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Abstract

We study phase imprinting on Bose—Einstein condensates (BECs) with the fast-forward scaling theory
revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with
uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-
forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a
predetermined time. Fast manipulation is essential for the creation of WPUM s because of the
instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest
band from the ground state of a periodic potential. Controlled linear potential is not sufficient for
creation of the Bloch state with large wavenumber because the change in the amplitude of the order
parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch
states using the obtained theory.

1. Introduction

To find suitable driving fields for tailoring a quantum system to generate a target state from a given initial state is
challenging in general. Naive numerical trial-and-error methods are time- and resource-consuming. Therefore,
to deepen the understanding of relevant quantum dynamics is desirable to find useful control schemes.
Furthermore, the obtained knowledge on the quantum dynamics can be used cooperatively with numerical
schemes to reduce the required time and resources.

The fast-forward scaling theory can be used to derive the driving potential which accelerates or decelerates a
reference dynamics [1]. The driving potential is explicitly represented as a functional of the wave function of the
reference dynamics. Thus, infinite number of different dynamics (slow dynamics and fast dynamics) are
continuously related to each other [2].

This fast-forward scaling property may considerably decrease the difficulty of control problems. Let us
consider a problem such as ‘find a driving field which generates a target state at time T from a given initial state’.
The fast-forward scaling property reduces the problem to ‘find a driving field which generates the target state
from a given initial state’ removing the constraint on time. It is because once we have a single dynamics which
evolves from the initial state to the target state, we can derive the driving potential to generate the target state at
any desired time T' by accelerating or decelerating the original dynamics.

Adiabatic controls are widely used for manipulation of quantum systems. However the decoherence
degrades the efficiency of the control in the long time manipulation. The fast-forward scaling theory was
extended to accelerate adiabatic dynamics, and the formula of the driving potential was derived [3, 4]. The
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driving potential realizes the target state at desired time, which is originally supposed to be achieved after
infinitely long time.

The fast-forward scaling theory was extended to many-body systems [5] and discrete systems [6, 7], and
applications to manipulations of Bose—Einstein condensates (BECs) [1, 3, 5, 8], charged particles [9] and
molecular vibrational states [10—13] were proposed. Protection of quantum states from the disturbance due to
fluctuating background potential with the sequential manipulation [14] and sorting of trapped ions [ 12] were
proposed using the fast-forward driving potential. A scheme encompassing quantum, classical and stochastic
dynamics was proposed utilizing flow fields providing compact expressions for counter-diabaitc Hamiltonians
and fast-forward potentials [ 15]. Recently a scheme of fast-forward of adiabatic control of stationary tunneling
states has been proposed, which allows the acceleration of both the amplitude and phase of wave functions
throughout the fast-forward time range. The scheme realizes the fast-forward observation of the transport
coefficients under the adiabatically changing barrier with the fixed energy of an incoming particle [16].

Shortcuts-to-adiabaticity (STA) or assisted adiabatic transformation protocols have been developed to
generate the same target state as reference adiabatic dynamics, with overall weaker driving fields and/or in a
shorter time [2, 17]. Various schemes of STA have been proposed, e.g., the counter-diabatic [ 18], fast-forward
[3] and invariant-based engineering protocols [19]. Applications of STA protocols have been proposed and
implemented for manipulations of, e.g., atoms and molecules [10, 18,20-25], BECs [3-5, 8, 19, 26, 27], spin
systems [28—34] including electron spin of a single nitrogen-vacancy center in diamond [35, 36], various
STIRAP systems [11, 18,20, 37, 38] and also for creation of entangled states [39, 40] and nonlocal two-qubit gate
operations in a quantum dot array [41]. Transition probability generating function was studied from a point of
view of STA [42]. STA for classical systems and quantum—classical correspondence of STA have been studied
[23,43,44].

In this paper, we study phase imprinting on the order parameter of BECs with the fast-forward scaling theory
showing the nontrivial scaling property. In contrast to the various phase imprinting protocols previously
proposed or demonstrated, e.g., [45-56], our phase imprinting protocol is based on the nontrivial scaling
property of quantum dynamics. The theory is applied to derive the driving potential for creation of a peculiar
state, a wave packet with uniform momentum density (WPUM), which is introduced in this paper.
Mathematically the state has infinite expectation value of the momentum and finite energy in an ideal condition
but is short-lived due to imperfection of potential in actual physical systems. Fast manipulation is essential for
the creation of WPUMs because of the instability of the state.

We also study loading of a BEC in the ground state of a periodic potential into a predetermined Bloch state in
the lowest band. Controlling a linear potential is not sufficient for creation of the Bloch state when the target
wavenumber is large because the change in the amplitude of the order parameter is not negligible. We exactly
show the required modification of the driving potential from the time-dependent linear potential.

This paper is organized as follows. In section 2, we introduce the WPUM:s. In section 3, we obtain the driving
potential for phase imprinting for the case where the amplitude of the wave function is unchanged during the
control. The result is applied to the creation of the WPUM. In section 4, we extend the theory to the case that the
amplitude of the wave function is time-dependent during the phase imprinting. The theory is applied to loading
of the BEC into a predetermined Bloch state. Section 5 is devoted to discussion and summary.

2. Wave packet with uniform momentum density (WPUM)

Here, we introduce an interesting state: a WPUM density, which has the peculiar properties summarized below.
We consider a particle under potential V'in the one-dimensional system. The following theory is
straightforwardly extended to the two- and the three-dimensional systems and also to the Gross—Pitaevskii (GP)
equation which describes BECs.

We assume that the particle is in an energy eigenstate, and the phase of the wave function is space-dependent
but time-independent except for the dynamical phase. The wave function is represented as

U(x, ) = ¢ (x)en®e it/ 4 W

where ¢(x) are 7)(x) are real-valued functions and E is the energy. We assume that ¢ (x) = 0. Here, Vin
equation (1) satisfies time-independent Schrodinger equation
7?02

EV=——— + VU 2
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We compare the imaginary parts of the both sides of equation (2) after dividing them by e?le /7 to obtain

dndg  d*n
1 E s = 3
ode a2 ¢ 3)
Solving equation (3), phase 77is represented in terms of ¢ as
ne =y [ 66, @
where 1)y is an arbitrary constant. Using equation (2), the potential, which maintains the state in equation (1), is
obtained as
2 2 2
vope 2(1g0) (]
2m|\ ¢ dx? dx
7221 d%p )
=E+ —||—-—=|—-n9*| 5
2ml(¢dx2) "o? ©
where we used
dn 5
=2 , 6
dx No¢ (6)

which is obtained from equation (4), in the last line of equation (5). We refer equations (4) and (6) as the phase-
amplitude relation hereafter. The last term in equation (5) is the modification of the potential due to phase 7,
while the second term corresponds to the spatial dependence of ¢.

The properties of the WPUM and the potential in equation (5) are summarized as follows: (A) the WPUM is
anonequilibrium steady state with a uniform current, (dz/dx)¢* = 7,; (B) the expectation value of the
momentum (p) diverges because of the uniform momentum density while the energy E is finite; (C) the phase
diverges at the tails of the wave function where ¢ asymptotically approaches to zero; (D) the potential diverges to
negative infinity at the tails; (E) the state is short-lived in actual systems because of the imperfection of the
physically feasible potential.

The uniform current is the consequence of the phase-amplitude relation in equation (6), which shows that
space derivative of the phase is inversely proportional to the square of the amplitude of the wave function, and it
is a manifestation of steady states. The reason why the amplitude of the wave function remains constant in time is
that the current is space independent. The reason of the finite energy in spite of the infinite momentum is the
potential diverging to negative infinity at the tails of the wave function.

3. Creation of WPUM

Now we consider creation of the WPUMs in equation (1). We assume that the particle in potential V;is in the
ground state at the initial time. The amplitude of the wave function ¢(x) satisfies
n* d
Ep(x) = ———d(x) + Vo(x)p(x). 7
@ (x) . dxqu( ) + V()@ (x) @)

We aim to derive the potential which drives the initial state to the WPUMs. In this section we consider the
case where ¢(x) is unchanged during the phase imprinting. We discuss the case where the amplitude changes in
the latter sections.

3.1. Driving potential
We use the wave function ansatz given by

U(x, t) = ¢ (x)elRONe—iEt/ 4 ®

where R changes monotonically from 0 to 1 with time. We typically choose the time dependence of R as [8]

0 t <o,
R(t) =+ — isin(%t) 0<t<T, )
1 T<t,

so that the particle is in the ground state, ¢, at t = 0 and becomes the target WPUM att = T. The time
dependence of R is arbitrary as long as it satisfies conditions R(0) = 0, R(T) = 1, R(0) = R(T) = 0, although
we use the particular form in equation (9) for the present study for concreteness. Conditions R(0) = 0 and R

(T) = 1 guarantee that the state is in the given initial state at t = 0 and the target state at t = T, respectively. The
reason of the conditions: R(0) = R(T) = 0 is explained below in this section.

3
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The time-dependent Schrédinger equation is represented as

d nt d?

if—V = ———U + ViU 10
Y amd? (10
We divide equation (10) by ¥ and compare the real parts of the both sides to obtain the driving potential
Vie(x, t) = V(x, R) — ZR(1)1(x), amn
where R is the time derivative of R, and V (x, R) is defined by
72 (dn )2
V(x, R) = Vo(x) — —R*|—]1, 12
(x, B) = Vo(x) P ( ™ 12)
with V, the initial trapping potential, given by
(1 d%
Wwx) =E+ —|——1|, 13
h(x) - ( e ] (13)

which is obtained by dividing equation (7) by ¢ (x). Note that the imaginary part vanishes because of

equation (3). Here, V(x, R) is the potential which can maintain the WPUM in equation (8) for a fixed R. The
second term in equation (1 1), which vanishes when R = 0, is for the non-adiabatic driving of the state. As seen
in equation (9), R(t) = 0 fort < Oandt > T.Therefore the driving potential in equation (11) continuously
changes from Vyto Vg — {72/(2m)}(dn/dx)>.

3.2.Scaling property of dynamics

The results obtained in section 3.1 reveal the scaling property of the quantum dynamics. Once a pair of ¢ and 1 is
found, we obtain the driving potential which realizes the state in equation (8) for any time dependence of R
because the form of the driving potential in equation (11) is independent of the form of R. (Note that R does not
have to start from 0 nor to become 1 att = T for the validity of the scaling property.)

A pair composed of the dynamics of the system and the corresponding driving potential, { U[R], Vgg[R]} , are
characterized by R, a function of time. We can consider the ensemble composed of such infinite number of pairs.
The ensemble can be represented by one of W[R]. Thus, infinite number of the pairs of the dynamics and the
potential corresponding to different R are related to each other. The scaling property is explained in detail for a
more general case in the following section.

Due to the scaling property, the final state of an adiabatic dynamics with R ~ 0 can be realized for any finite
time 7. As mentioned, this fast-forwarding of the dynamics is important for the creation of the target WPUM
because WPUMs are short-lived under a finite potential.

3.3. Example
As an example we apply the driving potential in equation (11) to a BEC of 87Rb in a harmonic trap to create a
WPUM. The dynamics is governed by the GP equation

d nt &

17—V = ———U + ViU + g|UPY, 14

a 2 doc? FF gl (14)
where r is the mass of the atom, g the coupling constant and ¥ the condensate order parameter. For simplicity
we consider the case of g = 0. (The form of the driving potential for finite gis the same as equation (11) because
g|W|? can be regarded as a part of the potential, although the driving potential differs from the one forg = 0
because of the dependence of ¢ on ¢ [8].) We assume that the initial state is the ground state of the harmonic trap,
of which the condensate order parameter is ¢. We take the initial harmonic potential as

2
mw?

x2. (15)
2

Wo(x) =

The target state is given in equation (1) with the phase in equation (4).

Figure 1 shows the phase 7(x) of the target WPUM and the final potential Vin equation (12) for a parameter
set: w/(2m) = 500 Hzand n, = 2.1 x 10°(m™?). The real part of the order parameter oscillates with respect to x
due to the phase change. The potential diverges to negative infinity where the amplitude of the order parameter
is small.

Now we simulate evolution of the state driven from the ground state in the harmonic potential in
equation (15) toa WPUM for the same wand 7 as in figure 1. In the following simulation we use the
approximate potential of which %(x) is setto %(:&:xo) forx > x0(=0.72 pm)and x < —x, respectively, as
exhibited in figure 1(b) to avoid drastic change in potential with respect to x and ¢. Figure 2(a) shows
approximate Vg during the control for T = 32 us. (Hereafter we simply refer the approximate potential as Vg
instead of approximate Vrr.) The potential is tilted to imprint a phase 7, which is asymmetric, generating

4
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Figure 1. (a) The purple solid curve shows the phase 7(x). The green dotted curve shows the real part of the order parameter in
equation (1). (b) The purple solid curve shows x-dependence of the potential at the final time T. The inset is for a small interval around
x = 0. The dashed green curve represents the approximate potential that we employ in our numerical simulation.
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Figure 2. (a) Vgp at the times indicated in the panel, where T' = 32 ps. The initial harmonic potential represented by the black solid
curve is much smaller in amplitude in this scale than the potential at different times represented by colored curves. (b) Fidelity as a

positive momentum (see the potential for t = T/4 and T/2). At the end of the control, = T, the potential
coincides with the one represented by the dashed line in figure 1(b).
Figure 2(b) shows the fidelity, as a function of T, defined as the amplitude of the overlap between the state at

t = Tand the target state in equation (1). The fidelity decreases with the increase of T'because of the
imperfection of the approximate potential. Therefore, fast control is essential for creation of the target state.
Figure 3 shows the initial and the final profiles of the square of the amplitude of the order parameter for
T =32 pusand T = 191 pus. For longer control the order parameter moves to the x-direction because of the
imperfect potential. In the numerical simulation there are hard walls at x = 4-4.8 pum, which reflect the order
parameter. The oscillation in the order parameter for T = 191 us is due to the interference of the order
parameter with the one reflected by the hard walls, while for T' = 32 us, the order parameter approximately
keeps its initial form. It might not be very obvious why the distortion of the order parameter is reduced at the
final time of the creation, t = T, when T is sufficiently short and the approximated potential is sufficiently closer
to the exact one in spite of the asymmetry of the potential. It is because that the target WPUM has the spatially
uniform current of the amplitude of order parameter. Because the current is independent of x, the amplitude of
the order parameter is stationary in the ideal case. Due to the current flowing to the x-direction, the order
parameter is reflected back by the hard wall at x = 4.8 pm in the both cases for T= 32 and 192 us. However
t =32 psisso short that the major part of the order parameter has not been reflected yet at that time. This is the
reason why the oscillation due to interference is not clearly seen at t = 32 ps.

3.4. Dynamics in free space

Suppose we release the order parameter in equation (1) by putting V' = 0att = 0. The pattern of the order
parameter is distinct from that without phase 7). Thus, observation of the amplitude of the BEC after releasing
can be used for an indirect measurement of the WPUMs.
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Figure 3. Square of the amplitude of the order parameter at the initial and final times of the control for T = 32 pysand T = 191 ps.
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Figure 4. (a) |¥|? evolving in free space is shown as a function of tand x for w/(2m) = 500 Hzand 7, = 2.1 X 10° (m™>). (b)
Amplitude of the Fourier transform of the wave function at the initial time.

Evolution of [¥? in free space is shown in figure 4(a) as a function of tand x. The spatial oscillation of | ¥]? is
clearly seen. The fringe pattern is moving toward positive direction of x, and the intervals between the peaks
increase. Such fringe pattern is not observed with the ground state order parameter which is simply broaden.
This pattern of the order parameter which resembles an expanded wing of birds is a manifestation of the spatially
changing phase. Figure 4(b) shows the amplitude of the Fourier transform of W at the initial time. Note that there
is a fringe pattern in the Fourier transform of the order parameterin k > 0, and this initial distribution of the
order parameter in the k-space is attributed to the pattern of the released order parameter in figure 4(a). Detailed
study on this pattern such as the correlation between 1, and the peak intervals is beyond the scope of the present
paper and will be conducted elsewhere.

4. Phase imprinting with time-dependent amplitude of wave function

In the previous section we considered the case in which the amplitude of the wave function is time-independent
during the phase imprinting. Now we consider the case in which the amplitude evolves as well as the phase. The
result is applied to loading of a BEC to a predetermined Bloch state.

We consider a state represented as

Up(x, 1) = @ (x, R)el1ReEWL7 (16)
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which is an instantaneous eigenstate with energy E(R) under the potential given by

) ()
V(x, R)=ER) + |:(¢ o’ ] o) |

0% _
=E®) + _[(gﬁ] md 4]. (17)

Note that ¢ is R-dependent. We call Ug for R = 0and Wy, for R = R’ the initial state and the target state,
respectively. Here, ) is given in equation (4) in terms of ¢, and satisfies equation (3).

4.1. Fast-forward scaling theory
Now we derive the driving potential which generates the target state. We assume that the wave function during
the creation of the target state is represented as

t
U (x, 1) = ¢(x, R)ei"("’R)eif("’”e_(i/ﬁ)fo IERED, (18)

where R is a time-dependent parameter, which starts from 0 and becomes R’ att = T. In the intermediate wave
function in equation (18), an additional phase fis introduced. The time-dependent Schrédinger equation is
represented as
d 7?2 &2
in— m Upp = — %J\DFF + Ver W, (19)

with the driving potential V.

We divide equation (19) by the phase factor of Ugr and substitute equation (18), and compare the imaginary
and the real parts of the both sides of the equation. Using the phase-amplitude relation in equation (3), the
imaginary part leads to the equation for additional phase fas

f of ¢

( X, t) + 2—(X, t)a 2m a¢

o (x, R) (x, R) + 7R—( , R) = 0. (20)

Equation (20) is to be solved to obtain f (x, #). A solution of 3 f/J x is given as

of _ 2mR 1)

= R 21
o IR (x )- e2y)

f a9 (e, R) S5 4

Thus, we obtain the additional phase by integrating equation (21). f/R s explicitly given by
f 2m *, 1

— =cy— —

" n ¢ "
il Ky I e R ZE G R), (22)

where ¢, is a constant. On the other hand, the real part gives rise to the driving potential

VFF(x> t) - V(x> R) ( R) af (xa t)

G P I el
{ax 02l R)+[8x(x’t)]} (23)

Once we set the time dependence of R, the additional phase and the driving potential are calculated using
equations (22) and (23). Importantly, the additional phase vanishes at the initial time and the final time by
imposing R = 0 at those times as seen from equation (22). Thus we are guaranteed to obtain the target state
from the initial state at predetermined time. The form of the driving potential for finite g is the same as

equation (23), although the driving potential differs from the one for ¢ = 0 because of the dependence of p on g.

4.2, Scaling property
Itis seen, from equation (20) or (22), that f /R depends on R and x but not explicitly on t because ¢ depends
explicitly only on R and x. This reveals that if we have the additional phase for a particular function for R, say
R\ (), the additional phase for a different function R,(¥) is obtained using a simple relation between the phases.
(Note that we do not have an analytical form of f for higher dimensions in general.)

For example, we assume that the additional phase is f; for R and f, for R,. Then we have the relation

fl(x’ tl) _ fz(x) tZ)
Ri(t) Ry(1)

if Ri(t;) = R,(t,) because the both sides of the above equation do not depend on t explicitly. (We assume that
there exists t, such that R,(#,) = R;(#;) for any #;.) Thus we obtain

(24)

7
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Ry(t)
Ri(t)

The driving potential in equation (23) is a functional of fand R. Therefore the driving potential for R, is easily
obtained if we have additional phase f; for R;.

As in the previous section, this theory can be regarded as providing a shortcut to adiabaticity protocol
because it shows the connection between the adiabatic dynamics corresponding to the R = 0 limitand
accelerated dynamics with finite R. However, we emphasize that this theory covers wider concept because it
uncovers the connection between infinite number of non-adiabatic dynamics characterized by different R.

Equation (25) leads to

L h) = fi (%, ). (25)

afz/ax(x) t2) _ Rz(tz)
of, /ox(x, 1) Ri(n)’

which can be interpreted as follows. The left hand side is the ratio of the currents of the probability density at x
for the dynamics corresponding to R, to that for R, because the current is proportional to (bzg—i, and we have

A(Ry(t1), x) = d(Ry(ty), x). This ratio is the same as the ratio between Rs (right hand side) because it determines
the ratio between the rates of the change in the probability density.

(26)

4.3. Loading to a Bloch state

Study on the motion of a particle in a spatially periodic potential has revealed interesting features of the system
such as acceleration theorem formulated by Bloch [57]. The dynamics of a particle under a periodic potential
and an additional linear potential has been extensively studied, e.g., asymptotic expression of Bloch oscillators in
the limit of weak electric field [58] and numerical study of the dynamics of Bloch oscillation [59]. Dynamics of a
particle in a periodically driven lattice potential has been also studied [60, 61]. However, to the best of our
knowledge, no explicit form of the driving potential, which can load a particle into a predetermined Bloch state,
hasbeen presented.

We apply the result obtained in the above subsection to derive the driving potential without tight binding
approximation, which generates a predetermined Bloch state in the lowest band from the ground state as
depicted in figure 5(a).

We consider a BEC in an optical lattice potential

V,(x) = Vp sin? (%x), (27)

with period L and potential height V.. The order parameter of a Bloch state in V, is represented as
Ui(x, t) = ¢(x, k)e"®@Re iE®L/ /] (28)

with the amplitude of the order parameter ¢(x, k) and the energy E(k). Here, k is the wavenumber. Phase 7 can be
separated as

n(x, k) = An(x, k) + kx, (29)
where An(x, k) is periodic with respect to x with period L as well as ¢, that is, An(x + L) = An(x)and ¢
(x + L) = ¢(x). Note that the profile of ¢(x, k) depends on k as shown in figure 5(b). Note also that ) satisfies the

phase-amplitude relation in equation (6) because Wy is an instantaneous energy eigenstate.
Asin the previous subsections, the order parameter ansatz is written as

Upp(x, 1) = B(x, k(t))eir;(x,k(t))eif(x,t)e*(i//‘l)f0 dt'E(k(t")) (30)

with the additional phase f. The additional phase is given by

f= —kfox dx’% fo dx" ¢ (x", k)g—(]f(x”, k), G1)
where we used equation (22) with ¢y = 0 without loss of generality.
For concreteness we consider k defined by
0 t <0,
ko =1kt — Lsin(20)]  o<e<T, (32)
kéin T<t,

where kg, is the final (target) wavenumber. We use the parameter set: L = 0.8 um, kg, = 0.967/Land
T = 67.5 yis. mis the mass of a *’ Rb atom. V, = 0.14 Eg, where Eg is defined by Ex = (/k;)?/(2m) with
k; = m/L.Figure 5(c) shows $*(x, k) as a function of rand x for k(£) defined in equation (32).
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Figure 5. (a) Energy diagram in the first Brillouin zone. The arrow indicates the driving from k = 0 state to a state with finite k. (b)
Square of the amplitude of the order parameter for different values of k for 0 < k < 0.967/Lin asingle period of the lattice potential
for L = 0.8 pum. The order parameter is normalized in the single period of the potential. The arrows indicate the directions in which
the order parameter changes as the wavenumber increases. (c) ¢*(x, k) as a function of tand x for k(f) defined in equation (32). (d)
Additional phase fas a function of x and t. The parameters used are the same as those used for (c).

The driving potential is given by

dk . pdk0An f

‘/FF(X) t) = ‘/P(X) - ﬁax - dt 8k ) - (X, t)

——{ f(,t) ( k)+[f(x,t)]} (33)
2m

where we used equations (23) and (29). Since dk/dt = Ofort < Oandt¢ > T'the additional phase fdisappears
and the potential Vg coincides with the original potential V,, because fand df/ 0t vanish as seen from

equation (31). The first and the second terms in equation (33) are the original periodic potential and the time-
dependent linear potential, respectively. The linear potential corresponds to imprinting the linear phase kx. The
third term corresponds to the periodic phase An. Other terms are attributed to the change of the profile of the
amplitude of the order parameter with respect to k. There is no divergence in phase 1 and driving potential Vg
because the amplitude of the order parameter of Bloch states in the lowest band has no node.

The driving potential in equation (33) is shown as a function of x and ¢ in figure 6(a). In figure 6(b), simpler
potential composed of the original and the linear potentials, V,, — Jikx, is plotted for comparison. We refer this
potential as the simple potential. The left panels in figures 6(a) and (b) are for 0 < t < T/2, while the right
panelsare for T/2 < t < T. The difference between the two cases is apparent for t > T/2 when ¢(x, k) for
|x| > 0.2 zm changes rapidly as shown in figure 5(c). In figures 6(c) and (d) the evolution of |¥|? is shown for the
potentials in figures 6(a) and (b), respectively. The fidelity, which is defined as the amplitude of the overlap
between the state at t = T'and the target state in equation (28), is 0.99 for the control with Vr and 0.95 for the
control with the simple potential. Infidelity (decrease of the fidelity) of the control with Vg is attributed to
numerical error. The evolutions of [U|? driven by the potentials exhibit clear difference although the difference
of the fidelities is not significant. The evolution of |¥|? is almost the same as the ideal one shown in figure 5(c).
On the other hand, the evolution of |[¥[? in figure 6(d) clearly differs from the one in figure 5(c) due to the lack of
the potential which supports the change in the amplitude of the order parameter.
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Figure 6. (a) The driving potential Vgr normalized by Eg as a function of xand t. (b) V, — Fx normaliz§d by Eg as a function of xand
t. (c) Square of the amplitude of the order parameter driven by Vge and (d) the simple potential, V,, — 7kx.

5. Summary and discussion

We have introduced phase imprinting on the order parameter of BECs with the fast-forward scaling theory
uncovering the nontrivial scaling property of quantum dynamics. The form of the driving potential for the phase
imprinting has been explicitly derived. The obtained scaling property reveals the connection between infinite
number of the pairs composed of the dynamics (including adiabatic dynamics) and the corresponding potential.
Due to the scaling property the final state of an adiabatic dynamics can be realized for any desired finite time.
Thus, it can be regarded as a shortcut to adiabaticity. Moreover, we emphasize that this theory covers wider
concepts because it uncovers the connection between infinite number of non-adiabatic dynamics.

The theory has been applied to derive the driving potential for creation of WPUMs density, which are
introduced in this paper. The state has infinite expectation value of the momentum and finite energy in ideal
condition but is short-lived due to imperfection of potential in actual systems. (The state cannot be stable after
creation because of imperfection of the driving and the final stationary potentials.) Thus, fast manipulation is
essential for the creation of the WPUM s because of the instability of the state. The driving potential to create the
WPUMs has been derived.

We have also studied the loading of a BEC, which is in the ground state of a periodic potential initially, into a
predetermined Bloch state in the lowest band. Controlling a linear potential is not sufficient for the creation of
the Bloch state when the target wavenumber is large because the change in the amplitude of the order parameter
is not negligible. We have exactly shown the required modification of the driving potential from the time-
dependent linear potential extending the theory to the case that the amplitude of the order parameter changes as
well as the phase.
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