of the asymptotic
precision scaling in frequency estimation—in particular, its potential quantum enhancement beyond SQL
despite dissipative dynamics—we want to consider schemes in which the error asymptotically vanishes with N
and it is this scaling that unambiguously quantifies the performance.

The measurement stage of any metrology scheme of figure 1 corresponds in figure 2 to a generalised
quantum measurement, either local or global, that is performed on the final state (2) yielding an outcome x. It is
formally defined by a positive operator valued measure (POVM), { M, }., whose elements constitute positive-
semidefinite operators, M, > 0, thatsum to identity, >, M, = 1[51]. The measurement outcome x is then
associated with its corresponding POVM element, so that the outcomes are distributed according to
p,,x) = tr{ pg:)]) (t)M,}. Given that the protocol is repeated v = T/t times over the total experiment duration
T, a dataset of measurement outcomes x,, = {x;, ..., x, } is collected. Then, based on the data, an estimator
@(x,) is constructed whose value is aimed to most accurately reproduce the estimated frequency wy. Moreover,
as the experiment is assumed to last much longer than a single protocol round, T >> ¢, the measurement data
collected can always be taken to be sufficiently large for the asymptotic (v — 00) statistical analysis to apply.

Notice that the measurement outcomes are independently distributed with P, () = I, p,,(xi),aswe
have, for simplicity, disregarded the possibility of conducting adaptive strategies in which one adjusts the
measurement, i.e., the POVM, in each protocol round based on the outcomes previously collected [57]. We are
allowed to do so, as all the precision bounds discussed in the following sections are guaranteed to be saturated
without the need of adaptive measurements in the so-called ‘local estimation regime’ [45], i.e., when sensing
deviations of w, from a known value’. As such a scenario is the most optimistic one, the precision limits it
provides can be considered fundamental—being applicable to all the more conservative approaches as v — o0
[58]. However, let us stress that the above requirement of ‘estimation locality’ may, indeed, be relaxed by
allowing for the measurements to be adaptive, given the promise that the true value of wy lies within a fixed, yet
narrow enough window [59]. Nevertheless, if one was to consider the value of wy to be largely unpredictable, one
must explicitly follow Bayesian inference approaches to frequency estimation [60] in which the notions of SQL
and HL must also be redefined [61].

Finally, the performance of the estimation protocol is quantified by the MSE of the estimator constructed,
ie.

No =3 p, (x) (@) — wo), 3

X,

v

which must be minimised by optimising the initial state, p™’(0), and the measurement POVM, { M, },, used in
each round of the protocol of figure 2.

2.2. Ultimate precision attained in quantum frequency estimation
The minimal MSE (3) which can be attained by any consistent and unbiased estimator is determined by the
Cramér-Rao bound (CRB) [45]:

Assituation that naturally applies in the slope-detection scenarios (e.g., in Ramsey spectroscopy) of quantum sensing [6].
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- 2
A2 > ;, where £ [pw(;] = Z M

4
v Rilp,,] Pl IRC)) @

is the FI that is fully defined by the probability distribution of measurement outcomes, p,, (x), and its
dependence on the estimated wy. Here, and throughout the manuscript, we use the dot symbol to denote the
derivative with respect to the estimated parameter, so that ¢+ = j—u;n. As p,, (x) = tr{ pff;] )(t) M, } with the
measured state given in equation (2), the CRB constitutes the ultimate limit on the precision attained by the
protocol of figure 2 given a particular: initial state p™’(0), POVM {M,}, and protocol duration ¢. Importantly,
the optimization of equation (4) over measurements can be completely avoided in the quantum setting, as one
may first explicitly maximise the FI over all POVMs by defining the Quantum-Fisher-Information (QFI) as [23]:

Folpl (01 = maxqa, Balp,, ] = w{p)(OLE,}, ©)
which is now fully determined by the state pg:r) (t) of equation (2) with L, being its symmetric logarithmic
derivative (SLD) satisfying pjjﬁ\’)(t) = %(LwO pg:’)(t) + pg;’)(t)Lwo).

In general, the evaluation of the SLD and, hence, the QFI (5) requires the explicit eigendecomposition of the
state pg;]) (t), which becomes rapidly intractable due to its dimension growing exponentially with the probe

number N. However, in the absence of noise this is not the case, as the evolution of the probes is fully dictated by
their Hamiltonians. Recalling equations (1) and (2) we may then write

AW = U@+ U@ with U (@) = e 1, ©)

where, HO(J{)\] ) =yN HL:] =w XN, A" is the effective global frequency-encoding Hamiltonian with n
indexing the probes. Thus, when considering pure initial states p™(0) = |/™()™)| in the protocol”, the QFI
(5) simplifies to [4]

FolUEN () [ N]] = 482 NHI| 0, @

where A?H | v is just variance of the frequency-encoding Hamiltonian for the state [\,
Combining equations (4) and (5), we arrive at the quantum Cramér-Rao bound (QCRB) [21] that we utilise
throughout this work as the benchmark dictating the ultimate achievable precision:

1 1 t

A2w> min _— = — min _—.
T ienn vRgl (1] T et Folp®(1)]

3

However, in the setting of frequency estimation, as indicated above, it must also be optimized over the duration
time t of each protocol repetition. Then, aslongas T >> t, the QCRB (8) sets the fundamental limit on precision
for a given initial state p'"’(0), which is utilized in each round of the protocol of figure 2, while the probes evolve
according to particular dynamics specified by equation (2).

2.3. Realistic bounds on precision in the presence of local noise
Now, stemming from equations (7) and (8), we can formally define the notions of SQL and HL in frequency
estimation when the noise is absent as, respectively,

- 11 -
NosqrT = TN and Aoy T =

~+ | =

1
N )
The above MSEs correspond to the minimal values of the QCRB (8) attained when optimising the protocol over all
separable and entangled initial states p‘"(0), respectively. In particular, Nl&gq isachieved by preparing the probes
ina product |¢)*N with |¢) = argmax,, N2h),,, while A%@yy is attained with |iy™) = %(l Amin) + |Amax))s
where [ Amin / max) are the eigenvectors corresponding to minimal/maximal eigenvalues of the Hamiltonian H ff: )
in equation (7) [63].

However, things change quite drastically if noise is taken into account. The first results in this direction were
obtained in [26], which deals with a purely dephasing noise acting at rate yindependently and identically on each
of the probes, such that the resulting evolution is given by a quantum dynamical semigroup, i.e., it is fixed by a
Lindblad equation [64, 65]. The probes are described as qubits, as we will do from now on. Even with the
preparation of entangled probes, one unavoidably recovers the SQL scaling, no matter how weak the dephasing
is, with at most a constant factor of improvement. While this analysis was dedicated to a specific initial
preparation and measurement (a generalized Ramsey scheme), it was afterwards extended to arbitrary
preparations and measurements and other kinds of semigroup dynamics [27, 28, 34]: in the presence of pure
dephasing, spontaneous emission, depolarization and loss, if one considers independent and identical noise and
the dynamics is given by a semigroup, the asymptotic scaling is unavoidably bounded to the SQL.

8 Pure initial states may always be considered optimal due convexity of the QFI (5) on states, Fo[>"; p; pg)] < XipFg [pg)] [62].
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Importantly, all the dynamics for which such limitation was proven are characterized by the fact that the
action of the noise commutes with the unitary encoding of the parameter. In other terms, the dynamics of the
probes, besides being independent and identical, is PC [38—40], which means that at any time ¢ the quantum
channel A, (t) can be decomposed into the unitary encoding term and a noise term, and these two commute.
More precisely, the dynamics of a two-level system is said to be PC, if for any rotation by an angle
o, Uy = expliga,}*exp{—i¢pa,},itholds

[Z/{cﬁ)y Awo(t)] == 0) V(rb) t. (10)

This is easily shown to be equivalent to”’ Ay, (1) = Uy, (1) o L, (t) = L, (¢) o U, (t), where I, (¢) isanoise
term, i.e the quantum channel acting on the probe that can associated purely with the noise.

By going beyond the assumptions of the above no-go theorems, i.e. the semigroup and PC properties,
asymptotic precision scalings beyond SQL can be observed despite uncorrelated noise. On the one hand, by
breaking the PC and considering noise that is perfectly transversal to the frequency encoding, the ultimate lower
bound on precision has been derived [37]:

N 1
AzWi&semiT z W

(D
and shown to be asymptotically attainable up to a constant factor (denoted by 2). On the other, by
circumventing the semigroup assumption and considering pure dephasing noise fixed by a time dependent
dephasing rate Y(£), a scaling oc1/N*/? has been found [42, 43, 66]. The super-classical 1/N*/? scaling was named
Zeno limit due to it being dictated by the quadratic decay of the survival probabilities for short times, analogously
to the Zeno effect [67, 68].

Recently [44], an achievable lower bound to the estimation error for the whole class of PC dynamics,
including both semigroup and non-semigroup evolutions was derived. The maximal estimation precision is
fixed by the power-law decay of the short-time expansion of the noise parameters and it goes beyond the SQL if
and only if the semigroup composition law is violated at short times. Note that memory effects in the probes
dynamics, i.e., non-Markovianity [69, 70], do not provide any improvement of the estimation precision (apart
from the unrealistic case of a full revival of coherences). In particular, for any PC dynamics with linear decay of
the noise parameters, which corresponds to the semigroup evolution, one gets

1
Aza’)PC&semi T Z ﬁ > (12)
while a quadratic decay yields the Zeno scaling
NpcazensT 2 —— (13)
PC&Zeno L <, N3/2 .

These two scaling behaviors, along with that in (11) for purely transversal noise, provide the optimal asymptotic
estimation precision achievable in the presence of different kinds of noise. Here, we will connect these results to
the microscopic description of the probe-environment interaction, but we will also go beyond them by treating
the cases of NC and non-semigroup noise.

3. PCversus NPC dynamics

From the above discussion, it should be clear that the PC, or otherwise NPC, nature of the noise strongly
influences the metrological bounds on the achievable precision in the frequency estimation which are set by the
interaction with the environment. Hence, it is worth presenting explicitly an intuitive way to differentiate
between PC and NPC dynamics, which we will exploit throughout the paper. We use a representation of qubit
quantum channels, which relies on the Hilbert-Schmidt scalar product on the Hilbert space of the linear
operators on finite-dimensional Hilbert spaces, and which is directly linked to the action of the channels on the
Bloch sphere. For further details the reader is referred to [52, 71-76].

Recall that the Hilbert—Schmidt scalar product among two linear operators £ and  is defined as

<£’ X> = tr{fTX}~ (14)

Hence, given the orthonormal basis of operators {7, }o—o, .5 = {1/v2, 0;/V2 }j_s,,. acting on C?, with 0} the
Pauli matrices, any qubit state p can be represented as

o Note thatin [28, 34], as well as in [44], an wy-independent noise term I'(f) was considered. Here, instead, we will take into account a
possible dependence on wy also in I, (¢).
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3
p=> (Tar p) Ta = l(]l—l—r~ o). (15)
a=0 2

Here, o is the vector of Pauli matrices and r is the Bloch vector associated with the state p, which has
components r; = tr{o;j p}forj = x, y,zand must fulfill || < 1to guarantee positivity. As well-known, any
qubit state is in one-to-one correspondence with a vector inside of a unit sphere centered at the origin, i.e., the
Bloch sphere.

In the same way, any linear map = acting on the qubit operators can be represented asa4 x 4 matrix by
means of the relation

3
E[P] = Z D23<Tﬂ’ p> Ta D;B = <Tm E[Tﬂ]> (16)
af=0

Thus, given the CPTP dynamical map A, the most general form of the matrix D* associated with it reads

DA — (1 OT), (17)
v V

where v is areal 3 dimensional column-vector, 0 is a 3 dimensional row-vector of zeros and Vareal 3-by-3

matrix. The first row guarantees the preservation of the trace, the real coefficients guarantee the Hermiticity

preservation, while the general conditions for the CP can be found in [71]. Using equations (15)—(17), one can

easily see that the action of the dynamical map A on a state p associated with a Bloch vector r simply corresponds

to the affine transformation

r— v+ Vr, (18)

where v describes translations of the Bloch sphere, while V describes rotations, reflections and contractions. The
latter point can be shown via the singular value decomposition, which allows us to write the 3 x 3 real matrix V
as[71]

V = RJDR?, 19)

where R,’;f 1and R,’f;z are two rotation matrices, about the axis 7 by the angle ¢y for k = 1,2, while Dis the
diagonal matrix D = diag{d, d,, d.}. Then|dj| describes the contraction along the j-axis (|d;| < 1to guarantee
the positivity of the dynamics), and d; < 0 implies a reflection with respect to the plane perpendicular to the
j-axis.

Such arepresentation of the dynamical maps allows us to easily detect PC dynamical maps out of all the
possible transformations of the Bloch sphere: for any fixed time, a dynamical map satisfies equation (10) ifand
only if its matrix representation reads

1 0 0 0
0 dcosé —dsiné 0
0 dcosé dsiné 0f
v, 0 0 d,

Dpc = (20)

With reference to the general form of a qubit dynamical map in equation (17) and the decomposition in
equation (19), we see that PC maps are identified by: equal contractions along the x and y axes
(D = diag{d, d, d,}),atranslation only along the z-axis (v = {0, 0, v,}) and a rotation only about the z-axis,
which we getby setting /iy = Z and ¢, = & while R,”> = 1 (other completely equivalent choices can be made,
since D commutes with the rotations about the z axis). Of course, PC maps include only the affine
transformations of the Bloch sphere commuting with the rotation about the z-axis'’, while NPC maps include
also rotations about any axis different from the z-axis, translations with non-zero components along the x and y
axes and unequal contractions along the x and y axes, see figures 3(a) and (b).

Finally and crucially for our purposes, let us recall that given a PC dynamics, the functional form of the
corresponding master equation can be univocally characterized and it reads [44]

% — _i[(wo + f(t))o'zy p(t)]

+wm&mma—§mmmmﬂ

+ 7-(t)(0-p(t)0+ - %{U#T—J p(t)})

+ ) (op(t)o, — p(D)), (e2)

10 The global rotation about z will be given by the encoding rotation by w * ¢ plus possibly a further contribution, i.e., ¢ = wt + 9.
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© gt w7 o
dy \ “ approximation 3
- ’ (c) NPC 1
s T7a\ y P
. T — oo
x / AN — (unital map) it L

Figure 3. Various dynamical regimes of the weak-coupling spin-boson model in the Bloch sphere picture. (a): the NPC dynamics
specified by equations (34)—(37) can be viewed as a general affine transformation (18) of the Bloch sphere (see section 3) contracting it
to an ellipsoid that is parametrised by (in order): arotation R,7!, contractions d,, d,, d., along the three axes, a reflection, a second
rotation R2 and atranslation by a vector v (for simplicity, we denote the two rotations by a single R above). (b): PC dynamics (38) is
then obtained by applying the secular approximation that forces the cylindrical symmetry (indicated by a circular arrow) of the ellipsoid
around the zaxis. (¢): high-temperature limit of the spin-boson model forces a general map of the NPC dynamics to be unital, i.e., the
translation, v = 0, to vanish. (d): when both high-temperature and secular approximations apply, the resulting quantum map in the
Bloch representation is both cylindrically symmetric and unital.

for some, possibly time dependent, real coefficients £ (), v, (t), v_(t), ,(t). Equivalently, in the other
direction, any master equation of the form as in equation (21) will give rise to a PC dynamics. Formally, any the
time-local generator L£(#) of a master equation

dp(t
DO _ Lioyipw, @2)
dt
is related to the the corresponding dynamical map by the Dyson expansion,
' 0 t f 1
At :THIO‘M(T): ds dr, ... L) ... L(1), 23
(1) =Toe kz::ofo e [T e L 23)

where T._ is the chronological time-ordering operator; and, hence, to the matrix representation of the map, D4,
defined via equation (16). In particular, one can show that starting from the master equation (21) the affine
representation of the map must take form (20) [44].

4. Spin-boson model: weak-coupling master equation and secular approximation

We can now move on and introduce the general model we will exploit to investigate the difference between PC
and NPC dynamics from a microscopic viewpoint and, in the following section, how they determine different
optimal precisions in frequency estimation.

As emphasized before, we assume that the probes are affected identically and independently by their
environments, so that the global dynamics is fixed by the one-particle dynamics, see figure 2 and equation (2).
Therefore, we focus on the microscopic derivation of the open-system dynamics of one probe, which we present
in the following. In particular, we model our sensing qubit with the widely used spin-boson model for quantum
dissipation [30]. Within this model the environment corresponds to a set of non-interacting harmonic
oscillators linearly coupled to the system, which may be directly interpreted as interactions with a radiation field
or a phononic (crystal lattice) background. This model provides us with the most general description of the
corresponding open two-level system dynamics, including special cases such as pure dephasing [41] or purely
transversal noise [77]. The Hamiltonian of the spin-boson model consists of the two-level system Hamiltonian
H,, the free Hamiltonian Hg of the environment and the interaction Hamiltonian Hy, whichsumupto (A = 1)

Wo0oy -
+ Z wna, Ay,
n

H=Hy,+ Hg+ H =

+ (cos 19% + sinﬁ%) ® Z(gnan + g:a;). (24)

The system’s frequency wy represents the encoded frequency, while a, and a, are the bosonic annihilation and
creation operators of the bath mode n of frequency w,,, which is coupled to the two-level system with the strength
&, The parameter ¥ defines the coupling angle, i.e., the angle between the x-axis and the direction of the coupling
operator (in the xz-plane): for 1} = 7 /2 we have pure dephasing (or parallel, with respect to Hy) interaction,
while for ¥ = 0 we have purely transversal (or perpendicular) interaction.
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Finally, note that the Hamiltonian is physically equivalent to a transformed Hamiltonian where the system
only couples via g, to the environment, but both ¢, and ¢, are included in the system Hamiltonian; e.g., this
would describe an experimental realization where the system is driven by the application of an off-axis magnetic
field (see appendix A).

4.1. Second-order TCL master equation

To obtain a closed form of the master equation ruling the evolution of the probe subject to the noise fixed by
equation (24), we exploit a perturbative approach, assuming that the system is weakly coupled to the
environment. In particular, we use the time-convolutionless (TCL) master equation up to the second order
[41,78]. Its general form in the interaction picture is given by (denoting as p(¢) the system state in the interaction
picture with respect to Hy + Hp)

dp(r) _
dt
where H((?) is the interaction Hamiltonian H;in the interaction picture. In appendix B, we describe how to get
the desired master equation for the reduced system density matrix starting from the equation (25). At this point,

let us just briefly introduce the main required quantities to define such a master equation, along with their
physical meaning. First, the interaction Hamiltonian in the interaction picture is given by

- " dr e {[H (1), [H (), 5() © pell), (25)

Hi(t) = e"H“t(cos 19% + sin ﬁ%)e’m‘)t ® B(t), (26)

where

B(r) =) (g,e “a, + g:ei‘”"’a;) (27)

is the interaction picture of the environmental operator appearing in the interaction Hamiltonian, see
equation (24). The partial trace over the environment introduces the two-time correlation function
trg[B(¢) B(7) pp] of the environment under its free dynamics, along with its complex conjugate tz[B(7)B(t) pg].
This function encompasses the whole relevant information about the environment needed to characterize the
open-system evolution in the weak coupling regime: as we will see, it fixes each coefficient of the master
equation. In addition, if the initial state of the bath is thermal, i.e.

exp{—OH3}

pi(0) = = (28)

with the inverse temperature fand Z = tr{exp{ —(GHp}}, since [Hp, p(0)] = 0 the correlation function only
depends on the difference of its time arguments t — 7. Therefore we can define the correlation function C(¢) via

trg[B(t) B(7) pg] = trg[B(t — 7)B(0) pg] = C(t — 7). (29)
Using the definition of B(f) in equation (27), this expression can be written as
C(t) = > g [N (wne’ + (N (w,) + De ], (30)

where N (w,,) = tig{ a,;" a, pg} represents the average number of excitations in the bath mode n. For the
considered thermal state it is given by

_ 1 1 Bw) _
N(w) = e 2[coth( 5 ) 1]. (31)

The bath correlation function C(#) is conveniently expressed in terms of the spectral density of the environment,
which is defined by

J(W) =3 gr8(w — wy). (32)

This quantity describes the density of the bath modes weighted with the square of their individual coupling
strength to the system. In fact, the bath correlation function (30) can be written as

c) = fo 4w @) N (@) + (N (w) + 1)e—/]
= jfx’ dwe N (W) [J (w) O(w) — J(—w) O(—w)]
Efoo dwe“'j(w). (33)

In the second line we used the formal identity —N(—w) = N(w) + 1 (see equation (31)) in order to introduce
the function j(w), i.e., the anti-Fourier transform of the bath correlation function. The Heaviside stepfunction
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O (w) keeps track of the fact that J(w) is defined only for positive frequencies. Finally, the relation in equation (33)
allows us to perform the continuum limit straightforwardly by replacing the spectral density in equation (32)
with a smooth function of the frequency bath modes [41].

As said, the bath correlation function C(¢) or, equivalently, the bath spectral density J(w) along with the initial
state of the bath fix the reduced master equation in the weak coupling regime: since we are dealing with the
second order perturbative (TCL) expansion, only the two-time correlation function C(¢) is involved, while the
bath multi-time correlation functions would only be involved in higher order terms (see also the recent [79]). As
shown in appendix B, the master equation (back in the Schrédinger picture) is then given by

O 2)1p(e = ity + 50, (0]
+ 3 bkj(t)(akp(t)aj - l{a}ak, p(t)}), (34)
Jk=%,z 2
where we introduced the function
', t) = t drelC 3
(6 1) fo e C(7) (35)
for ¢ = +wy, 0, such that
bt = S R0, 1))
2
bys (1) = 5V ReT (g, 1))
2
bo_(t) = Y Re(T(wo 1))

cos? )

by (t)=b*(t) = (I'(—wo, 1) + T(wy, 1))

b, () = b,(1) = Wmo, £ + TH(—wo, 1)

b (1) = b (1) = @(F(o, £ + THwo 1), (36)

while the Hamiltonian correction is fixed by the elements:

cos?

H (1) = Im{T(wo, )}

icos ¥ sin

Hig(t) = Hit¥(t) = y

x (Re{no, D} = 20 1) + oo r»)

cos?

Hep (1) = Im{T'(—wo, )}, (37)
where H®(t) = (i| H'S(t)|j) fori,j = 1,2.

Let us stress that we did not invoke the Born-Markov approximation [41] in our derivation—the above
time-local master equation includes fully general non-Markovian effects and it will provide us with a
satisfactory description of the noisy evolution of the probes as long as the interaction with the environment
is weak enough (i.e., the higher orders of the TCL expansion can be neglected). In addition, we are taking
into account the dependence of the coefficients of the dissipative part of the master equation on the free
system frequency wy, see equation (36), i.e., on the parameter to be estimated. This is a natural consequence
of the detailed microscopic derivation of the system dynamics [41], in contrast with the phenomenological
approaches, where the master equation is postulated on the basis of the noise effects to be described. Let us
emphasize that only in the case of pure dephasing, for which 9 = 7 /2 and all dissipative terms in (36)
apart from b,,() vanish, the dissipative part of the master equation can be assured not to depend on wj.
Otherwise, this is not generally the case unless a special choice of J(w) is made (e.g., discussed later in
section 5.2).

4.2. Secular approximation
Finding an explicit solution to the master equation in equation (34) is in general a complicated task, even
after fixing the explicit form of the spectral density of the bath modes. On the other hand, the structure
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of the dynamics can be simplified considerably by making the so-called secular approximation [41, 78, 80, 81],
which relies on a time-scale separation between the system free-evolution time 7, and the relaxation time 7
of the system subject to the interaction with the environment. Whenever the free dynamics is much faster
than the dissipative one, i.e., 7y ~ w, ' < Tg, one can neglect terms oscillating with e*“o* because they will
be averaged out to 0 over a time interval of the order of 7. If we apply this approximation to the weak
coupling master equation, see in particular equation (B.7), all off-diagonal coefficients in equation (34) and
the off-diagonal elements of the Hamiltonian in equation (37) vanish, so that one is left with the master
equation

dp(®) _ HE (1)
dt

—i[Ho + Oz P(t)]

+ b++(t)(a+p<t>a_ - Lo p(t)})

+bnxn(apayu——§{maﬂpan)
b () (ap(Das — p(D), (38)

where all the non-zero coefficients are still those of equation (36). This master equation can be explicitly solved
for generic coefficients by , (t), b__(t), b, (t)and H} (t) (see, e.g., [44, 82]).

Crucially, we see how the secular master equation in equation (38) precisely corresponds to the most
general form of a master equation associated with a PC qubit dynamics recalled in section 3, see
equation (21). Hence the difference between secular and non-secular dynamics provides us with a direct
physical explanation of the difference between PC and NPC dynamics. The complete (weak-coupling)
dynamics described by the master equation in equation (34) will generally lead to NPC dynamical maps,
represented by generic matrices DA®) as in equation (17) and corresponding to a completely general affine
transformation of the Bloch sphere. Instead, if one applies the secular approximation, thus getting the master
equation in equation (38), the resulting dynamics is PC and will be then characterized by dynamical maps
with a structure as in equation (20). In other words, within this framework, the distinction between PC and
NPC dynamics precisely corresponds to the distinction between dynamics within or outside the secular
regime, i.e., the regime 7y< 7 where the secular approximation is well-justified. Needless to say, and as we
will see explicitly in the next sections, the two kinds of dynamics describe also qualitatively different open-
system evolutions. As a paradigmatic example, one can easily see how for any secular master equation the
populations and coherences are decoupled, while the inclusion of non-secular terms leads to a coupling
between them. The latter can be relevant for different phenomena, such as exitonic transport [83, 84], or the
speed of the evolution in non-Markovian dynamics [85, 86]. Finally, note that general constraints on the
variation of the coherences for a given variation of the populations in the presence of a generic completely
positive PC map have been recently derived in [87].

5. Solutions in the high-temperature regime

In order to get analytic solutions for the NPC dynamics, which will also be useful to compare the different impact
of NPC and PC dynamics on the metrological properties of the probes, let us restrict to the case of a bath at a high
temperature. Because of that, we can treat the function j(w) in the bath correlation function C(¢), see

equation (33), as a symmetric function of w: for large values of the temperature, i.e., small values of (3, one has
that N(w) =~ 1/(Bw), see equation (31), and therefore j(w) ~ j(—w). Looking at the correlation function in
equation (33), we see that in this regime C(¢) &~ C*(¢) thus we have I'(—wy, t) ~ I"™*(wy, t), see equation (35).
Together with equation (36), we then obtain

fa2
b = 22010, 1)
2
b () =50 = T )

by (t)=0b_(t) = Re{b; ()}
by (1) = bi,(1) = b (1) = b, (¢)

_ sin¥cos? 1o 4y 4 Do —ap, 1), (39)
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while the Hamiltonian correction is given by

(0 = <t Py, 1))
Hig (1) = H'*),(t)
— 1028 R0, 1)) — Tt 1)
HES ) = Y (D (—wp, 1), (40)

These identities can be exploited to simplify the structure of the master equation, and hence of the corresponding
dynamical map. In appendix C, we show explicitly that the constraints in equation (39) imply the matrix form

Aw _ (1 OF
D (0 V(t))’ S

so that the translations of the Bloch sphere can be neglected and thus the dynamics can be described by unital
maps, i.e., such that A(#)[1] = 1. Note that the unitality of the reduced map is a general consequence of the high
temperature limit T — o0, in which the initial state of the bath becomes maximally mixed [88]. By further
applying the singular value decomposition to the matrix V() one can get the geometrical picture associated with
the dynamical map, in terms of rotations and contractions of the Bloch sphere, see section 3. Indeed, an
analogous result holds if we start from the PC master equation, see equation (38), and in the figures 3(c) and (d)
one can see a graphical representation of the corresponding transformations of the Bloch sphere.

We will present, in particular, two different solutions of the high-temperature master equations (the PC and
NPC ones); namely, for short times and a generic spectral density, as well as for an Ohmic spectral density at
any time.

5.1. The short-time evolution
Using the Dyson expansion of equation (23) we obtain the short-time solution of master equation (34) as

1 0 0 0
w(z)tz 1 ) 1 2 .
0 1—=—— atsin"d —wot + ¢q St cos ) sind
DA® = 2 42

® 0 wot — q 1— w;tz — %2 %awoﬁ cos ¥ sin (“42)

0 %atz cos ¥ sin ¥ —%ozwoﬁ cos¥sintd 1 — %atz cos? ¥
where

< © 2 t3 .

o= f dwj(w) ~ f 2IC) and ¢q = o [a(1 + 2sin?®) + wil. (43)

—0 0 Ow 6

Truncating the Dyson series is justified due to the the weak-coupling approximation, while we have kept the
terms up to the third order (and not only to the second order) for a reason which will become clear when we
evaluate the QFI of the corresponding evolved state in section 6.1. The short time dynamical maps do not depend
on the specific form of spectral density, but only on the global parameter o.. Furthermore, evaluating the
eigenvalues of the Choi matrix reveals that the map is CP [89].

Repeating the same calculations for the PC master equation in equation (38) in the secular approximation,

we arrive at
1 0 0 0
0 l—ﬁth—"th(l+sin219) —wot + ¢ 0
D(As()f%)c ~|o wot — q 1 - @ - %(1 + sin??) 0 “44)
0 0 0 1 - %atz cos? ¥

5.2. Finite-time evolution for an Ohmic spectral density
Here, in order to characterize the reduced dynamics at any time ¢, we focus on a specific spectral density of the
bath—the Ohmic spectral density:

J(w) = dwe /¥, (45)

where A quantifies the global strength of the system-environment interaction, while w, sets the cut-off frequency
which defines the relevant environmental frequencies in the open-system dynamics. We further assume
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that w, > wy, so that the dependence of I'(g, t) on ¢ can be neglected and I'(wy, £) ~ I'(—wy, 1) = I'(0, £), as then,
see equations (33) and (35):

)\ t o0 .
A i(fwotw)T
F(iWOa t) 6L dTJ:OC dwe
X (€74 0 (w) + e/ O (~w)
t 0 w
_ %J; dTeiinTj; dwe™we cos(wT)

LD e

= th dTeii“’OTiwC ~ T—_ (46)
B8 Jo 1+ w22 BJdo 14 Wi

where in the first and last approximated equalities we used the high-temperature condition and wy/w. < 1,
respectively. The coefficients of the master equation in equation (36) then simplify to

sin? ¥

bzz(t) - 2 P(0> t)
by () =b,_(t) = b_.(t) = b__(t) = Coszz’?r(o, £)
bo (1) = bya(t) = by (1) = b_o(1) = Wm, 0, 47)

while the Hamiltonian correction, HLS(t), vanishes. We stress that it is the specific choice of Ohmic spectral
density that assures the coefficients of the master equation to be independent of wy—a fact, typically taken for
granted in quantum metrology scenarios [4, 34, 37, 44, 90-92].

Now, using equation (47) one can easily see (e.g., by diagonalizing the matrix with elements given by the
coefficients bj(t)) that the time-local master equation can be written as

dp(®) _
dt

where the rate 4(¢) and the dissipative operator & are given by

—ilHo, p()] + ()@ (13" — p(1)), (48)

y(t) = %1"(0, t) = %arctan(wc t)

& = cosVo, + sindo,. (49)

It is worth noting that the dissipative part of the master equation is fixed by one single operator 7, i.e., we
have the most general qubit rank-one Pauli noise, recently proved to be correctable in the semigroup case
(y(¢) = const) in quantum metrology by ancilla-assisted error-correction [36], which has been demonstrated
experimentally for transversal coupling, ¥ = 0, in [93]. In addition, the only noise rate y(t) is a positive function
of time, which guarantees not only the CP of the dynamics, but also that the dynamical maps can be always split
into CP terms. In this case, one speaks of (CP)-divisible dynamics, which coincides with the definition of
Markovian quantum dynamics put forward in [94]; see also [69]. As expected, in the limit of an infinite cut-off,
w, — 00, the rate goes to a positive constant value, vy (t) — w\/(2[3), so that we recover a Lindblad time-
homogeneous (semigroup) dynamics [78]; see appendix C.1, where we also give the explicit form of the
corresponding dynamical maps for 1} = 0, 7 /2, 1i.e., transversal and pure dephasing noise-types, respectively.

Finally, note that a purely transversal interaction Hamiltonian (¢ = 0) yields a purely transversal master
equation, i.e., the only dissipative operator & = o in equation (48) is orthogonal to Hy, which is generally not
guaranteed for arbitrary spectral densities. & = o, characterizes what is usually known in the literature [37, 91]
as (and what we will here denote as) transversal noise.

Let us now consider the corresponding dynamics under the secular approximation that provides us with a
PC dynamics. The coefficients in the third line of equation (47) along with b, _(t) are set to 0 and we are thus left
with the PC master equation

? — —i[H,, p(t)] + ,7(1.) Z dj((fjp(t)ojjr- — %{U}LUJ’ P(t)}) (50)

j=%.z

withd, = d_ = cos?¥, while d, = sin? ). Once again, the dynamics is CP and due to the positivity of 7(¢) and
the d;s it is even CP-divisible. Despite having now three different dissipative operators, these claims hold because
there is only one single time-dependent function which defines all the rates.

In figure 4 we illustrate the different dynamics geometrically by comparing the different evolutions of the
open system for the NPC dynamics described by equation (48) and the PC dynamics fixed by equation (50),
respectively, see appendix C. 1. In figures 4(a)—(c), we report the evolution for the same dynamics (i.e., the same
wo, We A, Band ), for the three different initial conditions which correspond to the three canonical orthogonal
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Figure 4. Qubit evolution in the Bloch sphere picture for the resulting NPC (48) and PC (50) dynamics (orange and blue, respectively).
In (a)—(c) the evolution parameter ¢ = /4 is chosen, so that when starting from an equator state, (a)—(b), the NPC dynamics clearly
differs from PCleading to a rotation around an axis that is tilted away from z. Initialising the qubit in an excited state, (c), the PC
dynamics yields just a decay to a completely mixed state, while for NPC the rotational behaviour is still manifested. In (d), perfectly
transversal (¢ = 0) coupling is considered to illustrate that even though for both NPC and PC an equitorial state evolves in the xy
plane, the secular approximation of PC strongly modifies the speed of contraction.

axes in the Bloch sphere. Of course, this is enough to detect all the possible linear transformations that the set of
states undergoes during the evolution. In the PC dynamics we have contractions and rotations about the z-axis,
as well as equal contractions along the x- and y-axes. These are all transformations commuting with the unitary
rotation about the z-axis, as recalled in section 3. On the other hand, in the non-secular dynamics we can observe
arotation about an axis with components in the plane perpendicular to the z-axis, which clearly breaks the PC of
the dynamics. Figure 4(d) is devoted to illustrate another NPC effect, which is already present in the dynamics in
figures 4(a)—(c), butis not clearly observable due to the other transformations of the Bloch sphere. We consider a
dynamics where ¥ = 0, thus excluding any rotation apart from that about the z-axis''. As we see, the NPC
dynamics introduces different contractions along the x and y directions, contrary to the PC case. The effects on
parameter estimation of the rotations about the x- and y-axes, as well as the different contractions along them
will be investigated in section 6.2.

Finally, note that although the non-secular terms introduce a transient behavior, which departs from the
secular (i.e., PC) evolution, the system relaxes, in any case, to the fully mixed state. When probe systems can be
interrogated within the transient dynamics, metrological advances may arise, as discussed in the following
sections.

6. Single-qubit quantum Fisher information

We are now in a position to study the precision that can be reached in frequency estimation under the general
dynamics considered here. We start by addressing the case of a single probe, which already enables us to point
out some relevant differences in the behavior of the QFI under a PC and a NPC dynamics, respectively. In the
next section, we focus on the asymptotic scaling with the number N of probes.

Asrecalled in section 2, the QFI fixes the maximum achievable precision via the QCRB in equation (8). For a
single qubit probe, one can directly evaluate the QFI by diagonalizing the state p,, (¢) at time t, see section 2.2.
Here, instead, we use a different and equivalent formulation of the QFI [95], which directly connects it to the
Bloch sphere picture of the probe dynamics. Given the Bloch vector r(0) associated with the initial state p(0) and
recalling that we are dealing only with unital dynamics, see section 5, so that the affine transformation of the
Bloch sphere in equation (18) reduces at any time tand for any wy to r(0) — V,,,(¢)r(0), the QFI attime ¢t > 0
can be expressed as

(Voy (DT (0) - V,y ()7 (0))*
1 — [V, (OO

Fqlp,, (D] = [V (O r(O)* + (51

the second term is set to 0 for pure states at time t, i.e., for |V, (t)r(0)| = 1. Note that we mark the derivative
with respect to the parameter by adot, i.e., un = 0V, /0Ow,. In the following, we focus on initially pure states,
i.e., |[r(0)| = 1, since any mixture would decrease the QFI as a consequence of its convexity [4]. It is then
convenient to move to spherical coordinates and adequately parametrise pure states

by r = {sin @ cos ¢, sin 0 sin ¢, cos 6}.

1 Once again, this could be shown by exploiting a block-diagonal structure of the generator £(r) and thus of the resulting dynamical maps;
compare with appendix C.
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Figure 5. Difference between NPC and PC QFI at short time scales and contributions due to the dependence of the master-equation rates
on wy. (a)—(b): difference (adimensional) between the QFI of NPC and the PC dynamics, AF, / (at?) = (F((f) — Fgf}c) / (at*),asa
function of: (a) ¢ and @ for a fixed coupling angle ¥ = 7 /4; (b) of ¢ and ¥ for states maximizing Fc(ﬁ)c inequation (52) atf = /2.

(¢): increase of the QFI at short time-scales for PC and NPC dynamics when the w, dependence of the noise rates is taken into account,
here §Fg = (Fq — Fq) /Fq. The inset shows the QFI plotted exactly and after neglecting the dependence of the noise rates on w,
(denoted by *).

6.1. Short-time limit

Thus, let us start by looking at the short-time expansion of the QFI in equation (51). The spherical
parametrisation provides us with a clear relation among the short-time QFI for the NPC and PC dynamics, see
equations (42) and (44), respectively. As a matter of fact, the first non-trivial term (i.e., the first contribution to
Fqowhich is induced by the noise and therefore the first contribution where F, differs between NPC and PC
dynamics) in the QFI is of the order ¢* and it is fixed by those terms up to £* in V., (t)and V., (£). Aftera
straightforward calculation, we arrive in fact at

, 1. .
Fihe = sin?6 12 — 3@ sin?0(1 + sin®J)¢*

. 1 .
Fc(z4) = Fgg,c + at*sin 0(; cos 0 sin 299 cos ¢

sin? ¢ (sin ¥ cos § + cos v cos ¢ sin #)? /4 ] 52)

cos cotd — 2tan 1) cos ¢ cos§ + (cos™21) — cos? ¢)sin 0

The maximum value of the QFI for a PC dynamics is obtained for 1 = 0, i.e., for a pure transversal Hamiltonian
[37]and for @ = m/2,1i.e., for astate lying on the equator of the Bloch sphere; moreover, the dephasing noise,
i.e., ¥ = 7/2,is the most detrimental in this regime. Although the expression for Fg) in the NPC case is too
cumbersome to yield a comprehensible analytical solution for a state which maximizes the QFI in the short time
limit, even for a fixed value of the parameter ¥, we report an approximated evaluation in appendix D.

As can be directly inferred comparing the two formulas in equation (52), a crucial difference between PC and
NPC dynamics is that in the former case the QFI only depends on the initial distance of the Bloch vector from the
z-axis and hence on the angle 6, while the NPC terms introduce a dependence of the QFI on the direction of the
Bloch vector itself and therefore on the angle ¢. Such a dependence is a consequence of the non-commutativity
of the encoding Hamiltonian with the action of the noise. For any PC dynamical map A, pc, if we rotate the
state p about the z-axis by a certain angle ¢, we have that

FolAu,pcldplpll = FolUpA o pclpll = FolAw,pclpll, (53)

by virtue of equation (10) the invariance of the QFI under rotations independent from the parameter to be
estimated.

Now, the contributions due to the NPC terms are able to enhance the QFI, as can be seen in figure 5(a),
where we illustrate the behavior of the difference AF, = F((24) — Fc(f{:c as a function of the initial conditions.
Besides the dependence on the initial phase ¢, one can clearly observe the presence of several areas where the
NPC terms do increase the QFL. Moreover, there are two maxima of the increment, one in the neighborhood of
¢ = 0and one in the neighborhood of ¢ = 7; we plot AF, for values ¢ € [0, 7], since it is a symmetric function
under the reflection ¢ — 27 — ¢, see equation (52). In the plot, we fixed ¢+ = 7 /4 but the behavior is
qualitatively the same for different values of ¥}. Indeed, AF goes to 0 for ¥} going to 7/2 since for a pure
dephasing Hamiltonian the secular approximation has no effect, so that the dynamical maps in equations (42)
and (44) coincide.

Moreover, the presence of NPC terms can enhance the value of the QFI maximized over all the initial
conditions and hence enlarge the maximal achievable precision. This is explicitly shown by taking into account
the states lying on the equatorial plane of the Bloch sphere, which as said maximize Fc(f},c. For 6 = /2, the
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second relation in equation (52) reduces to

4( cos* 1 cos? ¢ sin? ¢ )) 54)

at
F® — p® o 7
Q QFC 4 \ sin?9 cos? ¢ + sin® ¢

which clearly shows that the maximum value of Fgf;c can be actually overcome for any value of § = 7/2.1In
figure 5(b), we plot the increase of the QFI due to the NPC terms for § = /2, while varying the initial phase ¢
and mixing angle . The QFI with the NPC terms is always bigger or equal than F(S%C and the maximum
enhancement occurs for ¢ close to kw with k = 0, 1, 2 and the pure transversal noise corresponding to ¢ = 0.
However, the latter condition depends on the specific choice of the initial state: for = 7/2 one can have the
maximal amplification due to the NPC terms for non-zero values of ¥.

6.1.1. Different contributions to the QFI
To get a more quantitative and general understanding of the different contributions fixing the QFI in PCand
NPC dynamics, let us move a step back and recall them explicitly.

First, the non-commutativity between the noise and the free evolution will induce some specific
contributions to the QFJ, typical of the NPC regime. For illustration, let us use the decomposition
L(t) = H(t) + D(t),where H(t) = —i[Hy + H'S(t), -]is the Hamiltonian term, while
D@t) =% bi(t)(0; - 0‘; — (1/2) { aj- o;, -}) represents the dissipator. In the PC case we have that
[H(t), L(t)] = 0which does not hold for NPC dynamics, as can be directly checked, for instance, by comparing
equations (34) and (38). Recalling the Dyson expansion in equation (23), we have to consider terms as
H(#H)D(t,) ... H(t) to obtain the dynamical maps fixing the evolution of the probes. If the Hamiltonian and
the dissipative part do not commute, then the dependence on w, within 7 (¢) will mix with the dissipative terms
contained in D(¢) and will be thus spread among more parameters of the dynamical map at time ¢ or,
equivalently, on more features of the Bloch vector at time ¢, possibly enhancing the QFI. In particular, this
mechanism leads to the dependence of the QFI on the phase of the probes initial state in the NPC case, a feature
which is not shared with the PC case, see equation (53).

Second, the noise terms themselves depend on wy: as already pointed out in section 4.1 the coefficients of the
master equation will in general contain a dependence on the parameter to be estimated. To quantify explicitly
such a phenomenon, we compared, for both PC and NPC dynamics, the QFI which is obtained including the
dependence of the rates on wy, with the QFI where such a dependence is disregarded. In particular, in the latter
case we replace the dependence of the coefficients b;;(t), H iJLS (t) on wy with the dependence on a generic
frequency €2, and only after that the QFI has been evaluated, we set {2 = wj. Let us denote this auxiliary object as
Fy, contrary to the former calculations of the QFI which have been denoted by F,. We stress that Fy is actually
the object utilized in more phenomenological approaches to quantum metrology, where the master equation is
postulated to describe some specific kinds of noise, rather than microscopically derived so that the contributions
due to the dependence of the rates on wy are not accounted for. On the other hand, let us mention that in [35] the
role of the dependence of the emission and absorption rates on the free system frequency for a qubit system
coupled to a Gaussian classical noise has been investigated.

Figure 5(c) summarizes the effects of the two contributions described above. In the main panel we plot the
percentage increase §Fp = 100(F, — Fy) /Fq for both PC and NPC QFIL. We see that in both cases the
dependence on wy of the noise terms is non-negligible and the compliance of these noise terms can increase the
QFI way beyond the value of the auxiliary QFI, e.g. reaching 10% for NPC and 15% for PC at at* ~ 0.6.

In the case of the PC dynamics, we can derive a very intuitive geometrical picture of the information
encoding. In appendix D we show that the auxiliary QFI FQ)pC (t) is simply proportional to 2D, (t)*> where D(f)
is the length of the projection of the Bloch vector into the xy plane, see equation (D.3). Hence the information
about the frequency we want to estimate, i.e. the rotation speed about the z-axis, is fully enclosed into the
distance of the Bloch vector from the rotation axis. Crucially, if we take the dependence of the rates on wj into
account, some further contributions to the QFI will appear, see equation (D.4). There is one additional term due
to the dependence of D,(f) on wy and a second term in accordance with equation (20), which contains the noise
parameters v,(f) and d(#). By construction, these two terms are positive for any PC dynamics, so that the
dependence of the rates on w, will always yield an improvement on the estimation precision, as already indicated
in figure 5(c).

The time course of the QFI provides us also with a further access to the contribution of the non-
commutativity by comparing F, pc and Fg npc, see the inset of figure 5(c). This effect is even more relevant than
the contribution due to the dependence of the noise rates on wg and, in any case we can further confirm that the
inclusion of nonsecular terms modifies significantly the one-probe QFJ, as already discussed referring to
figures 5(a) and (b).
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Figure 6. Difference at finite times between the QFIs of NPC and PC dynamics for baths of Ohmic spectral density. Time evolution of the
QFI for different initial states and values of ¥}. The NPC curves are shown in orange (light grey) and black for, respectively, wy, = 1 and
wp = 5, while the PC curve after the secular approximation is shown in blue (dark grey) and it describes both the case of wy = 1 andwg = 5;
the noise parameter is A/3 = 0.1. The insets show the corresponding evolution of the Bloch vector, here NPC in orange (light grey), PC in
blue (dark grey). The initial conditions are the following: (a) ¢ = 7/2, 6 =7/29 =0, b)¢p =0, 0 =7/29 =0,(c)p =0,
O=n/29=w/4,d¢p=0, 6 =n/49 =m/4.

6.2. Finite-time analysis for the Ohmic spectral density

In this paragraph we examine the behavior of the QFI for finite times, when the dynamics are dictated by the
master equation expressed in equations (48) and (50). This will allow us to analyze more in detail the difference
between the NPC and the PC contributions to the QFL. The results presented in this section are numeric,
calculated using equation (51) and the same parametrization of the Bloch vector as before. Figure 6 contains the
foundation of the following discussion.

Let us first note that the dependence on the initial phase ¢ already mentioned above affects the whole time
evolution of the NPC-QFI. Figures 6(a) and (b) show the evolution with ¥} = 0 for an initial state in an equally
weighted superposition, i.e., a state in the £ — 7 plane of the Bloch sphere (§ = 7/2), but with initial phases
¢ = m/2and ¢ = 0, respectively. Comparing the two figures, one observes that the initial phase is of no
relevance for PC dynamics on the whole timescale, while the NPC dynamics introduces a dependence on ¢. The
NPC contributions enhance the maximum value of the QFI and shift its position, depending on the value of the
initial phase.

For the Ohmic spectral density considered here, the noise terms do not depend on wy, see section 5.2, so that
Fo(t) = Ey(t) and the same result holds for the PC case. Hence, F pc(?) is directly fixed by the distance of the
Bloch vector from the z-axis, along with the elapsed time t, see equation (D.3) in appendix D, while the further
contributions within the NPC-QFI F(#) can be fully ascribed to the non-commutativity of the Hamiltonian and
dissipative part, see the discussion in the previous paragraph.

While the independence of the QFI from the parameter to be estimated in the PC case can be readily shown
[34,44], we can see from figure 6 that the NPC-QFI depends on wy. In particular, with growing values wy, the
NPC-QFI converges to its PC counterpart: higher values of w, imply a faster free dynamics of the system, which
thus reduces the relevance of NPC terms and increases the validity of the secular approximation, see section 3.

We further observe that the overall effect of the NPC terms can yield an increase or a decrease of the QFI,
depending on the time interval considered. On the one hand, the NPC terms induce a contraction in the x—y
plane, which is no longer isotropic. Comparing the evolution of the QFIs in figures 6(a) and (b) with the
evolution of the Bloch vector in the insets, it is clear how the non-isotropic contractions can bring the Bloch
vector further or closer to the z-axis, thus increasing or decreasing the QFIL. On the other hand, as mentioned in
the previous paragraph, due to the non-commutativity of the dynamics additional information about wy is
enclosed in other features of the Bloch vector; the action of decoherence itself adds some information about wj,
to the information imprinted by the rotation about the z-axis given by the Hamiltonian encoding.
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The delicate interplay of the different mechanisms of production and annihilation of the QFI is also
illustrated in figures 6(c) and (d). Here we consider values of ¥ different from 0, so that the states initially on the
equator of the Bloch sphere are no longer confined to the xy-plane. Comparing figures 6(b) and (c), we see how
the introduced NPC rotation partially counterbalances the oscillations due to the non-isotropic contraction.
Furthermore, the role of the different NPC terms strongly depends on the initial state. As an example, figure 6(d)
shows the strongest (relative) enhancement of the maximum value of the QFI due to the action of both the NPC
rotations and contractions.

7. N-probe quantum Fisher information and achievable metrological limits

In this final section, we want to explore the QFI for an estimation utilizing multiple probes, up to the asymptotic
limit N — oo. In this way, we will also provide a complete picture for the model at hand of the different scalings
of the error in the presence of noise, including semigroup or non-semigroup noise, as well as PC or NPC one.

Asrecalled in section 2.2, evaluating the QFI becomes a more and more difficult task, with the increasing of
the dimensionality of the probing system. However, since we are assuming a non-interacting probe system
subject to independent and identical noise, we can exploit the finite-N channel extension method [28, 34]. Given
the Kraus representation of the dynamical map A(#) of a single probe, i.e.,

A@Ip] = 3 Ki()pK{ (@), (55)

the QFI of the resulting N-probe state can be bounded from above by the relation
Folp™ ()] < F(Tg [P (D] = 4ming[Nllag@®)|] + NN = DIIBz®)I], (56)

which, along with the QCRB, directly provides us with a lower bound to the estimation error, i.e. the MSE of
equation (8). The minimum in equation (56) is taken over all Kraus representations, connected via a unitary
transformation according to K;(t) = > j Uij (t)K;(t), while the unitary transformation will generally depend on

wp as well. We also introduced the quantities ag(t) = Z]- I?j (t)Iz'j @), Br = iZ]- I%]TI%] and recall that the dot
notation represents a derivative with respect to the parameter wy. We remark that this bound is already
optimized over all possible input states and can hence be calculated without specifying both concrete preparation
and measurement procedures. Furthermore, the optimization can be cast into a semidefinite programming task,
which allows for an efficient numerical evaluation, see [34].

In addition, to investigate the attainability of the bound, we will consider a measurement of the parity operator

P. = Q.0 [12]. Using the error propagation formulaand since AP, = (P?) — (P)? = 1 — (P.)?, theerror

2@y p under parity measurement reads [91]

. 1— (B@®)
NopT = t————"— (57)
T RO
In particular, focusing on an initial GHZ state, one finds
(Be(t) = %{[ﬁ(t) +ix(OINHIE@D) — ixOI + [1 = (=DVs(HOV}, (58)

where (1), x(¢) and ¢(¢) are proper time- and frequency-dependent functions obtained as in [91], from which
equation (57) can be evaluated. Note that the last term only contributes if Nis an even number and hence the
precision may heavily change when N is changed by one. However, for all the cases examined here, we have
) = 0.

We focus on the case of an Ohmic spectral density, which provides us with numerically easily solvable
differential equations for any time ¢, cut-off frequency wc and coupling strength. Furthermore, by taking the
limit we — oo we recover the semigroup limit as mentioned in section 5.2 and appendix C.1.2, which will be
useful to compare our results to those already known in the literature.

7.1. Asymptotic scaling of the ultimate estimation precision

The starting point is the master equation given by equation (48). In particular, we considered three different
NPC noise scenarios: the first two cases of a purely transversal noise, i.e., ¥ = 0, for anon-semigroup (see

figure 7(a)) and for a semigroup (figure 7(b)) dynamics. As a third case, we chose noise with a (small)
longitudinal component fixed by ¢ = 7 /100 for a non-semigroup dynamics (see figure 7(c)). In figures 7(a)—(c)
we report the numerical study of ¢ / Fé L™ (t)], which fixes alower bound to the estimation error, see

equations (8) and (56), along with the estimation error for the parity measurement, A%@, pT, see equation (57).
As clearly observed in figure 7, the two quantities have the same asymptotic scaling, therefore the bound is
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Figure 7. Sensing with N probes in parallel undergoing NPC Ohmic dynamics (48). The panels (a)—(c) show the MSE as functions of N
that is attained with the parity measurement and GHZ inputs, A&, pT of equation (57) (blue circles), in comparison with the general
lower bound on the error, t / FJQ [p™ (¢)] with Fg defined in equation (56) (orange crosses); both minimised over the round duration ¢
with corresponding optimal £, plotted within the insets (in matching colours). In cases, (a) ¥ = 0 and w. = 10, (b, semigroup) for

¥ = 0and w, — 00,and (c) ¥ = 7/100 and w, = 10; in all the three cases & = 1. All the curves are normalized with respect to their
values at N = 1; the grey areas mark the regions below the HL and above the SQL scalings respectively, while the green (dashed) line
follows the scaling N~ , with the different 1 denoting the asymptotic scaling observed. The panel (d) shows the ratio F(T) / t (orange) for
the upper bound on the QFI and the inverse error 1/ (A% pT) [blue (dark grey)] for N = 160 and the same parameters shown in (a).
Panel (e) illustrates the dependency of the MSE on ¥ for N = 160 as a polar plot. Solid lines correspond to ¢ / Fg [p™N)(1)], while dashed
lines represent A%y pT. NPC noise is coloured in orange, PC noise in blue and the NPC semigroup limit in green. Note that the lines
for the semigroup cases are reduced by a factor 200.

Table 1. Ultimate scaling exponent, 77in equation (59), of the optimal
estimation error A%, T for different types of noise in the asymptotic
limitof N — oo.

n NPC PC NPC, semigroup PC, semigroup
9=0 7/4 3/2 5/3 1
9 =0 3/2 3/2 1 1

achievable, at most up to a constant factor. Hence we can infer the scaling with respect to N of the error for the
optimal estimation strategy. Denoting the latter as A%, T, we can in fact write the lower and upper bounds as

t 1
—_ Aoy T o« —, 59
Flp™ )] T >

Ny pT > Ny T >

where the implication follows from the fact that since both the lower and the upper bound approach 0 for
N — oo as N~ "with the same value of 73, this will be the case also for A2@, T

Table 1 contains the values of the optimal scaling 7 for the different NPC noise scenarios as inferred from our
numerical analysis, along with the corresponding PC scaling behavior (i.e., those for the dynamics after the
secular approximation, see equation (50)) taken from [34, 44]. The optimal scaling of the estimation error for the
full NPC dynamics is fixed by two key features: whether we have a semigroup or a non-semigroup evolution and
the direction of the noise fixed by the angle ¥. The presence of a time-dependent rate () as in equation (49)
always leads to an improved scaling, with respect to the constant rate -y of the semigroup evolution; in particular,
forany ¥ = 0 we have the Zeno 1 = 3/2 scaling, associated with the linear increase of the rate y(¢) for short
times [43, 44]. Moreover, we numerically find the novel , = 7/4 scaling for a non-semigroup, purely transversal
noise.

We stress that for any value of ¥ different from 0 the full NPC dynamics leads to the same scaling
behavior as in the corresponding PC case. We can say that the transversal noise represents a special case of
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NPC noise, which might be seen as a ‘purely NPC noise’. For any ¢} = 0, the dissipative part of the master
equation given in equation (48) together with the resulting dynamical maps, will have a component
longitudinal to the parameter imprinting, fixing the asymptotic scaling to the less favorable one proper to PC
dynamics and hence extending the Zeno regime recalled in section 2.3 to the scenario governed by NPC
noise. This result, already known for the semigroup regime [37] (see also section 2.3), is here extended to the
non-semigroup case. Summarizing, we can conclude that the ultimate achievable estimation precision can
overcome the SQL whenever we have a non-semigroup (short-time) evolution, irrespective of the direction
of the noise, or in the cases where we have a purely transversal noise, irrespective of whether we have a
semigroup or not.

Interestingly, similar results have been derived recently [96] for rather different, infinite dimensional
probing systems. The probes are prepared in Gaussian states and undergo a Gaussian dynamics, possibly non-
semigroup and NPC. The NPC contributions are induced by the presence of squeezing in the initial bath state.
Also there the optimal asymptotic scaling of the error is found to be the same for PC and NPC dynamics, going
from the SQL for a semigroup to the Zeno limit for a linear increase of the dissipative rates. Such a transition for a
PC evolution of a Gaussian system has been shown also in [97].

7.2. Finite-N behavior

The plots in figures 7(a)—(c) allow us to get some interesting information also about the behavior of the
estimation error for a finite number of probes, showing that the asymptotic scaling is approached in a possibly
non-trivial way.

First of all, we note that for smaller values of N, the lower bound to the estimation precision ¢ / Fé o™ (1)]
and the error under parity A2@y pT seem to follow the SQL and then, only for intermediate and high values of N,
the two quantities converge to the asymptotic behavior, approaching it always from above. This was already
shown for a semigroup NPC noise, also with a longitudinal component (see [37], in particular figure 3) and here
we see how the same happens for a non-semigroup NPC noise. Actually, the effect is even more pronounced for
a non-semigroup non-transversal noise, where the asymptotic behavior emerges only if almost 10* probes are
used, see figure 7(c). Additional numerical studies (not reported here) show that the asymptotic scaling is
approached earlier when the coupling to the bath is increased. Even if it is clear that the finite-N behavior do not
spoil the validity of the different scalings pointed out in the previous paragraph, it should also be clear the
relevance of such behavior in many experimental frameworks, when, indeed, the high-N regime might be not
achievable. In such situations, the experimental data would follow a scaling which is different from the
asymptotic one for all practical purposes.

In addition, the behavior of the estimation error for finite values of N provides us with a more complete
understanding of the specific role played by the geometry of the noise, i.e. the coupling angle ¥. In figure 7(e)
we study t/Fé [p™N)(t)]and A%Gy pT, but now for different values of ¢ € [0, 7/2]and a fixed number of
probes N = 160. For this value of Nand ¥} = 0 the two quantities have essentially already reached their
asymptotic values, see figure 7(a), while this is not the case for ¥ = 0, see figure 7(c). Now, figure 7(d) shows
how both ¢ / Fé [p™(t)]and A&, pT change continuously with the variation of 9. They increase from ¢ = 0
up to ¢ = 7 /2, with the increment being more pronounced for values of ¥ close to 0. The sudden transition
between different scalings for, respectively, ¥ = 0and ¥ = 0is a peculiarity of the asymptotic limit,

N — oo. Furthermore, this also confirms that noise in the direction of the parameter imprinting is more
detrimental than any other direction, if the absolute noise strength is kept identical.

As afinal remark, note that the optimal time of the estimation error for a parity measurement as a
function of N has discrete jumps between smooth periods, see the lower insets in figures 7(a)—(c). These
jumps originate from the fact that A’@, pT does possess multiple local maxima instead of one global maxima
ast / Fg [p™N)(£)] does, see figure 7(d). The jump occurs when the global maximum of A%@y pT changes to a
different peak, which was only a local maximum before. On the other hand, for large values of N A2, pT will
converge to a function with only one local maximum, as the following ones have been damped off, so that the
optimal time will stay a smooth function of N. The jumps in the optimal evaluation time for a parity
measurement can be observed also in the polar plotin figure 7(e), in terms of non-smooth variation as a
function of 9.

8. Conclusions

We have exploited a detailed analysis of the spin-boson model, which is a general, well-known and widely used
noise model, to investigate how the ultimate achievable limits to frequency estimation are affected by the
different microscopic features of the interaction between the quantum probes and their environment. Hence, we
used common tools of the theory of open quantum systems to extend the characterization of noisy quantum
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metrology beyond the common framework, where the description of the noise is usually postulated on a
phenomenological basis.

First, we derived the master equation fixing the dynamics of the probes, employing the second order TCL
expansion. Thereby, we clarified that the distinction between PC and NPC noise, which plays a key role in
frequency estimation [44], corresponds to the distinction between secular and non-secular dynamics.
Moreover, we characterized explicitly the dependence of the noise rates, as well as of the correction to the
system Hamiltonian, on the free frequency of the probes, i.e., on the parameter to be estimated. This is
another aspect commonly overlooked in phenomenological approaches to noisy metrology.

Then, employing a solution to the master equation in the short time regime, valid for any spectral density,
and a solution on the whole time scale for an Ohmic spectral density, we investigated the single probe QFI and
hence how the microscopic details of the model influence the estimation precision. In particular, we compared
the differences between the effects of, respectively, PC and NPC dynamics. The non-secular contributions can
both increase or decrease the QFI, also depending on the initial condition, as they lead to a dependence of the
QFI on the initial phase of the probes state. However, in general, the maximum (over time) QFI is higher in the
NPC case, due to the positive contributions induced by the non-commutativity of the noise and the free
Hamiltonian. Furthermore, we examined the mentioned dependence of the noise terms on the estimated
frequency. While for non-secular dynamics no definite statement can be made, we found that this dependence is
always beneficial for secular dynamics.

In the last part of the paper, we moved to the regime of multiple probes and gave a complete
characterization of the possible asymptotic scalings of the estimation precision, putting results already
existing in the literature onto a common ground, as well as exploring new regimes. In particular, we
extended the validity of the super-classical Zeno scaling N~ */? onto NPC, non-semigroup dynamics, as long
as ¥ = 0. Furthermore, we identified the novel N-7/#scaling for 9 = 0, i.e., for a NPC and non-semigroup
dynamics, due to a coupling with the environment fully orthogonal to the direction of the encoding of the
parameter.

Concluding, our analysis offers a complete and physically motivated characterization of the scenarios where
one can actually achieve super-classical precision in frequency estimation in the presence of (independent)
noise. In addition, the microscopic characterization of the probes dynamics enabled us to present an in depth
study of the influence of the microscopic details of the probe-environment interaction on the precision. The
adopted scheme can be directly linked to widely used sensing scenarios as exploited with color-centers in
diamond, superconducting qubits or optomechanical setups.
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Appendix A. Equivalence with and engineered coupling Hamiltonian
Despite the fact that the Hamiltonian given in equation (24) can arise as the natural model for specific systems,

we can also engineer this type of coupling out of a pure dephasing spin boson Hamiltonian by a continuous
driving of the central spin. Therefore consider the Hamiltonian

H:

Qo, coswr t
wzaz i % _ % ® Y (g,an + gja,f) + Hjg, (A.1)
n

where (2 is the associated Rabi frequency of the driving with the frequency wy, e.g. these correspond to amplitude
and frequency of a driving laser. In a frame rotating with the frequency w; we employ the rotating wave
approximation with respect to that frequency and arrive at

w — Wr
2

i =

Q g
0+ o % © 3 (g,an + g'a)) + Hp. (A.2)

Inserting the substitutions w — w; = —wp sin ¥, = —wy cos ¥ and transforming the Hamiltonian with the
help of the unitary matrix
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sec(®)(sin(¥) — 1) Jsin(ﬁ) +1 Jl — sin(¥) (sec(?) + tan(¥}))

V2 N3
U= [sin(@) + 1 1 ’ (A.3)
V2 2 [sec(®)(sec(V) + tan(d))

directlyyields the Hamiltonian (24), H = UTH'U, described in the main text. Note that due to the linearity
of the substitutions and the parameter-independent unitary transformation, if one knows the driving

laser frequency and amplitude, w; and €2, the parameter estimation of wy is fully equivalent to the estimation
of w.

Appendix B. Derivation of the weak-coupling master equation

In this appendix, we briefly sketch the derivation of the weak-coupling master equation in equation (34) and we
provide the expression of the coefficients bj(f) where j, k = {+, —, z}, as well as the correction to the
Hamiltonian H"5(¢) in terms of the bath correlation function C(?).

Recall that we start from equation (25), which is obtained as the second order term in the expansion
ofthe TCL master equation in the interaction picture, assuming an initial product state but without any
assumption about the form of the global state at time ¢ [94]. The master equation is then readily obtained
following the derivation described at pages 128—129 in [78], the only difference being that we keep the
integration at the rhs of equation (25) from 0 to ¢, since we are not making the Born-Markov approximation.
Hence, following [78], we expand the system operator in the interaction Hamiltonian in equation (24), i.e.,

A= (cosﬁﬁ + sinﬁﬁ), (B.1)
2 2

via the projectors in the eigenspaces of the system free Hamiltonian,

Ho =) ell(e), (B.2)

€

where ¢, = wy /2, €, = —wy /2, Il = |1){1|and IT, = |0)0|. Thus, we define

A) = > TI(e)AIl(e"), (B.3)
and we have
A=A =D A(). (B.4)

Note that in our case ¢ can take the values +wjy and 0. Explicitly,

A(0) = s1m90z’
A(—wp) = cos v Oty
Awo) = “’25 Vo (B.5)

The decomposition of the interaction operator in equation (B.4) allows us to express the interaction
Hamiltonian Hy(¢) as

Hi(t) =) e MA(c) @ B(t) = Y AT (¢) ® B(1). (B.6)

S S

Replacing these expansions in equation (25), using equation (B.5) and replacing the integration variable 7 with
t — T,onearrivesat [78]
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%f)(t) =TI (G, HAQ)PDAT(S) — AT(NA A1) + hee.

=10, 1)

[@(e—w(@m)o — oo p1)) + (0 (1) 0 — 010, B(E)

s
+

2
Y (. p(t)0, ﬁ(t))]

29 '
+ I'(—wo, t)[cos (o p()o- — oo pt) + e o p(t)oy)

SInIe0s) oot (g, 1), — o omu))]

+ T'(wo, t>[coi DSV (et p(t)or + 0Bt — 10 pLE))

sindcost)

p e ot (g p(t) o, — gza,f)(t))] + h.c (B.7)

Here h.c. stands for hermitian conjugate and we introduced the functions
t .
T, 1) = f drelC(n). (B.8)
0

Recall that C(#) is defined in equation (33). We still need to separate the Hamiltonian and the dissipative
contributions of the dynamics. Before doing so, we go back to the Schrédinger picture via _
p(t) = eiflol p(¢)e ! which adds a contribution —i[Hy, p(t)] and removes all the phase terms e*“** and

et in the previous equation (since e Hof gy elfof = eFivol oy while e g, elfo? = ). If we now define
ng’(t) = F(g, t) + F*(gl) t)
1
de (1) = %D - *(', 1), (B.9)
i

we can write equation (B.7) in the Schrédinger picture as

—P(t) = llHO + Z d (DA (SHA(S), P(l‘)}

&6’

+¥e g/<t>(A(<>p<t>A*(c'> — LUATDAG) p(t)}) (B.10)

Gs!

which can be written as the master equation (34) in the main text, when equation (B.5) is used. Thereby,
exploiting equation (B.9), the coefficients are fixed as in equation (36), i.e.,

bty = S LR 0, 0) = 52 [ dr R Cr)
by (6 = Y Re(P(—ap, 1)) = <277 f dr R{C(r)e )
b (1) = <Y R Dy, 1)) = y f dr RA{C(r)e7)

cos?

by (1) =b . (t) = (T(—wo, 1) + T (w0, 1)

cos2 0

- f dr Re{C(7)}e 07

b () = BE1) = W(F(m £ + TH—wo, 1)

sin 9 cos ¥

= SmYCosY f dr[C(r) + e CH(7)]

b () = b (1) = @(Ho, £ + T¥wo, 1)

_ sin 9 cos ¥ f Ar[C(T) + e “orCH(7)], (B.11)

while the Hamiltonian contribution due to the interaction with the environment is given by
HYS(t) = > o der (1) AT(")A(S), which corresponds to equation (37) in the main text, that is,
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HLS HLS
HLS(t) — lﬁs(t) ll?s(t) , (BIZ)
Hyy(t) Hyy ()
where
2 t
i@ =< U S dr mtesre)
2 t
HS (1) = COZ v fo dr Im{e=“C (1)}
. Z |
Hin =i [ 47 g C(n) (1 — e
4 0
1 t
HES (1) = —iw f dr Re{C(1)} (1 — elwom), (B.13)
0

Summarizing, starting from the global Hamiltonian in equation (24), after introducing the environmental
correlation function C(f) in equation (33) and the system’s operators in equation (B.3), one directly gets the
weak-coupling master equation via the equations (B.8)—(B.10).

Appendix C. Solutions of the master equation in the high temperature limit

As said in the main text, we can use the approximation j(w) = j(—w) to simplify the structure of the master
equation in the high temperature regime. First, note that since £(#) is alinear map acting on the space of linear
operators in C2, we can representitviaa4 x 4 matrix, using the same representation recalled in section 3, see
equation (16). In particular, the coefficients in the dissipative part of the generator as in equation (39) imply the
matrix representation of L(t) as

coy [0 oF
D _(0 L(t)). (C.1)

Explicitly, using the definition of I'(wy, t) and I'(0, ) in equation (35), as well as H"(#)in equation (B.12) and j
(w) =~ j(—w), we end up with

0 0 0 0
0 —sin®(9)f, (0, 1) —wy cos(P)sin(D)f, (wo, )
n_ a2
DL®) — 0 wo+ cos)f (w0 ) sin*(9)f, (0, 1) cos(@)sin(@)f, o 1) | (C.2)

—cos* (D) f, (wos, 1)
sin() cos(9)f, (0, t) 0 —cos* (D) f, (wo, 1),

o

where

filwo, 1) = ﬁ ” dwj(w)w

w — Wy
cos(t(w — wp)) — 1

fio = [ duj) €3

w — Wo

Indeed, applying the same constraint on the secular master equation in equation (38), we get the PC master
equation, where the coefficients in the last line of equation (39) are set to 0, along with H\>(t) = Hgy (t)* in
equation (B.12). The corresponding time-local generator is hence given by

0 0 0 "
—Sinz(’lg)fi (0) t) cosz(ﬂ)f ( ) 0
0 —Wwpy — Wo, t
. cosz(I )fi (wops 1) 2

DFY = (C.4)

—sin?(9)f,(0, 1)
- @f] (WO) t)

0 0 0 —cos* (W) f, (wo, 1)

.
0 wo+ —COSZW) 1, (wos, t)

Now, the form of the time-local generator as in equation (C.1) implies the form for the dynamical map
asin equation (41). By means of, e.g., equation (23) we see that the block-diagonal structure of the
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generator directly implies the same block-diagonal structure of the dynamical map. Thus, we get
equation (41) with

V(t) = e 470, (C.5)

C.1. Ohmic spectral density
C.1.1. Differential equations for the density matrix elements. Due to the simple master equations in the Ohmic
regime described in section 5.2, equations (49) and (50), it is more convenient to solve the dynamics taking into
account the evolution of the elements of the system’s density matrix, p; (t) = (il p(#)|j) fori,j = 1,2.

For the NPC dynamics, the master equation in equation (49) is equivalent to the following system of
equations (of course, p,; () = pfo(t) and poo(t) = 1 — p11(0)):

£ p1s(0) = cos? Py ()(1 = 29,,(0) + 2c05 Dsin I (ORel (1)

d

aplo(t) = —iwgp;(t) — sin Jcos Iy (H)(1 — 2p;,(1))

— (1 + sin® @)y (1) pyo (1) + cos? Iy (1) piy(t), (C.6)

which can be easily solved numerically. For the PC dynamics, equation (50) leads us to

%pu(t) = cos? Iy (1) (1 — 2p;,(1))
£ 010(0) = (=i = @2 = oL DYoo) ©7)

Contrary to the NPC case, populations and coherences are decoupled. Indeed, the solution of this system of
equations reads

d “2co52d [ dry
Epn(t) —e 2cos 191; dry(7)

p11(0)
t " Al
+ coszﬂfo dTe_zcoszﬁde”( )~ (1)

%plo(t) _ e—iwgt—(Z—coszﬂ)f(; dmmpw(o). C.8)

In figure 4 we reported the evolution of the Bloch vector r (t) for different initial conditions for p(0). The
components of the vector r () are directly related to the matrix elements of the corresponding state, see section 3.
Finally, the CP of the dynamics is guaranteed by the master equations themselves, as mentioned in the main text.

C.1.2. Semigroup limit. Taking thelimit we — o0, the decay rate given by equation (49) becomes time
independent,

Y = limwc_,oo%arctan(wct) = g% (C.9)

In the NPC case, this yields the generator

0 0 0 0
0 —2%sin’(¥) —wy 7 sin(29)
L _
DXec(®) = | o “2y 0 (C.10)
0 sin(29) 0 —2vcos*(®)

Appendix D. One-probe QFI: maximum for the short-time NPC expression and some
general formulas for PC dynamics

First, we would like to provide an approximate evaluation of the maximum of the short-time expression of the
NPC-QFI, see equation (52), to gain some understanding of the dependence of the optimal QFI on the initial
state also for NPC dynamics. To second order in time, we have Fg‘) = F(S%C and the QFI is maximal for § =
/2. We assume this to be around the optimal input even if the fourth order is considered. Taking the derivative
of Fg) with respect to ¢ we obtain
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3F(‘f) _attcos* ¥ sin @ cos p(sin* ¥ cost ¢ — sintp) 0 D.1)
0¢ 2 2(sin’ ¥ cos? ¢ + sin? ¢)? ' '
This equation can be numerically solved for ¢ and yields:
Oopt = g and Pope = arctan{/sin 9}, (D.2)

The (quasi-) optimality of this choice has been checked numerically, confirming that the value of the optimal
$opt is more sensitive to changes in tha bath-coupling angle oJ.

Now, using the characterization of PC dynamics presented in section 3 and the formula for the QFI in
equation (51), we will provide some analytical formulas for the one-probe QFI of a PC dynamics; for the sake of
generality, we will not restrict to the unital case (i.e., to the T' — oo regime for the spin-boson model, see
figure 3). Any PC dynamical map can be written as in equation (20), where £ = wot + @ and, in general, also the
other coefficients v,, d,, d will depend both on wy and on t. However, if we neglect for a moment the dependence
of the noise rates (for a PC dynamics b;,(t), i = =, z) on wy, it is easy to see that the dependence on wy will be
enclosed only in &, that is the coefficient due to the unitary component of the map. In this case the QFI, which we
denote as Fy pc (), will be simply given by

2
Fopc(t) = %DZU)Z, (D.3)

where D, (t) = /x(t)? + y(t)*> = |d(t)|/x(0)*> + y(0)? is the distance of the state at time ¢ from the z-axis
and we have used Cartesian coordinates to define the Bloch vector r () = {x(¢), y(¢), z(¢)}. Instead, if we
include the dependence of the noise parameters on wj, we obtain the ‘full’ QFI

1 .
Fopc(t) = E[tzDz(t, wo)? + D, (t, wo)? + 2(t, wp)?]

1D, (1, wo)d(t, wo) /d(t, wo) + 2(t, wo)2(1)?
2 1 — D,(t, wo)* — z*(t, wo)

n , (D.4)

where for the sake of compactness we used explicitly that z(t, wg) = v,(t,wy) + 2(0) d (t,w,) Note that all the
contributions are positive; in particular 1 — D,(t, w,)” — z°(#) > 0 due to the positivity of the dynamics.
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