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Abstract

We propose a long-distance continuous-variable quantum key distribution (CVQKD) with a four-state
protocol using non-Gaussian state-discrimination detection. A photon subtraction operation, which is
deployed at the transmiitter, is used for splitting the signal required for generating the non-Gaussian
operation to lengthen the maximum transmission distance of the CVQKD. Whereby an improved state-
discrimination detector, which can be deemed as an optimized quantum measurement that allows the
discrimination of nonorthogonal coherent states beating the standard quantum limit, is applied at the
receiver to codetermine the measurement result with the conventional coherent detector. By tactfully
exploiting the multiplexing technique, the resulting signals can be simultaneously transmitted through
an untrusted quantum channel, and subsequently sent to the state-discrimination detector and coherent
detector, respectively. Security analysis shows that the proposed scheme can lengthen the maximum
transmission distance up to hundreds of kilometers. Furthermore, by taking the finite-size effect and
composable security into account we obtain the tightest bound of the secure distance, which is more
practical than that obtained in the asymptotic limit.

1. Introduction

Quantum key distribution (QKD) [1-3] is one of the most practical applications of quantum cryptography, whose
goal is to provide an elegant way that allows two remote legitimate partners, Alice and Bob, to establish a sequence
of random secure key over insecure quantum and classical channels. Its security is provided by the laws of quantum
physics [4, 5].

For decades, continuous-variable (CV) QKD [6—13] has been a hotspot of QKD research due to its simple
implementation with state-of-art techniques [ 14, 15]. It has been shown to be secure against arbitrary collective
attacks, which are optimal in both the asymptoticlimit [12, 13, 16, 17] and the finite-size regime [18, 19].
Recently, CVQKD is further proved to be secure against collective attacks in a composable security framework
[20], which is the security analysis by carefully considering every detailed step in the CVQKD system.

In general, there are two main modulation approaches in CVQKD, i.e., Gaussian modulated CVQKD [6-8]
and discretely modulated CVQKD [9-13]. In the first approach, the transmitter Alice usually continuously
encodes key bits in the quadratures (£ and p) of the optical field with Gaussian modulation [21], while the
receiver Bob can restore the secret key through a high-speed and high-efficiency coherent detector (i.e.,
homodyne or heterodyne detector) [15, 22]. This scheme usually has a repetition rate higher than that of single-
photon detections so that Gaussian modulated CVQKD could potentially achieve higher secret key rate, whereas
it seems unfortunately limited to much shorter distance than its discrete-variable counterpart [12]. The key
problem is that the reconciliation efficiency s quite low for Gaussian modulation, especially in the long-
distance transmission. To solve this problem, one has to design a perfect error correcting code which is more
suitable than the LDPC code at very low signal-to-noise ratio (SNR). However, this kind of error correcting code
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is relatively hard to design and implement. Fortunately, there exists another way to solve the problem, that is,
using discrete modulation such as the four-state CVQKD protocol, proposed by Leverrier et al [13]. This
discretely modulated CVQKD generates four nonorthogonal coherent states and exploits the sign of the
measured quadrature of each state to encode information rather than using the quadrature % or p itself. This is
the reason that the sign of the measured quadrature is already the discrete value to which the most excellent
error-correcting codes are suitable even at very low SNR. Consequently, the four-state CVQKD protocol has the
merits of both high reconciliation efficiency in the long-distance transmission and the security proof of CVQKD
so that it could improve the maximal transmission distance of CVQKD.

Currently, photon-subtraction operation, which is a kind of non-Gaussian operation in essence, has been
demonstrated theoretically and experimentally to extend the transmission distance of the CVQKD using two-mode
entangled states [23—25] due to the fact that a suitable photon-subtraction operation would increase the entanglement
degree of two-mode entangled state and thereby increase the correlation between the two output modes of two-mode
entangled state. Since the entanglement-based (EB) scheme is equivalent to the prepare-and-measure (PM) one, this
operation can be employed practically implemented in protocols using coherent states with existing technologies.

Furthermore, although a high-speed and high-efficiency homodyne or heterodyne detector can be used
effectively to measure the received quantum state, the inherent quantum uncertainty (noise) still prevents the
nonorthogonal coherent states from being distinguished with perfect accuracy [26-28]. Even if the detector is ideal
with perfect detection efficiency, the receiver cannot still obtain the precise result. The conventional ideal detector can
only achieve the standard quantum limit (SQL) which defines the minimum error with which nonorthogonal states
can be distinguished by direct measurement of the physical property of the light, e.g. quadrature % or p. Actually,
there exists a lower error bound known as the Helstrom bound [29] which is allowed by quantum mechanics, and this
bound can be achieved by designing excellent state-discrimination strategies. Recently, a well-behaved state-
discrimination detector has been proposed to unconditionally discriminate among four nonorthogonal coherent
states in QPSK modulation [26]. This detector can beat the SQL by using photon counting and adaptive
measurements in the form of fast feedback and thus approach or achieve the Helstrom bound. Therefore, the
performance of CVQKD would be improved by taking advantage of this well-behaved state-discrimination detector.

Inspired by the aforementioned advantages, which have been analyzed in theory and subsequently demonstrated
with simulations and experiments, in this paper, we propose a long-distance CVQKD using non-Gaussian state-
discrimination detection. Instead of the traditional Gaussian modulation which continuously encodes information
into both quadrature X and quadrature p, the discretely-modulated four-state CVQKD protocol is adopted as the
fundamental communication protocol since it can well tolerate lower SNR, leading to the long-distance transmission
compared with its Gaussian-modulated counterpart. Meanwhile, a photon subtraction operation is deployed at the
transmitter, where it is not only used for splitting the incoming signal, but also improving the performance of
CVQKD as it has proven to be beneficial for lengthening the maximal transmission distance. Moreover, an improved
state-discrimination detector is applied at the receiver to codetermine the measurement result with coherent detector.
The state-discrimination detector can be deemed as the optimized quantum measurement for the received
nonorthogonal coherent states so that it could surpass the SQL. As a result, one can obtain a precise result of incoming
signal in QPSK format with the help of the state-discrimination detector. By exploiting multiplexing technique, the
yielded signals can be simultaneously transmitted through an untrusted quantum channel, and subsequently sent to
the improved state-discrimination detector and the coherent detector. The proposed long-distance CVQKD scheme
can greatly increase the secure transmission distance and thus outperforms the existing CVQKD protocols in terms of
the maximal transmission distance. Taking the finite-size effect and composable security into account we obtain the
tightest bound of the secure distance, which is more practical than that obtained in asymptotic limit.

This paper is structured as follows. In section 2, we first introduce the discretely modulated CVQKD
protocols, in particular, the four-state CVQKD protocol, and then demonstrate the proposed long-distance
CVQKD scheme. In section 3, we elaborate the characteristics of the photon-subtraction operation and the
principle of improved state-discrimination detector. Numeric simulation and performance analysis are
discussed in section 4, and finally conclusions are drawn in section 5.

2. Long-distance CVQKD scheme

We consider the four-state CVQKD protocol as a fundamental communication protocol for the proposed
scheme, since the discretely-modulated protocol is more suitable for long-distance transmission (lower SNR)
and it could be extended larger than its Gaussian modulation counterparts. Furthermore, the transmission
distance of the four-state CVQKD protocol can be enhanced by performing a proper photon-subtraction
operation and applying a well-behaved state-discrimination detector. To make the derivation self-contained, in
this section, we first briefly describe the discretely modulated four-state CVQKD protocol, and then give the
detail structure of the long-distance CVQKD scheme.
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2.1. Four-state CVQKD protocol
In general, the four-state CVQKD protocol is derived from discretely modulated CVQKD, which can be
generalized to the one with N coherent states |akN ) = |aei2km/N ), wherek € {0, 1, ..., N} [10]. For the four-state
CVQKD protocol, we have |a}) = |ael@®*+D7/4) wherek € {0, 1,2,3}, ais a positive number related to the
modulation variance of coherent state as Vy, = 20

Let us consider the PM version of the four-state CVQKD protocol first. Alice randomly chooses one of the
coherent states |4 ) and sends it to the remote Bob through alossy and noisy quantum channel, which is
characterized by a transmission efficiency 7 and an excess noise . When Bob receives the modulated coherent
states, he can apply either homodyne or heterodyne detector with detection efficiency 7 and electronics noise v,
to measure arbitrary one of the two quadratures £ or p (or both quadratures). The mixture state that Bob
received can be expressed with the following form

3
py=~ > log) (afl. (1)
4.5

After measurement, Bob then reveals the absolute values of measurement results through a classical
authenticated channel and keeps their signs. Alice and Bob exploit the signs to generate the raw key. After
conducting post-processing procedure, they can finally establish a correlated sequence of random secure key.

The PM version of the protocol is equivalent to the EB version, which is more convenient for security
analysis. In EB version, Alice prepares a pure two-mode entangled state

T) = ZJ_ o) )

k=0
13
E Z |9k} o), (2)
where the states
) = Z i+ 20T/ ) )
are the non-Gaussian states, and the state |¢,,) is given by
—(12/2 00 4n+k
- 4 k), 4
|64 = J—D )ﬁ'"+> @)
with
Aoz = %e‘”z[cosh(az) + cos(a?)], (5)
A3 = %e‘“z[sinh(az) + sin(a?)]. (6)
Consequently, the mixture state p, can be expressed by
ps = Tr([Wy) (Wy))
3
= Z Akl D) (Dl 7

k=0

Let A and B, respectively, denote the two output modes of the bipartite two-mode entangled state [¥;), d and b
denote the annihilation operators applying to mode A and B, respectively. We have the covariance matrix "4 of
the bipartite state |l) with the following form

XI Z4O'Z
Tup = ,
'AB (2402 VI ) )

where I and o, represent diag(1,1) and diag(1, — 1), respectively, and
X = (W1 + 2a'a| U) =1 + 202,
Y = (W1 + 2570 ¥y) = 1 + 202,
3
Zy=(Wlab + a'b| U) = 223" NAN A 9)
k=0

Note that the addition arithmetic should be operated with modulo 4. The detailed derivation of the four-state
CVQKD protocol can be found in [12].
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Figure 1. Schematic diagram of the long-distance CVQKD. Alice detects one half of the EPR state (the blue box) using heterodyne
detection while another halfis sent to the photon-subtraction module (the green box) which splits the incoming signal into two parts.
The two parts are then recombined by using the polarization-multiplexing technique and subsequently sent to Bob. Eve replaces the
quantum channel and performs the optimal entangling cloner attack during the transmission. Bob demultiplexes the incoming signal
and measures one of them using homodyne or heterodyne detector, whereas the other mode is sent to the state-discrimination
detector (the purple box). BS denotes beam splitter, PBS denotes polarizing beam splitter, DPC denotes dynamic polarization
controller, and PNRD stands for photon number resolving detector.

After preparing the two-mode entangled state |\I;) with variance V.= 1 + V}, Alice performs projective
measurements ;) (| (k = 0, 1, 2, 3) on mode A, which projects another mode B onto a coherent state |a;).
Alice subsequently sends mode B to Bob through the quantum channel. Bob then applies homodyne (or
heterodyne) detection to measure the incoming mode B. Finally, the two trusted parties Alice and Bob extracta
string of secret key by using error correction and privacy amplification.

2.2. Long-distance discretely modulated CVQKD

In what follows, we elaborate the long-distance discretely modulated CVQKD scheme. This novel scheme is
based on the four-state CVQKD protocol so that its transmission distance could be extended more largely
comparing with the continuous modulation counterparts. We focus on the principle of the whole long-distance
CVQKD scheme first, leaving the detailed techniques description to the next section.

As shown in figure 1, a source of the two-mode entangled state (Einstein—Podolsky—Rosen (EPR) state) is
used for creating a secure key [30]. After Alice prepares the entangled state |I), she performs heterodyne
detection on one half (mode A) of the state and sends another half (mode B) to the photon-subtraction operation
(the module within the green box). This non-Gaussian operation is modeled by a beam splitter (BS) with
transmittance y and a vacuum state |0) imports the unused port of the BS. As a result, the incoming signal (mode
B) is then divided into two parts by the photon-subtraction operation. There are two advantages for applying
photon-subtraction operation. Firstly, putting a proper non-Gaussian operation at Alice’s side has been proven
to be beneficial for lengthening the maximal transmission distance of the traditional CVQKD [25], because this
operation can be deemed the preparation trusted noise controlled by Alice, which can well prevent the
eavesdropper from acquiring communication information [23, 31]. Secondly, the photon-subtraction
operation tactfully provides a method to divide the incoming signal into two parts, which are the mode B,
containing most photons for homodyne (or heterodyne) detector and the mode C containing a few subtracted j
photons (or even one) for state-discrimination detector, respectively. The two parts of signal are subsequently
recombined by using the polarization-multiplexing technique with a polarizing BS (PBS). The recombinational
mode B, is then sent to the lossy and insecure quantum channel.

In the EB CVQKD scheme, the quantum channel is replaced by an eavesdropper (say Eve) who performs the
collective Gaussian attack strategy. This attacks is proved to be an optimal attack strategy in direct and reverse
reconciliation (RR) protocols. Very recently, Leverrier [32] shows that it is sufficient to prove the security of
CVQKD against collective Gaussian attacks in order to obtain security against general attacks, therefore
confirming rigorously the belief that collective Gaussian attacks are indeed optimal against CVQKD. In this kind
of attacks, Eve usually prepares her ancillary system in a product state and each ancilla interacts individually with
asingle pulse sent by Alice, being later stored in a quantum memory [33]. The tripartite state then reads,

Qn
PABE = [Z P(a)la)(al, @ ZD%E] . (10)

After eavesdropping the communication revealed by Alice and Bob in the data post-processing, Eve applies the
optimal collective measurement on the ensemble of stored ancilla to steal the secret information. In particular,
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Eve can launch the so called entangling cloner [17, 21, 34] attack which is a kind of collective Gaussian attack.
Specifically, Eve replaces the channel with transmittance 1 and excess noise referred to the input y by preparing
the ancilla |E) with variance Wand a BS with transmittance 7). The value W can be tuned to match the noise of the
real channel xj;,. = (1 — 1)/n + €. After that, Eve keeps one mode E; of |E) and injects the mode E, into the
unused port of the BS and thus acquires the output mode E;. After repeating this process for each pulse, Eve
stores her ancilla modes, E; and E3, in quantum memories. Finally, Eve measures the exact quadrature on E; and
E; after Alice and Bob reveal the classical communication information. The measurement of E; allows her to
decrease the noise added by E;.

After passing the untrusted quantum channel, Bob applies another PBS with dynamic polarization
controller to demultiplex the incoming signal. One of the demultiplexed modes B, is then sent to Bob’s
homodyne or heterodyne detector which is modeled by a BS with transmittance 7 and its electronic noise is
modeled by an EPR state with variance v,;. The mode D is synchronously sent to the state-discrimination
detector to improve the system’s performance.

This long-distance CVQKD scheme subtly combines the merits of the four-state CVQKD protocol and
photon-subtraction operation in terms of lengthening maximal transmission distance, surpassing the SQL via
the state-discrimination detector.

3. Techniques

In this section we show the detailed characteristics of the photon-subtraction operation and the state-
discrimination detector that can be used for beating the SQL.

3.1. Photon-subtraction operation

As shown in figure 1, we suggest the EB CVQKD with photon-subtraction operation (the green box) applied at
Alice’s station, where other modules are temporarily ignored. Alice uses a BS with transmittance y to split the
incoming mode Band the vacuum state C, into modes B, and C. The yielded tripartite state p 4 can be
expressed by

Pacs, = Uss[[W)q (Vs ® |0) (0[] Ufs. (11)

Subsequently a photon-number-resolving detector (PNRD, black dotted box at Alice’s side) is adopted to
measure mode Cby applying positive operator-valued measurement (POVM) {11, 1I;} [35]. The photon
number of subtraction j depends on I} = |j) (j|. Only when the POVM element 11, clicks can Alice and Bob

keep A and B,. The photon-subtracted state p%l is given by

n _ trC(HlpACBI)

Pl = Pace] (12)
tracs,(LLp ocp,)

where trx(+) is the partial trace of the multi-mode quantum state and tr ACBI(ﬁl P ac,) is the success probability of
subtracting j photons, which can be calculated as

P(I}; = trACBl(ﬁlpACBl)
—(1 -3 Clen( — pyiun
n=j
_ (-0 - piey
- eyt o

7. . . «
where C, is combinatorial numberand £ = .
J1+a?

After passing the BS, it is worth noticing that the subtracted state pl}Bl is not Gaussian anymore, while its
entanglement degree increases with the introduction of the photon-subtraction operation [23, 25].

Due to the fact that heterodyne detection on one half of the EPR state will project the other half onto a
coherent state, which is convenient to implement in experimentation, we take into account a situation where
Alice performs heterodyne detection and Bob executes homodyne detection. Suppose F(Ajl)% represents the

and it can be given by

» XT Zlo,
I, = [ i ] (14)

covariance matrix of pE‘Bl R

Zyo, Y'1
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Figure 2. Schematic diagram of the improved state-discrimination detector using photon number resolving and adaptive
measurements in the form of feedback.

where

g AFEG D

1 — pu&?
X/_u£2+2j+1
1 — pg?
20/ 4+ 1) + 1
Y/:N§(J+ ) + . (15)
1 — pu&?

See [24] for the detailed calculations.

Note that for the proposed long-distance CVQKD scheme, the PNRD which is placed at Alice’s side is
removed, whereas the subtracted mode C which is supposed to enter the PNRD is recombined with mode B, in a
PBS by using polarization-multiplexing technique. The task of resolving subtracted photon number is therefore
handed over to the state-discrimination detector at Bob’s side.

3.2. State-discrimination detector

We design a state-discrimination detector to increase the performance of the CVQKD coupled with photon-
subtraction operation. This quantum detector can unconditionally discriminate four nonorthogonal coherent
states in QPSK modulation with the error probabilities lower than the SQL.

As shown in figure 2, we depict the structure of the improved state-discrimination detector using photon
number resolving and adaptive measurements [36—38] in the form of fast feedback. This state-discrimination
detector contains M times adaptive measurements in the field of |a). For each measurement i(i € {0,1,---, M}),
the strategy first prepares a predicted state | ;) which has the highest probability based on the current data in
classical memory. Subsequently, a displacement D (3;) is adopted to displace |a) to | — (3;) and a PNRD is used
to detect the number of photons of the displaced field. If the predicted state is correct, i.e., | 3;) = |a), TIowill
click, because the input field is displaced to vacuum so that the PNRD cannot detect any photon [26]. Note that
different from the photon-subtraction operation where I clicks represents the failure of subtracting photon,
ITj clicks here denotes that the improved state-discrimination strategy has correctly predicted the input state.
This successful prediction is marked as [; = 0, otherwise I; = 1. After the ith adaptive measurement, the strategy
calculates the posterior probabilities of all possible states (cjo), |vi1),|via) and |cy;3)) using Bayesian inference
according to the present label history Ly and predicted history Dhise (Note that for now 3; has already been
added to the Dy with previous data to collectively calculate these probabilities), and designates the most
probable state as | 3; 1), which is deemed as an input for next feedback. In each feedback period, the probabilities
of all possible states are updated dynamically and the posterior probabilities of period i become prior
probabilities in period i + 1. The rule of Bayesian inference can be expressed as

Poo({le) 118, 1) = A P(LiIBis {le) DB () D), (16)

where Py, ({|c) }|3; I;) and B, ({|a) }) are the posterior and prior probabilities, respectively, P(1j|3;, {|c)})is
conditional Poissonian probability of observing the detection result J; for |a) displaced by field 3;, and A is the
normalization factor calculated by summing equation (16) over all possible states. Bayesian inference is a
method of statistical inference in which Bayes theorem is used to update the probability for a hypothesis as more
evidence or information becomes available. Therefore, the final decision |Gy ;) of the input state | ) can be
predicted in the last adaptive measurement M using iterative Bayesian inference [28].
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Figure 3. Error probabilities for discriminating QPSK states and improvement ratio as functions of mean photon number (#). The
dashed line denotes the standard quantum limit, the solid line denotes the state-discrimination detector with 10 adaptive
measurements, the dotted line denotes Helstrom bound and the red dashed line with squares denotes improvement ratio.

This kind of strategies could surpass the SQL and approach the Helstrom bound with the help of high
bandwidth and high detection efficiency. Mathematically, the SQL for discriminating the four nonorthogonal
coherent state in QPSK modulation can be expressed by

2
1 [af?
Psor=1—-1]1— —erfc|,|— R 17
SQL 5 [ 5 (17)

where
erfc(x) = 2 foo e~'dr, (18)
N

and the Helstrom bound for the QPSK signals can be approximated by using the square-root measure [10],
which can be calculated by

4 2
Pra=1— i[Zm) , (19)
16 k=1

2min
4
the improved state-discrimination detector is parallel with homodyne or heterodyne detector at Bob’s side, the

ultimate detection of the states is codetermined by the coherent detector and the state-discrimination detector.
From the perspective of information-theoretical sense, we can define an improvement ratio { to depict how
much performance could the state-discrimination detector enhance the CVQKD system, namely

where wy = e*QZZﬁ: L exp[(l — k) + a’exp (27%")] are eigenvalues of Gram matrix for QPSK signals. As

1 — P
(=—, (20)
1— PSQL

where P2 represents the error probability of state-discrimination detector with M adaptive measurements.
Theoretically, the detector could reach the Helstrom bound when M is large enough. Therefore, the optimal
improvement ratio (, can be calculated by considering the minimum error probability allowed by quantum
mechanics. Thus we have

1—P Hel
Copt - 1 — PSQL N (2 1)
In figure 3, we illustrate the error probabilities of discriminating the four nonorthogonal coherent states and

the improvement ratio as functions of mean photon number (7). The blue dashed line shows the SQL to which
the conventional and ideal coherent detector can achieve, while the blue solid line shows that the state-
discrimination detector with 10 adaptive measurements is below the SQL and approaches the Helstrom bound
(the blue dotted line). The red dashed line with squares denotes the optimal improvement ratio which descends
quickly with the increased mean photon number but still above 1. Therefore, the proposed detection strategy
that consists of state-discrimination detector and coherent detector could improve the performance of CVQKD
system, satisfying the requirement of long-distance transmission.
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Figure 4. Success probability of subtracting j photons for discretely modulated CVQKD with different transmittances j«. The lines
from top to bottom represent one-photon subtraction (blue line), two-photon subtraction (red line), three-photon subtraction
(yellow line), four-photon subtraction (purple line) and five-photon subtraction (green line).

4, Performance and discussion

In this section, we show the performance of the proposed long-distance CVQKD scheme with numeric
simulation results. To simplify the expression, we only focus on a scenario that Bob performs homodyne
detection and RR in the data post-processing procedure.

4.1. Parameter optimization
We first demonstrate the optimal values of simulated parameters before giving the performance of secret key
rate. It is known that the optimal photon-subtraction operation in Gaussian-modulated CVQKD can be
achieved when only one photon is subtracted [23, 24], which means that subtracting one photon is the preferred
operation to improve the transmission distance. For the proposed long-distance discretely-modulated CVQKD
scheme, we show the success probability of subtracting j(j = 1,2, 3,4, 5) photons as a function of transmittance
v in figure 4. Similar to its Gaussian-modulated counterpart, the success probability of subtracting one photon
(j= 1, blueline) outperforms other numbers of photon subtraction and the success probability decreases with
the increase of the number of subtracted photons. Meanwhile, as shown in figure 3, the red dashed line with
squares depicts the improvement ratio of the improved state-discrimination detector. It is obvious that the
highest value of the improvement can be obtained with mean photon number () = 1. This coincidence
(j = (@) = 1) allows us to obtain the optimal performance by tactfully combining photon-subtraction
operation and state-discrimination detector together. More specifically, the one photon subtracted by photon-
subtraction operation at Alice’ side is detected by state-discrimination detector at Bob’ side, and both modules
perform optimally as one photon meets the optimal requirements. Therefore, we consider the optimal one-
photon subtraction operation in subsequent simulations to show the best performance of the proposed scheme.
Because channel loss and excess noise are two of the most important factors that would have an effect on the
performance of CVQKD system [39], the performance of these parameters with different modulation variance
Va needs to be illustrated. In figures 5 and 6, solid lines denote the performance of the proposed long-distance
CVQKD scheme with the optimal one-photon subtraction operation, while dashed lines represent the four-state
CVQKD protocol as a comparison, and their secret key rates change as V), changes. The global simulation
parameters are as follows: reconciliation efficiency is 3 = 95%, quantum efficiency of Bob’s detectionis 7 = 0.6
and electronic noise is v,; = 0.05. In figure 5, excess noise € and other parameters are fixed to legitimate values,
the numerical areas of V) sare compressed for the four-state CVQKD protocol when channel loss increases, and
the secret key rate decreases rapidly with the increase of channel loss. While for the proposed long-distance
CVQKD scheme, Vs can be set to alarge range of values and its secret key rate increases with the increased V),
even though the secret key rate also decreases as channel loss increases, which means the performance of the
proposed long-distance CVQKD scheme would be consecutively improved theoretically when the modulation
variance is set large enough. However, this cannot be realized in practice, thus the modulation variance Vj; must
be set to a reasonable value in simulations. In figure 6, transmission distance, which is proportional to the
channelloss (0.2 dB km "), and other parameters are fixed. For the four-state CVQKD protocol, its optimal
regions of V)sare also compressed with the increased excess noise €. Fortunately, there is only slight impact on
the proposed long-distance CVQKD scheme with one-photon subtraction when excess noise € changes.
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Figure 5. Asymptotic secret key rate as a function of modulation variance V) in different channel losses with excess noise e = 0.01.
Solid lines denote the proposed long-distance CVQKD scheme with optimal one-photon subtraction, dashed lines represent the four-
state CVQKD protocol. Channel losses are set to 12 dB (blue lines), 16 dB (red lines), 20 dB (yellow lines) and 24 dB (green lines),
respectively. Inset (a) is the extended graph with V), to 10. Inset (b) shows the optimal 1. for the current secret key rate as a function of
modulation variance V.
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Figure 6. Asymptotic secret key rate as a function of modulation variance V),in different excess noises with transmission distance
d = 100 km. Solid lines denote the proposed long-distance CVQKD scheme with optimal one-photon subtraction, dashed lines
represent the four-state CVQKD protocol. Excess noises are set to 0.002 (blue lines), 0.005 (red lines), 0.008 (yellow lines) and 0.01
(green lines), respectively. Inset (a) is the magnified graph with V), limited from 0.12 to 0.13. Inset (b) shows the optimal y for the
current secret key rate as a function of modulation variance V).

It shows the proposed scheme greatly outperforms the four-state CVQKD protocol in terms of tolerable channel
excess noise. The reasons may be given as follows. Firstly, excess noise can be deemed channel imperfections
which deteriorate the correlation between the two output modes, while photon-subtraction operation can well
enhance the correlation which is positively related to entanglement degree of EPR state and thus improves the
performance of CVQKD system [23, 25]. Rendering the CVQKD system that applied this non-Gaussian
operation tolerates more higher excess noise. Secondly, the proposed long-distance CVQKD scheme is not very
sensitive to the noise with the help of state-discrimination detector, which means Bob can obtain more correct
results without performing very precise measurement on quadrature % or/and p. The reason is that the raw key
in Gaussian modulated CVQKD protocol is tremendously affected by channel excess noise (and imperfect
coherent detector) since its information is directly encoded in quadratures. In the four-state CVQKD protocol,
the information is encoded in QPSK modulation which can be unconditionally discriminated by the state-
discrimination detector [26]. Therefore, the detection strategy could predict incoming state using probability-
based method, i.e. Bayesian inference, thus alleviating the impact of excess noise.

4.2. Secret key rates
Up to now, we have derived the parameters that may largely affect the CVQKD system. In what follows, we
consider the secret key rate of the proposed CVQKD scheme. In general, the asymptotic secret key rate can be

9
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Figure 7. Asymptotic secret key rate as a function of transmission distance with excess noise ¢ = 0.01. Red line shows the original
four-state protocol, yellow line denotes the optimal one-photon subtraction scheme for the Gaussian modulated coherent state, blue
line represents the scheme of four-state protocol with one-photon subtraction, and the green line denotes the proposed long-distance
scheme using non-Gaussian state-discrimination detector.

calculated with the form
Kasym = ﬂI(A : B) — S(E: B), (22)

where (s the efficiency for RR, I(A : B) is the Shannon mutual information between Alice and Bob, and S(E : B)
is the Holevo bound [40] of the mutual information between Eve and Bob. For the proposed CVQKD protocol,
the asymptotic secret key rate in equation (22) can be rewritten by

Kasym = PO 8¢ I(A 2 B) — S(E: B)]. (23)

As previously mentioned, P(r;[; represents the probability of successful subtracting j photons and (. depicts the
improvement ratio of the introduced state-discrimination detector. Detailed calculation of the asymptotic secret
key rate can be found in appendix A.

In figure 7, we depict the asymptotic secret key rate as a function of transmission distance for the CVQKD
protocol. Red line shows the original four-state protocol proposed in [13], yellow line denotes the optimal one-
photon subtraction scheme for Gaussian modulated coherent state proposed in [24], blue line represents the
scheme of four-state protocol with one-photon subtraction, and the green line denotes the proposed long-
distance CVQKD scheme using non-Gaussian state-discrimination detector. The modulation variance V), of
above protocols is optimized except for the proposed long-distance CVQKD scheme since its secret key rate is
monotonic increasing in a large range of the modulation variance V,;, which means that the performance of the
proposed scheme can be further improved when V), is set to larger value. However, from the perspective of fair
comparison and practical significance, the modulation variance V), of the proposed long-distance CVQKD
scheme is reasonably set as same as its fundamental communication protocol, i.e., the four-state CVQKD
protocol. As shown in figure 7, the proposed long-distance CVQKD scheme outperforms all other CVQKD
protocols in terms of maximum transmission distance up to 330 km. Therefore, the proposed long-distance
CVQKD scheme using non-Gaussian state-discrimination detector could be more suitable for long-distance
transmission. Note that this distance record is limited by the secret key rate more than 10~ ° bits per pulse, and it
can be further extended when one considers the secret key rate below this bound.

In addition, finite-size effect [41] needs to be taken into consideration, since the length of secret key is
impossibly unlimited in practice. Moreover, one can make the assumption in the asymptotic case that the
quantum channel is perfectly known before the transmission is performed, while in finite-size scenario, one
actually does not know the characteristics of the quantum channel in advance. Because a part of exchanged
signals has to be used for parameter estimation rather than generates the secret key. As shown in figure 8, the
performance of the proposed CVQKD scheme in finite-size regime is outperformed by that obtained in
asymptotic limit. The maximum transmission distance significantly decreases when the number of total
exchanged signals N decreases. However, it still has a large improvement when comparing with original four-
state CVQKD protocol and its Gaussian-modulated protocol counterpart which also take finite-size effect into
account. Notice that the performance in the finite-size regime will converge to the asymtotic case if Nis large
enough. The detailed calculation of secret key rate in the finite-size regime can be found in appendix B.

Finally, we demonstrate the performance of the proposed long-distance CVQKD scheme in composable
security framework. The composable security is the enhancement of security based on uncertainty of the
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Figure 9. Composable secret key rate of the proposed long-distance CVQKD with one-photon subtraction as a function of N, the
number of exchanged signals. From top to bottom, solid lines denote the distances of d = 40, 80, 120 and 160 km. The dashed lines
correspond to the respective asymptotic case. Inset shows the composable secret key rate of the proposed scheme at long-distance
range, the lines from top to bottom denote the distances of d = 260, 280, 300 and 320 km, respectively. Excess noiseise = 0.01,
discretization parameter is d = 5, robustness parameter is €,q, < 10~ *and security parameter is € = 10~ 2°. Other intermediate
parameters can be found in appendix C.

finite-size effect [18] so that one can obtain the tightest secure bound of the protocol by carefully considering
every detailed step in CVQKD system [20]. In figure 9, we show the secret key rate of the proposed long-distance
CVQKD scheme with one-photon subtraction operation in the case of composable security, as a function of
total exchanged signals N. The performance is more pessimistic than that obtained in the finite-size regime,

let alone in the asymptotic limit. For example, assuming that N = 10'* and the minimal secret key rate is limited
to above 10~ ° bis per pulse, the maximal transmission distance in finite-size regime is approximate 320 km
(purple line in figure 8), while the maximal transmission distance is reduced to approximate 260 km (light blue
line in figure 9) when one considers the proposed scheme in composable security framework. Therefore, the
composable security, which takes the failure probabilities of every step into account, is the strictest theoretic
security analysis of CVQKD system so that one can obtain more practical secure bound. In addition, the
composable secret key rate also approaches the asymptotic value for very large N (dashed lines). The detailed
calculation of the secret key rate for composable security is shown in appendix C.

The asymptotic limit, the finite-size scenario and the composable security framework are the efficient
approaches to evaluate the performance of CVQKD system. Although the results vary with the different
approach, the trends of the performance are similar. Therefore, the proposed long-distance CVQKD using non-
Gaussian state-discrimination detector can beat other existing CVQKD protocols in terms of maximal
transmission distance and thus meet the requirement of long-distance transmission.
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5. Conclusion

We have suggested a novel long-distance CVQKD using non-Gaussian state-discrimination detector. The
discretely-modulated four-state CVQKD protocol is adopted as the fundamental communication protocol
since it can well tolerate the lower SNR and hence it is more suitable for the long-distance transmission
compared with its Gaussian-modulated counterpart. We deploy a non-Gaussian operation, i.e. photon-
subtraction operation at the transmitter, where the photon-subtraction operation is not only used for splitting
the signal, but also used for lengthening the transmission distance of CVQKD. Meanwhile, an improved state-
discrimination detector is applied at the receiver to codetermine the measurement result with coherent
detector. The state-discrimination detector can be deemed as the optimized quantum measurement for the
received nonorthogonal coherent states, beating the SQL using adaptive measurements in the form of fast
feedback. Therefore, Bob can obtain more precise result of incoming signal in the QPSK modulation with the
help of the state-discrimination detector. By exploiting multiplexing technique, the yielded signals are
simultaneously transmitted through an untrusted quantum channel, and subsequently sent to the state-
discrimination detector and coherent detector, respectively. Security analysis shows that the proposed scheme
can lengthen the maximal transmission distance, and thus outperform other existing CVQKD protocols.
Furthermore, by taking the finite-size effect and the composable security into account we obtain the tightest
bound of the secure distance, which is more practical than that obtained in asymptotic limit. In terms of
possible future research, it would be interesting to design an experiment to implement this long-distance
CVQKD scheme for its practical security analysis.
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Appendix A. Calculation of asymptotic secret key rate

We consider the calculation of asymptotic secret key rates of the proposed long-distance CVQKD scheme where
Alice performs heterodyne detection and Bob performs homodyne detection, respectively. Note that the state

p%l is not Gaussian anymore after photon-subtraction operation, we thus cannot directly use results of the
conventional Gaussian CVQKD to calculate the secret key rate. Fortunately, the secret key rate of state p%l is

more than that of the Gaussian state p§ 5, counterpart which has the identical covariance matrix according to
extremity of the Gaussian quantum states [21, 42, 43]. Therefore, the lower bound of the asymptotic secret key
rate under optimal collective attack can be given by

Kusym = P8¢, I (A B) — S(E: B)], (A1)

where (s the efficiency for RR, I(A : B) is the Shannon mutual information between Alice and Bob, and S(E : B)
is the Holevo bound [40] of the mutual information between Eve and Bob.

Assuming that Alice’s heterodyne detection and PBSs used for multiplexing are perfect, and Bob’s
homodyne detector is characterized by an transmittance 7and electronic noise v,;, then the detection-added
noise referred to Bob’s input can be given by xnom = [(1 — T) + va]/7. Inaddition, the channel-added noise is
expressed by xjine = (1 — 17)/1 + €. Therefore, the total noise referred to the channel input can be calculated by

Xtot = Xline + Xhom/n

_ltve (A2)
™

After passing the untrusted quantum channel, the covariance matrix F(Ajl)g3 has the form as follows

. I X'T Zio,
o) — (“ C"z) | e ) (A3)
’ €0, bI \/ﬁZz}UZ U(Y/ =+ Xline)]I
Asaresult, the Shannon mutual information between Alice and Bob, I(A : B), can be calculated by
I(A:B) = llogzﬁ, (A4)
2 Vs
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where V, = (a + 1)/2,Vy = band

nZy
Vap=Vy —
A|B A v
2
c
=a— —. A5
> (A5)

After Bob applies homodyne measurement, Eve purifies the whole system so that the mutual information
between Eve and Bob can be expressed as

S(E: B)= S(E) — S(E|B)
= S(AB) — S(A|B)
=Gk — 1) /2] + Gl(ky — 1) /2]

— Gl(ks — /2] = Gl(ks — 1 /2], (A6)
where the Von Neumann entropy G(x) is given by
G(x) = (x + Dlog,(x + 1) — xlog, x, (A7)

and the symplectic eigenvalues & ; 5 4 can be calculated by

K2, = %(A + JA? _ 4B), (A8)
and

K3y = %(c + /C? — 4D), (A9)
with

A=V 4+ 2V + xyne)? — 20247,
B=n(V?+ Ve — Z1)%
— AXhom + Vﬁ + U(V + Xline)

C >
NV + Xor)
\% B
D= Jﬁw (A10)
NV + Xor)

Appendix B. Secret key rate in the finite-size scenario

In the traditional CVQKD protocol, the secret key rate calculated by taking finite-size effect into account is
expressed as [41]

Kiini = %[ﬁl(f\ :B) = S (E : B) — A(m)], (BL)

where Band I(A : B) are as same as the aforementioned definitions, N denotes the total exchanged signals and n
denotes the number of signals that is used for sharing key between Alice and Bob. The remained signals

m = N — nisused for parameter estimation. epg, is the failure probability of parameter estimation and the
parameter A(n) is related to the security of the privacy amplification, which is given by

A(n) = 2dimH + 3),| k’giﬂ + %logz(l Jéon), (B2)

where € is a smoothing parameter, ep, is the failure probability of privacy amplification, and Hj is the Hilbert
space corresponding to the Bob’s raw key. Since the raw key is usually encoded on binary bits, we have

dim Hp = 2. For the proposed long-distance CVQKD scheme, the secret key rate in equation (B1) can be
rewritten as

nPﬁ‘
()
Kiini = Tf[ﬁcoptm : B) = S (E: B) — A(m)]. (B3)
In the finite-size scenario, S, (E : B) needs to be calculated in parameter estimation procedure where one
can find a covariance matrix I}, which minimizes the secret key rate with a probability of 1 — epg and canbe
calculated by m couples of correlated variables (x;, 3.); — 1...,, in the following form
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Table C1. The parameters of the proposed scheme in the
composable security framework.

Parameter Definition

N Total number of exchanged light pulses

n Size of final key if the protocol did not abort

d Number of bits on which each measurement
resultis encoded

leakgc Size of Bob’s communication to Alice during
error correction step

€pE Maximum failure probability of parameter
estimation step

€cor Small probability of the failure that the keys of
Alice and Bob do not identical and the protocol
did not abort

Npg Number of bits that Bob sends to Alice during
parameter estimation step

QT Qe Bounds on covariance matrix elements, which

Qmin must be apt in the realization of the protocol

X' tZ,0,
Pf PE ( / 2v/ 2 )’ (B4)
tZ]o, (12X’ + o)1

where t = /7 and 0> =1 + n(e — 3)are compatible with m sampled data except with probability ep/2. The

maximum-likelihood estimators  and o2, respectively, has the follow distributions

o2

Z:n: 1xi2

where tand o are the authentic values of the parameters. In order to maximize the value of the Holevo
information between Eve and Bob with the statistics except with probability epg, we compute t,,;, (the lower

A2
f~lt and 2% o x2(m — 1), (B5)
o2

bound of f)and o2, (the upper bound of o) in the limit of large 1, namely
[14+nE -3
tmin = \/ﬁ — Zepp/2 # >
mX
V2[1 + (e — 3
Ufnax =1+ 77(5 —3)+ Zepp/2 [ 77( ) > (B6)
Jm
where z,, ,, issuch that1 — erf(z,,, / J2) / 2 = epg / 2 and erfis the error function defined as
X
erf(x) = 2 f e 'dt. (B7)
m Jo

The above-mentioned error probabilities can be set to

€ = €pg = €pp = 1010. (BS)
Finally, one can calculate the secret key rate in the finite-size scenario using the derived bounds ¢, and 2, .

Appendix C. Secret key rate of the CVQKD in composable security

We detail the generation of secret key rate of the proposed long-distance CVQKD scheme provided by
composable security framework. In table C1, we show the definition of parameters in the composable security
case. Before the calculation, we give a theorem of composable security for the proposed scheme [20].

The proposed long-distance CVQKD protocol is e-secure against collective attacks if
€=26m + €+ epg/€ + €cor/€ + €ent/€ andifthe final keylength n is chosen such that

1 < 2NAyip(U) — NF(QM, Qmax Qminy
— leakEc - AAEP - Aent - ZIOgZL_’ (Cl)
€

where Hyp(U)is the empiric entropy of U, the maximum likelihood estimator (MLE) of H(U) to be

Aye(U) = —Zizd: \ P, log p, with p, = ;—N denotes the relative frequency of obtaining the value i, and 7; is the
number of times the variable U takes the value i for i€ {1, ---, 2d}, Fis the function computing the Holevo
information between Eve and Bob, and
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2
Auep = VN + 1)* + V16N (d + 1)log,——

sm

+ V4N log, 22 _ gEmd (C2)
€26m €
A = log, L — [ANIog?2N)log(2/ em) - (C3)
€

Now, we consider the calculation of secret key rate of the proposed long-distance CVQKD scheme provided
by composable security framework. Since the transmission channel is characterized by transmissivity nyand
excess noise ¢, the following model is used for error correction

- 1
BI(A : B) = 2Hwiew) — Z1eakEC, (C4)

where I(A : B) represents the mutual information between Alice and Bob, 3 denotes the reconciliation efficiency.
For the proposed protocol, we obtain

I(A:B)= %logZ(l + SNR)

- llog2(1 + ﬂ) (C5)
2 2 +mne

Moreover, assuming that the success probability of parameter estimation is at least 0.99, and hence the
robustness of the proposed protocol is €,,, < 10~ 2. Consequently, the values of random variables || X| |2, ||Y][?
and (X, Y) satisfy the following restraints

I1X]]> < (N + 3J/N)X/, (C6)
Y12 < (N + 3VN) (Y + Xiine) (C7)
(X,Y) > (N - 3JN) /12 (C8)

The above-mentioned restraints can be achieved from the covariance matrix I‘(A%a of the proposed CVQKD
scheme. According to these bounds, we have the definitions

e _ X1 |2[1 ., [logB36/cre) ] L ©)
N N/2

2
e _ 111 ll D M] o, (C10)
N/2

N
min _ (6 Y) 2 5. [1og(8/ epp)
Qmn — — o R C
¢ N 51X + 11Y119) N2 (C11)

Finally, we can calculate the secret key rate of the proposed scheme provided by composable security as follows

i max max min 1 1
Kcomp - (lj,[i(l - frob){ﬁcoptI(A : B) - F(Qu ) Qb ) Qc ) - N(AAEP + Aent + Zlogz E)} (CIZ)

In addition, we should optimize over all parameters compatible with e = 10~*°, However, in order to
simplify the data process, we make the following choices

€sm = € = 1072L, epp = €cor = €ent — 10741 (C13)

which slightly sub-optimizes the performance of the proposed CVQKD protocol [20].
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