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Abstract
Weapply themethod of shortcuts to adiabaticity to nonequilibrium systems. For unitary dynamics,
the systemHamiltonian is separated into two parts. One of themdefines the adiabatic states for the
state to follow and the nonadiabatic transitions are prevented by the other part. This property is
implemented to the nonequilibrium entropy production andwefind that the entropy is separated into
two parts. The separation represents the Pythagorean theorem for theKullback–Leibler divergence
and an information-geometric interpretation is obtained.We also study a lower bound of the entropy,
which is applied to derive a trade-off relation between time, entropy and state distance.

1. Introduction

Understanding nonequilibriumproperties of dynamical systems is a fascinating topic in physics and has been
studied intensively. Thefluctuations of thermodynamic functions are considered to be key properties, and the
Jarzynski equality [1, 2] and thefluctuation theorem [3, 4] play the prominent roles. The nonequilibrium
entropy production is one of quantities tomeasure nonequilibriumproperties of the system and has been
studied inmany contexts. Especially, knowing the lower bound is an important task since it determines
irreversibility, dissipation properties, efficiency and so on [5–11].

Thermally isolated quantum systems can be treated by the unitary dynamics of the Schrödinger equation. In
this paper we characterize the dynamics by themethod of shortcuts to adiabaticity (STA). Thismethod enables
us to achieve an adiabatic dynamics in afinite time. To prevent the nonadiabatic transitions, we introduce an
additional term called the counterdiabatic term. The fundamental ideawas pointed out using a simple two-level
Hamiltonian in [12] and the general formulationwas developed in several works [13–16]. Since then, the
method has been intensively studied in variousway [17].We can find applications to simple systems [18, 19],
scale-invariant systems [20], many-body systems [21–23], and classical systems [24–27] and so on. Themethod
can also be implemented experimentally to several systems [28–31]. It is also expected to be applied to quantum
computations such as the quantumannealing.

It should be stressed that STA is applied to any dynamical systems. STA is useful not only to control the
systembut also to describe general unitary dynamics. Aswe describe below, the systemHamiltonian is separated
into twoparts, H t H t H t0 1= +ˆ ( ) ˆ ( ) ˆ ( ), and the state satisfying the Schrödinger equation is given by adiabatic
states of H t0

ˆ ( ). Then, it would be an interesting problem to apply this separation to general nonequilibrium
processes.

In STA, a cost of the time evolutionwas studied in [32–35]. A trade-off relation between time, energy
fluctuation and state distance is known as the quantum speed limit [36] andwas discussed in the context of STA
in [37]. The applications of STA to thermodynamic systemswere studied in several works [38–41]. A universal
trade-off relationwas derived fromwork fluctuation relations in [42].

In this paper, we study properties of the nonequilibrium entropy production that are applicable to general
nonequilibriumprocesses. In thermally isolated systems, the entropy is directly related to thework average and
the present result is essentially equivalent to the result in [42]. However, the entropy is represented by the
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Kullback–Leibler (KL) divergence, which leads us naturally to the information-geometric interpretation of the
nonequilibriumprocess. Establishing this novel picture is themain aimof the present work.

The organization of this paper is as follows. In section 2, we discuss how a givenHamiltonian is separated
into twoparts. Then, themethod is applied to the nonequilibrium entropy production in section 3. In section 4,
we discuss lower bounds of the entropy by using the improved Jensen inequalities and derive a trade-off relation.
The last section 5 is devoted to conclusions.

2. STA for general dynamical systems

2.1. General formula
We start from reviewing themethod of STA, somewhat in a different way from the standard prescription
[13, 15], with the emphasis on its applicability to general dynamical systems. For a given time-dependent
Hamiltonian H tˆ ( ) and an initial state 0y ñ∣ ( ) , the time evolution of the state, ty ñ∣ ( ) , satisfies the Schrödinger
equation

t
t H t ti , 1y y

¶
¶

ñ = ñ∣ ( ) ˆ ( )∣ ( ) ( )

wherewe put 1 = .Whenwe start the time evolution from an eigenstate of the initialHamiltonian nñ∣
satisfying H n n0 0nñ = ñˆ ( )∣ ( )∣ , the state is written as

t U t n , 2ny ñ = ñ∣ ( ) ˆ ( )∣ ( )

whereU tˆ ( ) is the time evolution operator. Generally, the state vector is defined on aHilbert space and the total
number of indices is equal to the dimension of the space. The eigenstates nñ{∣ } satisfy the orthonormal relation
m n m n,dá ñ =∣ and the completeness relation n n 1nå ñá =∣ ∣ .

Wewrite theHamiltonian using the basis tny ñ{∣ ( ) }. TheHamiltonian is separated into the diagonal and

offdiagonal parts: H t H t H t0 1= +ˆ ( ) ˆ ( ) ˆ ( ). They are written respectively as

H t t t H t t t , 3
n

n n n n0 å y y y y= ñá ñáˆ ( ) ∣ ( ) ( )∣ ˆ ( )∣ ( ) ( )∣ ( )

H t t t H t t t . 4
m n

m m n n1 å y y y y= ñá ñá
¹

ˆ ( ) ∣ ( ) ( )∣ ˆ ( )∣ ( ) ( )∣ ( )

This separation indicates that the state ty ñ∣ ( ) is given by the eigenstates of H t0
ˆ ( )with the eigenvalue

t t H t tn n n y y= á ñ( ) ( )∣ ˆ ( )∣ ( ) . Themost general formof the state is

t c t , 5
n

n nåy yñ = ñ∣ ( ) ∣ ( ) ( )

where cn is a time-independent constant. H t1
ˆ ( ) is called the counterdiabatic term and is rewritten by using the

Schrödinger equation as

H t t t t ti , 6
m n

m m n n1 å y y y y= ñá ñá
¹

ˆ ( ) ∣ ( ) ( )∣ ˙ ( ) ( )∣ ( )

where the dot symbol denotes the time derivative. The counterdiabatic termprevents nonadiabatic transitions
between instantaneous eigenstates of H t0

ˆ ( ).
We note that the eigenstate of H t0

ˆ ( ) does not necessarily satisfy the Schrödinger equation. Following the
definition of the adiabatic state, we need to add an appropriate phase as

t t t t n t n t n texp i d d , 7n

t

n

t

0 0
ò òy ñ = - ¢ ¢ - ¢ á ¢ ¢ ñ ñ⎜ ⎟⎛

⎝
⎞
⎠∣ ( ) ( ) ( )∣ ˙ ( ) ∣ ( ) ( )

where n t ñ∣ ( ) is an eigenstate of H t0
ˆ ( ). Using the eigenstate set n t ñ{∣ ( ) }, we canwrite theHamiltonians (3) and

(6) in the same formwith the replacement t n tny ñ  ñ∣ ( ) ∣ ( ) .
Thus, the problemof solving the Schrödinger equation for a givenHamiltonian H tˆ ( ) reduces tofinding the

proper separation H t H t H t0 1= +ˆ ( ) ˆ ( ) ˆ ( ). In the engineering problem,we consider H t0
ˆ ( ) as the original

Hamiltonian and the additional counterdiabatic term is introduced to prevent the nonadiabatic transitions.
However, this procedure is problematic inmost cases since the counterdiabatic term generally takes a
complicated form and is hard tomanipulate [23]. Otherwise, we can consider the inverse engineering to keep the
original formof theHamiltonian [16]. Herewe set up the problemby defining the totalHamiltonian so that the
method is applicable to any dynamical systems. Although the separation of theHamiltonian is possible in any
systems, it is generally a difficult problem tofind the proper separation.

The time dependence of theHamiltonian appears through parameters in theHamiltonian. Since the state is
given by the instantaneous eigenstates of H0

ˆ , we consider that the eigenstates and eigenvalues depend on
parameters tl ( ) as n tl ñ∣ ( ( )) and tn l( ( )) respectively. On the other hand, the time derivative appears in H1

ˆ

2
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whichmeans that the counterdiabatic term iswritten as H t t1 l x l=ˆ ˙ ( ) ˆ ( ( ))where

m m n ni . 8
m n
åx l l l l l= ñá ¶ ñál
¹

ˆ ( ) ∣ ( ) ( )∣ ( ) ( )∣ ( )

It was discussed in [27] that, for classical systems, ξ is represented by theλ-derivative of a generalized action. The
action is introduced by using theHamilton–Jacobi theory and reduces to the adiabatic invariant in a special case,
which imply that the counterdiabatic term characterizes the dynamics. Althoughwe discuss quantum systems in
this paper, the following discussions are applicable to classical systems as well.

2.2.Quantumquench
It is worthmentioning that themethod of STA is applicable evenwhen a prepared initial state is driven by a time-
independent totalHamiltonian. Using the time-dependent basis, we can introduce a time-dependent H t0

ˆ ( ) and
H t1
ˆ ( ) towrite H H t H t0 1= +ˆ ˆ ( ) ˆ ( ).We note that the separation is useful only when the initial state is not in the
eigenstate of theHamiltonian. Such a situation is realized in the problemof quantumquenchwherewe consider
the state evolution under a sudden change of theHamiltonian [43].

First, we prepare the state as an eigenstate of theHamiltonian H
0ˆ ( )
. The eigenstate nñ∣ satisfies the eigenvalue

equation

H n n . 9n
0 0ñ = ñˆ ∣ ∣ ( )( ) ( )

Then, at t=0, we start the state evolution by a differentHamiltonian Ĥ . The state is given by t nen
Htiy ñ = ñ-∣ ( ) ∣ˆ

wherewe set the initial condition n0ny ñ = ñ∣ ( ) ∣ .
Aswe explained in the general formulation, theHamiltonian is separated into two parts by using the basis
tny ñ∣ ( ) . Using the fact that the totalHamiltonian is time-independent at t 0> , we canwrite

H H H0 00 1= +ˆ ˆ ( ) ˆ ( )where H 00
ˆ ( ) is the diagonal part with respect to the basis nñ{∣ }and satisfies

H H, 0 0
0

0 =[ ˆ ˆ ( )]( )
. H 01

ˆ ( ) is the offdiagonal part and is defined by H H 00-ˆ ˆ ( ). For the time-evolved state, H t0
ˆ ( )

and H t1
ˆ ( ) are written respectively as

H t H t te 0 e , 10Ht Ht

n
n n n0

i
0

i å y y= = ñá-ˆ ( ) ˆ ( ) ∣ ( ) ( )∣ ( )ˆ ˆ

H t He 0 e , 11Ht Ht
1

i
1

i= -ˆ ( ) ˆ ( ) ( )ˆ ˆ

where t H tn n n y y= á ñ( )∣ ˆ ∣ ( ) is time independent. The problemof quantumquench is reduced to solving the
eigenvalue equation if we know the formof H t0

ˆ ( ). Of course, it is still a difficult problem in general.

2.3. Example
The simplest example is the systemwhere the dimension of theHilbert space is equal to two. The general
Hamiltonian is written by using the Pauli-operator vector ŝ as

h h
h h

h
H t t t

t t

t

1

2

1

2
. 120

0 0

0
2

s s= = +
´⎛

⎝⎜
⎞
⎠⎟

ˆ ( ) ( ) · ˆ ( ) ( ) ˙ ( )
( )

· ˆ ( )

The second equality denotes the separation of H t0
ˆ ( ) and H t1

ˆ ( ). For a given vector function h t( ), we need tofind
h t0( ). Although the explicit general formula towrite h t0( ) in terms of h t( ) is not known, it is clear from the
above general discussion that such a function h t0( ) can be obtained in principle.

An examplewhere the totalHamiltonian is time-independent was treated in [22].We exploit that example to
see belowhow themethodworkswhen it is applied to the problemof quantumquench.

We consider h h0, 0,= ( )where h is a real constant. In this case, the Schrödinger equation is easily solved
by the standard textbookmethod. The general formof the state is given by

t c ce e , 13
ht hti
2

i
2y ñ = +ñ + -ñ+

-
-∣ ( ) ∣ ∣ ( )

where ñ∣ are eigenstates of zŝ satisfying zs ñ =  ñˆ ∣ ∣ , and c are complex constant values determined from
the initial condition. If we start the time evolution fromone of the eigenstates, the state remains in the same
eigenstate throughout the time evolution.

We analyze the same systemby using STA.Using the formula in (12), we canfind themost general formof
h t0( ) as

h t h

ht

htcos

sin cos

sin sin

cos

, 140 0

0 0

0 0

0

q
q j
q j

q
=

+
+

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( )

( )
( ) ( )

3
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where 0q and 0j are real constants. Each part of theHamiltonian is given respectively as

H t h

ht

ht
1

2
cos

sin cos

sin sin

cos

, 150 0

0 0

0 0

0

sq
q j
q j

q
=

+
+

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

ˆ ( )
( )
( ) · ˆ ( )

H t h

ht

ht
1

2
sin

cos cos

cos sin

sin

. 161 0

0 0

0 0

0

sq
q j
q j

q
= -

+
+

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

ˆ ( )
( )
( ) · ˆ ( )

In this example, we see that the time-dependent parameter is given by t htl =( ) . The corresponding state is
given by a linear combination of the adiabatic states of H t0

ˆ ( ).We obtain

t c ce
cos

e sin
e

e sin

cos
, 17

ht

ht
2

i
2

i
2

2

ht hti
2

0

0 0

i
2

0 0

0
y ñ = +

-q

j q

j q

q+
-

+
-

- +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∣ ( ) ˜ ˜ ( )

( )

( )

where the vector representation a b a bT = +ñ + -ñ( ) ∣ ∣ is used and c˜ are complex constant values. This state
is equivalent to (13) but the separation of the vector has a differentmeaning. If we start the time evolution from
one of the eigenstates for H 00

ˆ ( ) (one of two vectors at t = 0 in the above equation), the state remains in the same
eigenstate of H t0

ˆ ( ) (one of two vectors at t in the above equation) throughout the time evolution. This picture
holds evenwhen the initial state is not in the eigenstate of the initial Hamiltonian.Wenote that the eigenstate is
time dependent in this case. This result will be a useful tool to understand the quench dynamics.

The important conclusion in this section is that the separation of theHamiltonian is very general and is
applied for arbitrary choices of theHamiltonian as we see in the above derivation. Thismeans that the general
dynamics is characterized by STA. As a possible application, we consider the nonequilibrium entropy
production in the following.

3.Nonequilibrium entropy production

3.1. Entropy production andPythagorean theorem
To characterize nonequilibrium states, we use thework done on the system as one of themeasure.We prepare
the state in contact with a bath and the initial state is in equilibrium. Then, the system is thermally isolated from
the outside and is evolved under a control by the external agent. Thework is obtained by the two-time
measurement scheme.

The initial state is assumed to be distributed according to the Boltzmann distribution p Z0 en
0

0
n= b-( ) ( )

where Z en0
0n= å b- ( ) andβ is the inverse temperature. The time evolution of the system is described by the

time-dependentHamiltonian H tˆ ( ) and thework is defined by the energy difference between the initial and final
states. Since the initial state is distributed randomly, we can define thework distribution function

P W t p t W H t t

p n t W H t n t

, 0 0

0 0 . 18

n
n n n n

n
n n





å

å

y d y

d

= á - - ñ

= á - - ñ

( ) ( ) ( )∣ ( ( ˆ ( ) ( )))∣ ( )

( ) ( )∣ ( ( ˆ ( ) ( )))∣ ( ) ( )

Themain question here is whetherwe can find any useful information on this work distribution by using the
separation of theHamiltonian H t H t H t0 1= +ˆ ( ) ˆ ( ) ˆ ( ).

We aremainly interested in thework average W W P W t Wd ,t ò=[ ] ( ) . In [42], it was shown that the
average is given by

W p n t H t n t p t0 0 0 0 , 19t
n

n n
n

n n n  å å= á - ñ = -[ ] ( ) ( )∣( ˆ ( ) ( ))∣ ( ) ( )( ( ) ( )) ( )

with the use of the relation n t H t n t 01á ñ =( )∣ ˆ ( )∣ ( ) . This equation shows that the counterdiabatic term H t1
ˆ ( )

does not contribute to the average. It can also be shown that the squared average W t
2[ ] is separated into two parts

as

W p t p n t H t n t0 0 0 , 20t
n

n n n
n

n
2 2

1
2

 å å= - + á ñ[ ] ( )( ( ) ( )) ( ) ( )∣ ˆ ( )∣ ( ) ( )

and the second termhas a geometricmeaning as we discuss below.
Using the averagedwork, we define the nonequilibrium entropy production

t W F F , 21t t 0b bS = - -( ) [ ] ( ) ( )

where Ft is the free energy for theHamiltonian H tˆ ( ) and is defined as F Zlnt tb- = . Z Tret
H t= b- ˆ ( ) is the

partition function defined at each t.We note that thefinal state is not necessarily in equilibrium.

4
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tS( ) is a non-negative quantity. This property is understood from the relation that tS( ) is written by theKL
divergence of two density operators:

t D t t0 . 22KL r rS = ( ) ( ˆ ( )∣∣ ˆ ( )) ( )

Weuse (19) to derive this equation. TheKL divergence is defined as D P Q P P P QTr ln Tr lnKL = -( ˆ∣∣ ˆ ) ˆ ˆ ˆ ˆ and the
density operators are defined as

t
Z

U t U t
Z

U t H U t0
1

e
1

exp 0 , 23H

0

0

0

r b = = -b-ˆ ( ) ˆ ( ) ˆ ( ) ( ˆ ( ) ˆ ( ) ˆ ( )) ( )ˆ ( ) † †

t
Z

1
e . 24

t

H tr = b-ˆ ( ) ( )ˆ ( )

t U t U t0 0r r =ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )†
is the time-evolved state of the initial distribution 0r̂ ( ) and represents the actual

distribution of states at each t. On the other hand, tr̂ ( ) represents the distribution for the canonical equilibrium
states of theHamiltonian H tˆ ( ). Generally, the evolved state is not in equilibrium and these operators are not
equal with each other. The above relation shows that the entropy production represents how far the
nonequilibrium state is from the equilibriumone and is written by the divergence of two distributions.

Aswe see in (23), t0r ˆ ( ) is characterized by the effectiveHamiltonian H t U t H U t0 0 =ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )†
. Its

spectral decomposition is given by

H t n t n t0 0 , 25
n

nå = ñáˆ ( ) ( )∣ ( ) ( )∣ ( )

which has a similar form to H t0
ˆ ( ). The eigenstates are time dependent but the eigenvalues are not. This

Hamiltonian satisfies the equation for the Lewis–Riesenfeld invariant [44]:

H t

t
H t H t H t H ti

0
, 0 , 0 . 261

¶ 
¶

=  = 
ˆ ( ) [ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] ( )

Wenote that H t0
ˆ ( ) and H t0ˆ ( ) commutes with each other. This equationwas studied systematically in [23]

and the Lax form for classical nonlinear integrable systems is shown to be useful tofind a pair H t H t0 , 1( ˆ ( ) ˆ ( )).
The relation H t H t00 = ˆ ( ) ˆ ( ) holds when the energy eigenvalues of H t0

ˆ ( ) are independent of t. In this special
case, the entropy is given by the divergence between two canonical distributions t Ze H t

t0
00r = b-ˆ ( ) ˆ ( ) ( ) and tr̂ ( )

as

t D t t D t t F F0 , 27t tKL KL 0
0r r r r bS =  = = -( ) ( ˆ ( )∣∣ ˆ ( )) ( ˆ ( )∣∣ ˆ ( )) ( ) ( )( )

where F Zln lnTret t
H t0 0 0b- = = b-( ) ( ) ˆ ( ). The entropy is given by the free energy difference. Here we use

again n t H t n t 01á ñ =( )∣ ˆ ( )∣ ( ) .

In the general case H t H t00 ¹ ˆ ( ) ˆ ( ), by using the separation of theHamiltonian H t H t H t0 1= +ˆ ( ) ˆ ( ) ˆ ( ),
we can easily show the entropy production is separated into two parts:

t D t t t t0 . 28KL 0 1r rS =  = S + S( ) ( ˆ ( )∣∣ ˆ ( )) ( ) ( ) ( )

Each term iswritten by using theKL divergence:

t D t t

Z
t F F

0

1
e 0 , 29

n
n n t

0 KL 0

0

0
0

0n  å

r r

b b

S = 

= - + -b-

( ) ( ˆ ( )∣∣ ˆ ( ))

( ( ) ( )) ( ) ( )( ) ( )

t D t t F F . 30t t1 KL 0
0r r bS = = -( ) ( ˆ ( )∣∣ ˆ ( )) ( ) ( )( )

t0S ( ) represents theKL divergence between the canonical distributions of H t0ˆ ( ) and H t0
ˆ ( ) and is expressed

by the spectrumdistance between 0n{ ( )}and tn{ ( )}. It is independent of H t1
ˆ ( ). On the other hand, t1S ( )

represents a distance due to the counterdiabatic term since it goes to zerowhen H t 01 =ˆ ( ) . Thus, the entropy
production is separated into two parts and each part plays a different role.

We note that the difference between tS( ) and t1S ( ) has been studied in someworks. In [39], the difference
was studied for a process in anOtto cycle and the result was plotted for the harmonic-oscillatorHamiltonian. In
[11], t1S ( )was defined in a process of the projectivemeasurement to derive the inequality t t1S S( ) ( ). Our
result is derived as an equality and is applicable to general systems.

3.2. Information-geometric interpretation
It is well known that theKL divergence is a generalization of a squared distancemeasure. Thismeans that (28)
represents the Pythagorean theorem andhas a geometricmeaning. The theoremhas been closely discussed in
thefield of information geometry [45]. In the following, we interpret the result (28) to refine themethod of STA
from the aspect of the information geometry [45].

5
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TheHamiltonian is generally written as

H X . 31
i

i iåb q q- =ˆ ( ) ˆ ( )

Although the following discussions hold for classical systems aswell, we use generalfinite-dimensional quantum
systems for the description. Then, Xi{ ˆ } represents a set of independent operators and the number of operators is
determined by specifying theHilbert space. The coefficient , ,...1 2q q q= ( ) plays the role of coordinates. The
coordinate system is used to specify the probability distribution. In the present studywe treat the canonical
distribution

Hexp . 32r q b q y q= - -ˆ ( ) ( ˆ ( ) ( )) ( )

The normalization function y q( ) defined as lnTre Hy q = b q-( ) ˆ ( ) is a convex function and represents the free
energy Fb- in physics.

For a coordinate system θwhere a convex function y q( ) is defined, we can introduce the dual coordinate
system *q and the dual convex function * *y q( ) by using the Legendre transformation. The dual coordinate is
defined by

, 33i
i

*q
q
y q=

¶
¶

( ) ( )

and the corresponding convex function is

, 34* * *y q q q y q= -( ) · ( ) ( )

wherewe use the abbreviation i i i* *q q q q= å· . In the canonical distribution, the dual coordinate is written as
the canonical average of operators:

X X HTr exp . 35i i H i*q b q y q= á ñ = - -ˆ ˆ ( ˆ ( ) ( )) ( )

The state in the canonical distribution can also be uniquely specified by *q instead of using θ.
In a coordinate systemwhere a convex function y q( ) is defined, the Bregman divergence is introduced as a

distancemeasure

D . 36* * * *q q y q y q q q q y q y q q q¢ = - ¢ - ¢ - ¢ = + ¢ - ¢y ( ∣∣ ) ( ) ( ) · ( ) ( ) ( ) · ( )

The last expression shows that the dual divergence can also be defined as D D* * *q q q q¢ = ¢y y( ∣∣ ) ( ∣∣ ).We note that
the divergence is not symmetric in general: D Dq q q q¢ ¹ ¢y y( ∣∣ ) ( ∣∣ ). However, by considering an infinitesimal
distance, it has a symmetric form,which defines the Riemannianmetric in themanifold parametrized by the
coordinate θ. In the present case where the probability distribution is given by the canonical distribution, the
Bregman divergence is equivalent to theKL divergence:

D D D . 37KL* * *q q q q q q¢ = ¢ = ¢y y( ∣∣ ) ( ∣∣ ) ( ∣∣ ) ( )

Nowwediscuss the geometricmeaning of the Pythagorean theorem. Sincewe are interested in theKL
divergence, we treat the dual divergence D DKL* * *q q q q¢ = ¢y( ∣∣ ) ( ∣∣ ). For given three points Pq , Qq and Rq ,We
consider the condition such that the dual Pythagorean theoremholds:

D P R D P Q D Q R . 38* * *= +y y y( ∣∣ ) ( ∣∣ ) ( ∣∣ ) ( )

A simple calculation gives

0. 39P Q Q R* *q q q q- - =( ) · ( ) ( )

The affine coordinate system θ introduced in (32) represents a dually flatmanifold. The geodesic is parametrized
as a straight line connecting two points,Q andR, as 1QR Q Rq t tq t q= + -( ) ( ) where τ parametrizes the
straight line and takes between 0 and 1. Then, Q Rq q- represents the tangent vector. In the sameway the dual
geodesic line is written by using the dual coordinate. Equation (39)means that the dual geodesic P Q* *q q- is
perpendicular to the geodesic Q Rq q- .

We apply the general argument to the present problem. Three points,P,Q andR, are represented by the
canonical distributions of H t0ˆ ( ), H t0

ˆ ( ) and H tˆ ( ) respectively. Then, the counterdiabatic term iswritten as

H t t t X. 40R Q1b q q- = -ˆ ( ) ( ( ) ( )) · ˆ ( )

To identify P Q* *q q- , we note that the dual geodesic is represented by the canonical average of operators. The

point P is the average in terms of H t0ˆ ( ) andQ is in terms of H t0
ˆ ( ). TheseHamiltonians are diagonalized by

the basis n t ñ{∣ ( ) }. Then, the dual geodesic is defined on a submanifold where theHamiltonian is diagonalized by
the same basis. Using the relation n t H t n t 01á ñ =( )∣ ˆ ( )∣ ( ) , we conclude that the perpendicular condition is
represented as
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H t H t

t t X X

t t t t

0

. 41

H t H t

R Q H t H t

R Q P Q

1 0 1

0

0

0

* *

b b

q q

q q q q

=- á ñ + á ñ

= - á ñ - á ñ

= - -





ˆ ( ) ˆ ( )

( ( ) ( )) · ( ˆ ˆ )
( ( ) ( )) · ( ( ) ( )) ( )

ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( )

The dual geodesic connecting P andQ is interpreted the dual projection ofP to aflat submanifold. Theflat
submanifold includes points on the geodesicQR, and is parametrized by the coordinate θ. Each point is
represented by the canonical distribution of theHamiltonian H t H t t Xe e0 q= +ˆ ( ) ˆ ( ) ( ) · ˆ . The coordinate teq ( )
satisfies the perpendicular condition

n t t X n t 0. 42eqá ñ =( )∣ ( ) · ˆ ∣ ( ) ( )

The pointQ represents the nearest point ofP in the ‘e-flat’ submanifold. In the sameway, we can define the ‘m-
flat’ submanifold including the dual geodesic PQ, which is parametrized by the dual coordinate. Then, the
geodesicRQ represents the projection of the pointR to the submanifold. This property is known as the
projection theorem in the information geometry.

We summarize the information-geometric interpretation of the Pythagorean theorem infigure 1. This
interpretation shows that theHamiltonian H t0

ˆ ( ) plays an important role for the difference between H t0ˆ ( )
and H tˆ ( ). For a given flatmanifold includingR, the pointQ is uniquely determined by the dual projection ofP
to themanifold. Of course, it is a difficult problem tofind the propermanifold and this interpretation is of no use
in general tofind H t0

ˆ ( ) for a given H tˆ ( ). Nevertheless, we expect that this new picturewill be a guiding principle
to design the system.

4. Lower bounds of entropy production

4.1. Improved Jensen inequality
In the previous section, we studied that the nonequilibrium entropy is separated into twoparts according to
their roles and is represented by theKL divergence. TheKL divergence represents a degree of separation of two
points and themetric is obtained froman infinitesimal separation.

It is an interesting problem to study the lower bound of the entropy production since it characterizes the
efficiency of the system control. The counterdiabatic termhas a geometricmeaning and is related to the Fubini–
Study distance [46, 47]. In the settingwe are studying in this paper, we consider a time evolution from 0r̂ ( ) to

t U t U t0 0r r =ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )†
. The length between two state is defined, according to [42], by

Figure 1. Information-geometric interpretation of the nonequilibrium entropy production. TheHamiltonian is evolved from H 0ˆ ( )
to three different forms H t U t H U t0 0 =ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )† , H t0

ˆ ( ) and H t H t H t0 1= +ˆ ( ) ˆ ( ) ˆ ( ), and their canonical distributions are
denoted by P,Q andR respectively. Then, the pointsmake a right triangle and the entropy production satisfies the Pythagorean
theorem D P R D P Q D Q RKL KL KL= +( ∣∣ ) ( ∣∣ ) ( ∣∣ ). The dual geodesic PQ is perpendicular to the geodesic QR.
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t t p n t H t n t

t p n t n t n t n t

0 , 0 d 0

d 0 1 . 43

t

n
n

t

n
n

0
1
2

0

ò

ò

å

å

r r  = ¢ á ¢ ¢ ¢ ñ

= ¢ á ¢ - ¢ ñá ¢ ¢ ñ

ℓ ( ˆ ( ) ˆ ( )) ( ) ˙ ( )∣ ˆ ( )∣ ˙ ( )

( ) ˙ ( )∣( ∣ ( ) ( )∣)∣ ˙ ( ) ( )

This is considered to be a natural length since it satisfies t t0 , 0 0 , 0r r r r ℓ ( ˆ ( ) ˆ ( )) ( ˆ ( ) ˆ ( ))where 
represents the Bures distance:

, arccos Tr . 441 2 1 2 1 r r r r r=( ˆ ˆ ) ˆ ˆ ˆ ( )

Wenote that the integrand inℓappears in the squared average of thework as in (20). In the nonequilibrium
entropy production, we treat the divergence between t0r ˆ ( ) and tr̂ ( ) and it is expected to be bounded from
belowby an appropriate distance. From amathematical point of view, theKL divergence is bounded belowby
the Bures distance. It was shown in [9, 10, 48] that

D
8

, . 45KL 1 2 2
2

1 2r r
p

r r( ˆ ∣∣ ˆ ) ( ˆ ˆ ) ( )

When this relation is applied to the entropy production t D t t0KL r rS = ( ) ( ˆ ( )∣∣ ˆ ( )), we can find a lower limit.
However, this relation holds at each t and does not suitable to characterize the efficiency of the time evolution. In
this section, we study a different lower bound of the nonequilibrium entropy by using the improved Jensen
inequality and apply it to derive a trade-off relation for the time evolution.

The property t 0S( ) can be shownby using the Jensen inequality

e e e , 46W W
t

F Ft t 0 =b b b- - - -[ ] ( )[ ] ( )

where the equality represents the Jarzynski formula obtained from the definition of thework distribution (18).
Tofind a nontrivial lower bound of tS( ), we use the improved Jensen inequality derived in [49]. Using the
formula in appendix A, we obtain

C t W W
e

e

1
, 47W

W
t

t t2
2

t
2

+ -
b

b

b
-

-[ ]
( )[( [ ] ) ]

( )[ ]

whereC(t) is a positive function and is written as

C t
W W

W W
exp

3
. 48t t

t t

3

2

b
= -

-
-

⎛
⎝⎜

⎞
⎠⎟( ) [( [ ] ) ]

[( [ ] ) ]
( )

This gives a tighter bound of tS( ) than (46).We canwrite

t C t W Wln 1
2

. 49t t

2
2 b

S + -
⎛
⎝⎜

⎞
⎠⎟( ) ( )[( [ ] ) ] ( )

The bound is written by the second variance ofW. Using (19) and (20), we have

W W p n t H t n t0 . 50t t
n

n
2

1
2 å- á ñ[( [ ] ) ] ( ) ( )∣ ˆ ( )∣ ( ) ( )

The formof the right-hand side appears in (43) andwe canwrite

t C t

C t

d e 1
2

0 , 0

2
0 , 0 , 51

t
t

0

2

min

2

min 





ò
b

r r

b
r r

¢ - 



S ¢ ℓ ( ˆ ( ) ˆ ( ))

( ˆ ( ) ˆ ( )) ( )

( )

where Cmin represents theminimumvalue ofC(t). This inequality represents a trade-off relation. The left-most
hand side represents the time integration of a velocity and the right-most hand side represents a distance.We

note that e 1t -S( ) plays the role of velocity. This is a non-negative quantity andmeasures a degree of
separation from the equilibrium state. For a given distance, a large-t is required for a near-equilibriumprocess,
and a small-t for a far-from-equilibrium one. Thus, we have a trade-off relation between time, entropy and state
distance.

We note that the coefficientC(t) is determined by the ratio of second- and third-order fluctuations ofW. It
highly depends on the system and is a nonuniversal quantity. On the other hand, the average of thework is
bounded frombelowby the second fluctuationwhich is related to the universal geometric distance.We also note
that this lower limit is negligible at the thermodynamic limit since the left-hand side of (49) depends linearly on
the system size and the right-hand side logarithmically. The present result is important only for small systems
where thefluctuation plays a significant role.
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Wecan improve the bound by using the property that the entropy production is separated into twoparts. It
is possible tofind a lower bound for each part, although the physicalmeaning is not evident.

t D t t00 0r rS = ( ) ( ˆ ( )∣∣ ˆ ( )) represents the divergence for systemswithout the counterdiabatic term andwe
obtain

C t W We 1
2

, 52t
t t

2

0
0 2 00  b

- -S ( )[( [ ] ) ] ( )( ) ( ) ( )

where

C t
W W

W W
exp

3
. 53t t

t t
0

0 3 0

0 2 0

b
= -

-
-

⎛
⎝⎜

⎞
⎠⎟( ) [( [ ] ) ]

[( [ ] ) ]
( )

( ) ( )

( ) ( )

The average denoted by t
0[ ]( ) is calculated from the distribution

P W t p n t W H t n t, 0 0 . 54
n

n n
0

0 å d= á - - ñ( ) ( ) ( )∣ ( ( ˆ ( ) ( )))∣ ( ) ( )( )

This result is derived in the sameway as tS( ) from the improved Jensen inequality.We note that the relation
W Wt t

0=[ ] [ ]( ) holds as we see from (19).
The bound of t D t t1 0r rS =( ) ( ˆ ( )∣∣ ˆ ( )) is calculated from the improvedGibbs–Bogoliubov inequality, which

can be derived from the improved Jensen inequality. The detail is described in appendix B andwe obtain

C t H te 1
2

, 55t
t

2

1 1
2 01  b

- á ñS ( ) ˆ ( ) ( )( ) ( )

where

C t
H t H t H t H t

H t
exp

3

, ,
, 56

t t

t

1
1
3 0 1

2 1 1 0
0

1
2 0

b
= -

á ñ - á ñ

á ñ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

ˆ ( ) [ ˆ ( ) [ ˆ ( ) ˆ ( )]]

ˆ ( )
( )

( ) ( )

( )

and the average is with respect to H t0
ˆ ( ) as

Z

1
Tr e . 57t

t

H t0
0

0á ñ = b- ( ) ( )( )
( )

ˆ ( )

In this case, the second order fluctuation in the right-hand side of (55) is written as

H t p t n t n t n t n t1 , 58t
n

n1
2 0 åá ñ = á - ñá ñˆ ( ) ( ) ˙ ( )∣( ∣ ( ) ( )∣)∣ ˙ ( ) ( )( )

where p t Zen
t

t
0n= b-( ) ( ) ( ). which is slightly different from the fluctuation in the right-hand side of (50). It is

not clearwhether this quantity is further bounded frombelow by a geometric distance.
From a practical point of view, the sumof the lower bounds for t0S ( ) and t1S ( ) is expected to be larger than

the bound for tS( ) and can be a good approximation of the entropy production.We study simple examples in
the next section.

4.2. Examples
First, we consider the two-level system. Aswementioned in section 2, theHamiltonian H t H t H t0 1= +ˆ ( ) ˆ ( ) ˆ ( )
is given by

n n nH t h t t t t
1

2

1

2
, 59s s= + ´ˆ ( ) ( ) ( ) · ˆ ( ( ) ˙ ( )) · ˆ ( )

where h(t) is positive and n t( ) is a unit vector.We note that nh t t( ) ( ) corresponds to h t0( ) in (12). In the present
example, tS( ) is calculated exactly:

t
h t h h0

2
tanh

0

2
ln

cosh

cosh
, 60

h t

h
0

2

0

2

b b
S = -

-
+

b

b
⎜ ⎟⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )
( )( ) ( ( ) ( )) ( ) ( )

( )

( )

t ln
cosh

cosh
, 61

h t

h t
1

2

2

S =

b

b

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
( )
( )( ) ( )

˜( )

( )

where n nh t h t t t2 2= + ´˜( ) ( ) ( ( ) ˙ ( )) . t0S ( ) and t1S ( ) are respectively bounded below in the form
t tln 10 0 dS +( ) ( ( )) and t tln 11 1 dS +( ) ( ( )).We note that the calculation of the bound for tS( ) in (49) is

cumbersome compared to those of t0S ( ) and t1S ( ). This is becausewe need to calculate thefluctuations of the
totalHamiltonian. Using the decomposition, we can calculate a boundmore easily.
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Weconsider an example

h t t1
1

2
cos 2 , 62= +( ) ( ) ( )

n nt t tsin , 632 2´ =( ( ) ˙ ( )) ( )

with 2b = . The result is plotted infigure 2.We see that the lower bound gives a good approximation of tS( ) in
this example.We also plot t0S ( ) infigure 3 and t1S ( ) in figure 4 to compare the result with the different bound
in (45). The result shows that our bound becomes better than the bound from (45) in some ranges of the
parameters, and becomesworse in the other cases.

The second example is the harmonic oscillator where theHamiltonian is written as

H t
m

p
m t

x
t

t
xp px

1

2 2 4
, 642

2
2w w

w
= + - +ˆ ( ) ˆ ( ) ˆ ˙ ( )

( )
( ˆ ˆ ˆ ˆ) ( )

where the last term represent the counterdiabatic term [19]. t0S ( ) and t1S ( ) are respectively calculated as

t
t 0

2 tanh
ln

sinh

sinh
, 65

t

0 0

2

2

0

2

b w w
S =

-
-

bw

bw

bw

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( )

( )
( )( ) ( ( ) ( )) ( )

( )

( )

( )

t ln
sinh

sinh
, 66

t

t1
2

2

S = -

b

bw

W⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( )
( )( ) ( )

( )

( )

where t t t t22 2w w wW = -( ) ( ) [ ˙ ( ) ( ( ))] .We note that the condition t t 22 w w( ) ∣ ˙ ( )∣ is required tomake
tW( ) real.We parametrize tw ( ) as

Figure 2. t t t0 1S = S + S( ) ( ) ( ) for a two-level system. The result is periodic and is plotted for one periodπ.

Figure 3. t0S ( ) for a two-level system.
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t t1
1

2
cos , 67w = -( ) ( )

and set 2b = . The result is plotted infigure 5. Again, we can obtain a good approximation of tS( ) using the
lower bound.We see that t1S ( ) is negligible at t p~ . This is because tẇ ( ) takes a small value around the point.

5. Conclusions

In conclusion, we have discussed nonequilibriumproperties of thermally isolated systems by using STA. The
main conclusions in this paper are (i) STA is applicable to any dynamical systems, (ii) the entropy production is
separated into two parts and the information-geometric interpretation is possible and (iii) the entropy
production has a lower limit which is used to derive a trade-off relation.

We have stressed that the idea of STA is applicable to any nonequilibriumprocesses. The property that the
Hamiltonian is separated into two parts is directly reflected to the nonequilibrium entropy production. The
Pythagorean theoremopens up a novel perspective in studying the nonequilibrium systems. Separation of the
Hamiltonian can be used not only to solve the dynamical problems but also to characterize the nonequilibrium
properties. It will also be useful tofind an efficient algorithm for a dynamical system.

The lower bound of the entropy production gives a new type of trade-off relation between time and a notion
of distance to equilibrium. To derive the lower bound, we used the improved Jensen inequality. Although there
is no physicalmeaning of this inequality, the lower limit is represented bywork fluctuations and is related to the
geometric distance of two states. It is interesting to note that the entropy plays a role of velocity. This can be
understood intuitively since the entropy becomes small for a quasistatic process where a large time is required to
change the state to a different one.

Although it is still a difficult problem tofind the proper separation of a given general Hamiltonian, we can
invent, for example, a new approximationmethod from an information-geometric point of view. Actually, the
projection theorem is utilized tofind an optimized solution in the problemof information processing. The

Figure 4. t1S ( ) for a two-level system.

Figure 5. t t t0 1S = S + S( ) ( ) ( ) for a harmonic oscillator system. The result is plotted for half periodπ.
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present work is only the beginning for applications of the concept of the information geometry to
nonequilibriumdynamics.We expect that we canfind a new efficient algorithmbased on a picture that we
discussed in this paper.

Acknowledgments

The author is grateful to Ken Funo, TomoyukiObuchi andKeiji Saito for useful discussions and comments. This
workwas supported by JSPSKAKENHIGrantNo. 26400385.

AppendixA. Jensen inequality

For a convex function f of randomvariablesX, the average satisfies the inequality

f X f X , A.1á ñ á ñ( ) ( ) ( )

where áñdenotes the averagewith respect toX. The standard Jensen inequality is obtained by setting f X eX=( ) .
To improve the inequality, Decoster used the convex function [49]

f X X
X X

N
e 1

2 2 1
, A.2N

X
N2 2 1

= - + + + +
-

-


⎛
⎝⎜

⎞
⎠⎟( )

! ( )!
( )

whereN is integer. The caseN=1 gives the standard inequality e eX Xá ñ á ñ. Herewe takeN=2 to improve the
inequality. By using the replacement X X X a - á ñ + whereα is real, we have

X X X X X X
e 1 e

2

3

3
. A.3X X

2 3 2

 a
á ñ +

á - á ñ ñ
+

á - á ñ ñ + á - á ñ ña-á ñ -
⎡
⎣⎢

⎤
⎦⎥

( )
!

( ) ( )
!

( )

Tofind the tightest inequality, we chooseα so that the right-hand side of this equation ismaximized.Wefind
X X X X33 2a = -á - á ñ ñ á - á ñ ñ( ) ( ( ) ) and obtain

X X X X

X X
e 1

2
exp

3
. A.4X X

2 3

2
á ñ +

á - á ñ ñ á - á ñ ñ
á - á ñ ñ

-á ñ
⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( )

( )

Appendix B.Gibbs–Bogoliubov inequality

As an application of the Jensen inequality, we consider the free energy calculated from the partition function

Z Tre e . B.1H F= =b b- - ( )

Wewrite theHamiltonian H H H0 1= + . Then, using the standard Jensen inequality, we can obtain

Z Z e B.2H
0

1 0 b- á ñ ( )
where Z Tre eH F

0
0 0= =b b- - and ZTr e H

0
0á ñ = b- ( ) . Thus, we have

F F H . B.30 1 0 + á ñ ( )

This is theGibbs–Bogoliubov inequality [50, 51]. This result holds for arbitrary separations ofH.We also note
that the formula holds evenwhen H0

ˆ and H1
ˆ do not commutewith each other.When they do not commute, we

use the Peierls inequality [52]

n ne e , B.4
n

X

n

n X nå åá ñ á ñ∣ ∣ ( )ˆ ∣ ˆ ∣

where X̂ is a hermitian operator and nñ{∣ } represents a complete basis.
The noncommutativity of the operators becomes important whenwe consider the improved inequality. The

improvedGibbs–Bogoliubov inequality corresponding to the improved Jensen inequality in (A.4) is calculated
in a similar way andwe obtain

F F H H H

H H H H H

H H

1
ln 1

2

exp
3

, ,
. B.5

0 1 0

2

1 1 0
2

0

1 1 0
3

0
1

2 1 1 0 0

1 1 0
2

0


b

b

b

+ á ñ - + á - á ñ ñ

´ -
á - á ñ ñ - á ñ

á - á ñ ñ

⎡
⎣⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

( )

( ) [ ˆ [ ˆ ˆ ]]

( )
( )

Since the third termof the right-hand side is negative, this inequality becomes an improvement of the standard
inequality (B.3).
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