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Abstract
Weconsider the effect of introducing a small numberof non-aligning agents in awell-formedflock.To
this end,wemodify aminimalmodel of activeBrownianparticleswithpurely repulsive (excluded volume)
forces to introduce analignment interaction thatwill be experiencedby all the particles except for a small
minority of ‘dissenters’.Wefind that even a very small fractionof dissenters disrupts theflocking state.
Strikingly, thesemotile dissenters aremuchmore effective than anequal number of static obstacles in
breakingup theflock. For the studied systemsizesweobtain clear evidenceof scale invariance at the
flocking-disorder transitionpoint and the systemcanbe effectively describedwith afinite-size scaling
formalism.Wedevelop a continuummodel for the systemwhich reveals that dissenters act like annealed
noise on aligners,with anoise strength that growswith thepersistence of thedissenters’dynamics.

1. Introduction

Flockingmodels inspired by the seminalworkofVicsek [1]havebeen shown todescribe organization and collective
motiononmany scales, fromself-motile colloids [2] to bacteria [3], birdflocks [4] andhumancrowds [5, 6]. In these
models individual active agents are described as self-propelledparticles that tend to align their directionofmotion
with their neighbors, in thepresenceofnoise in the angular dynamics that effectively describes ‘mistakes’ in the
alignment. Thesemodels exhibit a non-equilibriumphase transition fromadisordered state to aflockwhere on
average all agents aremoving in the samedirection,with long-rangeorder in theparticle velocities. The transition
occurs upondecreasing the strengthof thenoise or increasing thedensity.Theorder of the transition in theoriginal
Vicsekmodel of point-like particles has been the subject of a long-standingdebate, but it has nowbeen established
that the transition isfirst order,with coexistence andhysteresis [7–9].

Recent work has begun to consider the effect of disorder either present in the environment in the formof
physical obstacles to themotion [10–14] or arising from variations in the properties of individual agents or their
ability to alignwith neighbors [15–19]. Both environmental disorder and disruptions in alignment rules were
found to destabilize the flocking state, in agreement with observations in bacteria and insect swarms, where a
fraction of individuals with a decreased production of signaling compounds or pheromones that promote
collective behavior can disrupt organization.

In this paperwe consider the effect of a fraction of non-aligning agents or ‘dissenters’ on awell-formedflock.
Previous authors have examined the effect of non-aligning agents on aflock that ismade cohesive by attractive
interactions [19]. In this case, provided the cohesiveness is not too strong, aligning agents are able to expel non-
aligners and reorganize in smaller, but still cohesive flocks. Ourwork, in contrast, focuses on the case where the
self-propelled agents only experience repulsive interactions due to volume exclusion, in addition to alignment,
but no attractive forces.Wefind that in this case even a very small concentration of dissenters disrupts the
flocking state. Additionally, this behavior depends onlyweakly on the combined packing fraction of aligners and
dissenters, provided the packing fraction is large enough that the pure systemwith no dissenters is deep into the
flocking state. A striking behavior is foundwhen comparing the effect of dissenters to that of an equal
concentration of static obstacles (figure 4). A small concentration of static obstacles only disrupts the
orientational order locally, creating small wakes ofmisaligned particles downstreamof the obstacles, in
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qualitative agreementwith experiments in colloidal rollers [12]. In contrast, the same concentration ofmotile
dissenters completely disrupts the flock.Using a hydrodynamicmodel of amixture of aligners and dissenters, we
show thatmotile dissenters, in contrast, provide an effective annealed disorder withfinite-time correlations that
can rapidly disorder theflock. This observation could have implications for crowd control, as it suggests that
randomly distributed, butmotile dissenters with persistent dynamics could be very effective at dispersing
crowds in high risk situations (see [5, 6] for studies of human ‘flocks’).

In the followingwe begin in section 2 by describing our system—amixture of self-propelled aligners and
dissenters based on aminimalmodel of active Brownian colloids.We then briefly summarize the physics of the
pure case (aligners only) and identify values of the parameters that result in a strongly ordered flock. This system
is then disrupted by adding a small number of dissenters, which succeed in breaking up the alignment. The effect
of these dissenters is quantified in section 3 by considering high-precision simulations for several packing
fractions, which leads us to identify the fraction p of dissenters required to disrupt the flock as p 0.004c = ,
independent of the total density of active particles, provided again the latter is large enough to set up theflocking
state. The role of the range of the alignment interaction is discussed in appendix A. In section 4we compare the
dramatic effect ofmotile dissenters to themuchweaker disruption caused by static obstacles. In section 5we
compute the correlation length of the system and use it as the basis of a finite-size scaling (FSS) study to try to
determine the order of the transition and its critical parameters. Finally, in section 6we examine the continuum
equations for amixture of aligners and dissenters (derived in appendix C).We show that dissenters act like
annealed, but time-correlated, disorder and provide an analytical estimate of the shift they induce on the
flocking transition.

2.Model and simulations

Weconsider aminimalmodel of repulsive active Brownian particles (ABPs) [20–22]with an additional feedback
mechanism that tends to align the direction of self-propulsion to the local velocityfield [23, 24]. The system is
composed ofN particles of radius a in a two-dimensional box of size L2 with periodic boundary conditions. A
particle i is characterized by its position ri and an angle iq that defines the direction of self-propulsion.

The dynamics is then defined by coupled Langevin equations

v r n Fv t t , 1i i i
j

ij0 åm= = +˙ ˆ ( ) ( ) ( )

t t t
1

. 2i i i iq
t

y q h= - +˙ [ ( ) ( )] ( ) ( )

Thefirst term in the translational equation ofmotion represents the self-propulsion along a direction
n cos , sini i iq q=ˆ ( ). The second term is an excluded volume interaction, whichwemodel with a soft repulsive
force, F r k a r2ij ij ij= -ˆ ( ) if r a2ij  and F 0ij = otherwise. The rotational equation ofmotion includes a noise
term,with a random torque tih ( )with zeromean and correlations t t D t t2i j r ijh h d dá ¢ ñ = - ¢( ) ( ) ( ). In addition
to thesefluctuations, the polar angle iq evolves due to a torque proportional to the angle between niˆ and the
instantaneous direction ofmotion iy , defined by v v cos , sini i i iy y= ( ). In other words, as the particles collide
their orientations relax towards the direction of the local velocity fieldwith a lag time τ and aGaussian noise of
variance D2 r .

Themodel described by equations (1) and(2) experiences a flocking transition if the noise is low enough
(i.e., if Dr r

1t = - is large compared to τ) or if the density is increased atfixed noise [23, 24].
Notice that alignment can bemodeled in several ways—see, e.g. [25] for an alternative approachwith active

polar hard disks—but the results presented herein are not very sensitive to the details (see appendix A for an
examplewith aVicsek-type alignment [1]). Likewise, whether the repulsive interaction is introducedwith a
spring force orwith a harder potential (such asWCA) should not have a noticeable effect.

In our simulationswe take the radius a=1 of the disks as our unit of length and set k 1m = = , taking the
interaction time kk

1t m= -( ) as our temporal unit. The alignment lag is also set to 1t = . The self-propulsion
speed is v0= 0.01, which is small compared to km to prevent particle overlap. The noise is set to D 0.0005r = :
this results in a persistence length of v D 20rp 0= =ℓ and generates a strong alignment.Wewill change the
packing fractionf in order to transition from the low-density disordered state to the high-density flocking state.
We consider system sizes of up to L=400, which, for a typical packing fraction of 0.40f = , results in about
20 000 disks.

Nowwe introduce a second species in the system.Out of ourN disks, p N1 -( ) will still be aligners,
described by equations (1) and(2). The other pN disks will be dissenters: they have the same characteristics as the
aligners, except for the alignment interaction. In other words, their equations ofmotion are just those of
standardABPs:
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v r n Ft v t t , 3i i i
j

ij
d d
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t t . 4i i
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In the followingwe consider simulations of our combined systemof aligners and dissenters for different values
of p andf.

3. Effect of the dissenters

Even a very small fraction p of dissenters can have a dramatic effect on the system. This is demonstrated in
figure 1, wherewe follow the time evolution of the systembefore and after introducing dissenters. In particular,
we consider the average velocity of the system as the flocking order parameter,

V
v

v
V

N
V

1
. 5

i

i

i
å= =

∣ ∣
∣ ∣ ( )

ClearlyV=1 if all the disks aremoving in exactly the same direction andV=0 if their orientations are
random.

Wefirst consider the pure systemwith p=0, where all the particles experience the alignment interaction. In
the initial configuration the positions and orientations of the particles are randombut, as time goes on, a stable
flock develops, as evident from the growth and saturation ofV aroundV= 0.91 shown infigure 1. At time
t 1.1 105= ´ , we turn 3%of the particles into dissenters, i.e., we switch off their alignment interaction. The
effect on the system is very strong and fast: the flock is destroyed in a very short time (shorter thanwhat it took to
formoriginally).

Figure 2 gives amore general picture by considering the steady-state value ofV formany values of p andf.
For each pair p,f( )we follow the systemup to a time t D5 10 250 r

5 1= ´ = - .We denote by O p,á ñf the
ensemble average in the steady state of an observableO, whichwe estimate numerically by averaging over the last
half of our simulation (the time needed to reach the steady state is orders ofmagnitude shorter). The errors are
estimatedwith a jackknife procedure (see, e.g., [26]) from thefluctuations over 100 independent runs for each
set of parameters. Thismethod allows us to compute errors in nonlinear functions of averaged quantities such as
the susceptibility. Unless we say otherwise, all of the results in this paper are for a system size L=200.

In order to plot all the data in the same graph and also to prove that the effect of the dissenters ismuch
stronger than that of simply diluting the system,we define as p1alignf f= -( ) , the packing fraction of aligners
ignoring the dissenters. The red curve infigure 2 refers to the pure system, wherewe keep p=0 and decrease the
total packing fraction ( alignf f= ). Aswe can see, with our parameters we need a rather strong dilution in order
to break ourflock and cross over to the disordered state. In contrast, in each of the other curves wefix the total
packing fractionf and change alignf by slowly increasing the fraction p of dissenters. In agreementwithfigure 1,
we see that a very small value of p is enough to destroy theflock. The behavior does not seem to dependmuch on
the value off.

Figure 1.Effect of introducing dissenters in a flocking system. The figure shows the time evolution of the order parameterV,
equation (5). The system is preparedwithout any dissenters and is let to form aflock. At time t 1.1 105= ´ , we remove the alignment
interaction from3%of the particles (i.e., turn them into dissenters). The flock is dispersed very quickly. Two snapshots show the state
of the system just before and just after introducing the dissenters. Each particle is plottedwith a color representing the cosine of its
angle ofmotion.
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Tomake this statementmore quantitative we plot infigure 3 the order parameter normalized to its value at
p=0, V Vp p, , 0á ñ á ñf f = , as a function of p. All the curves collapse on top of one another, showing that (i) a very
small fraction of dissenters is enough to completely disrupt the alignment and that (ii) this fraction does not
depend on the density of the system. To locate the transition point, we consider the fluctuations of the order
parameter,

L V V . 6p p
2 2

, ,
2c = á ñ - á ñf f( ) ( )

We shall refer toχ as the susceptibility of the system, in analogywith equilibrium systemswhere equation (6) is
an expression of thefluctuation–dissipation theorem [26]. Aswe can see in the inset offigure 3,χ has a
maximum for p 0.01max » , which signals the finite-size crossover between the ordered and disordered phases.
Wewillmake this statementmore precise below, wherewe outline a FSS study.

It is interesting to compare this critical fraction of dissenters of p 0.01» to the corresponding value for the
finite cohesive flocks studied in [19]. In the latter, considering the limit of large inter-agent cohesiveness, typical
values of the critical fraction of dissenters are around p 0.5~ (see figure 1 in [19]). This fraction can even be
further increased by lowering the cohesiveness, which allows aligners to expel dissenters and reorganize into
severalflocking clusters.

Figure 2. V p,á ñf against the packing fraction of aligners ignoring the dissenters, p1alignf f= -( ). The red curve shows the flocking
transition in the pure case (no dissenters, p = 0), as the system is diluted by changingf. In the other curves we consider afixed total
packing fractionf and slowly increase the fraction p of dissenters until the alignment is destroyed.

Figure 3. For the datawith variable p in figure 2, we plot V pá ñ , normalized by the value for p=0 for each packing fraction. The curves
for differentf collapse, showing that the effect of the dissenters does not depend on the density of the system. Inset: we plot the
susceptibility(6) for the data in themain panel, whose peak at p 0.01max » marks the crossover between theflocking and disordered
phases.
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4. Static obstacles

The effect of passive obstacles in a flocking systemhas been considered before using differentmodels [10, 14]. In
this sectionwe show that our active dissenters aremuchmore efficient at disrupting the alignment than static
obstacles. This contrast is illustrated infigure 4, which shows snapshots of ourmodel systemwith dissenters
( 0.50f = , p= 0.03) in the left panel and a systemwhere the dissenters have been replaced by the same
concentration of static obstacles (right panel). These obstacles are just immobile disks of the same radius as our
active particles. The collisions of the aligners with the static obstacles are controlled by the same repulsive force
that controls their interactionwithmotile dissenters. Aswe can see, for this fraction of static obstacles the system
stillmaintains a high degree of alignment, while the systemwith dissenters is completely disordered.

The difference between passive obstacles and dissenters is quantified infigure 5, which compares the order
parameter and susceptibility for systemswith static obstacles (blue) andmoving dissenters (red). For themodel
with static obstacles, the peak is at p 0.05max

static » , in contrast with p 0.01max » for the dissenters. In other words,
one needs approximately five times asmany static obstacles as dissenters to have an equally disruptive effect.

The contrast between static obstacles andmotile dissenters is probably due to the latter effectively providing
an annealed disorder withfinite-time correlations, in contrast to theweak quenched disorder of static obstacles.

Figure 4. Snapshots of two systemswith 0.50f = in the steady state. In the left panel we have a fraction p= 0.03 of static obstacles,
while in the right panel we consider the samenumber ofmoving dissenters. Both images are for L=100. Aligners are color coded
according to the value of cos if( ), as indicated in the color bar. Obstacles or dissenters are shown in black andwith size slightly larger
than their actual size.

Figure 5.As infigure 3, but nowwe compare, for 0.30f = , the effect of introducing dissenters (red curve)with that of introducing
static obstacles (blue curve). The obstacles aremuch less efficient at breaking up theflock, as evinced by the very noticeable shift in the
peak of the susceptibility and in the slower decay of V pá ñ .
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The persistentmovement of the dissenters effectively gives them a greater cross section.We have tried to support
this intuitionwith a continuummodel presented in the following, see section 6.

5. The correlation length and FSS

Thus farwe have presented essentially an exploratory study of aminimalmodel offlocking particles with
dissenters.We have seen that a very small number of these non-aligning particles (about 1%) is enough to
disrupt theflock. But this effect was observed for a single system size (L = 200). In order for this result to be
considered a proper (non-equilibrium) phase transition, wewould need to show that the effect of the dissenters
is stable as we change the system size.

To this end, we have carried out additional simulationswith L=100, 400 for the systemwith dissenters and
0.50f = . Aswementioned before, the peak in the susceptibility signals the finite-size crossover between the

disordered and theflocking phases.When the system size is increased, this crossover region becomes narrower
and narrower, as the crossover turns into a phase transition in the thermodynamic limit. To leading order, the
position of the peak should evolve as

p p L AL , 7c max
1+ n- ( ) ( )

whereA is a constant, ν is the correlation-length critical exponent and pc is the transition point. This behavior is
qualitatively reproduced in ourfigure 6—top. In principle, we could fit the data in this plot to extract the critical
parameters ν and pc. Unfortunately, with only three system sizes such a simultaneous fit for two parameters is
not viable.

A better way to analyze a phase transition is to use the system’s correlation length ξ.We begin by considering
the spatial autocorrelation of the particle orientation:

r n x n x rC . 8p,= á + ñf( ) ˆ ( ) · ˆ ( ) ( )

In order to evaluate this quantity, wefirst discretize the system in a latticewith cells of size 2×2. The orientation
n xˆ ( ) of cell x is just the average of all the niˆ of particles in that cell. Thenwe evaluate

k n xF e 9
x

k xi

2

å=( ) ˆ ( ) ( )·

which is just the Fourier transformof xC ( ). From Fwe can compute the second-moment correlation length
[26, 27],

kk

F

F

1

2 sin

0
1 , 10

min min

1 2

x = -
⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

where k L2 , 0min p= ( ) is the smallest non-zerowavevector.

Figure 6. Scaling in the systemwith dissenters for 0.50f = . Top: we plot the susceptibilityχ, equation (6), for L 100, 200, 400= . As
we increase L, the position of the peak shifts slightly to a lower p and its height grows. Bottom: correlation length of the particle
orientation in units of the system size. The curves for different values of L intersect at p 0.004» , marking a second-order phase
transition. Inset: scaling plot of the correlation length using 2n = and p 0.004c = .
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In a second-order phase transition the system is scale invariant, so the correlation length behaves as

Lg L p p . 111
cx -n ( ( )) ( )

In otherwords, if we plot Lx for our different system sizes, the curves will intersect at the transition point.We
have done this in the bottompanel offigure 6, which shows that the system is indeed scale invariant, with a
critical point of p 0.004c » . In addition, we canfind ν by looking for the value that produces the best collapse
in(11).With our data, this is obtained for 2n » (althoughwe cannot obtain a very precise determination). This
scaling plot is shown in the inset tofigure 6.Notice that the points for p=0 are already out of the FSS region and
do not collapse but this is expected, because these points are deep into the ordered phase, where F(0) diverges.
These values of ν and pc are consistent with our data for p Lmax ( ) and equation (7).

Our simulations show evidence of a continuous flocking transition. On the other hand, it has been
established recently that the flocking transition in the pureVicsekmodel isfirst order, with coexistence and
hysteresis [7–9]. At the level of a continuumdescription the first order nature of theVicsek flocking transition
arises from the density dependence of the term linear in polarization in the polarization equation. In contrast, in
models where the alignment is with topological neighbors rather than nearest neighbors, this termdoes not
depend on density and the transition is continuous [28, 29]. In ourmodel the alignment with the particle’s own
velocity is density dependent andwewould therefore expect the transition to befirst order. On the other hand,
establishing the first-order nature of theflocking transition of point particles in theVicsekmodel has required
simulationswith very large numbers of particles [8], with a crossover size that depends on the details of the
model and parameters [7]. Below that crossover there is a wide range of system sizes where the transition looks
continuous and FSS holds [30, 31].When steric repulsion is included in themodel, it becomes even harder to see
clustering and band formation—the hallmark of thefirst orderflocking transition (see appendix B)—as the fact
that particles cannot overlap forces them to distributemore uniformly throughout the system. In fact, to the best
of our knowledge, all studies of the flocking transition that find afirst-order behavior have been carried outwith
point particles. Indeed, we have found that in the presence of both dissenters and static obstacles density
fluctuations aremuchweaker in ourmodel that includes steric repulsion that in amodel of point particles of the
type studied in [17].We show examples of this different behavior in appendix B.

It is therefore likely that the scaling behavior observed in ourwork is afinite-size effect, and that for large
system sizes the transition isfirst order. Unfortunately, with numerical simulations alone it is impossible to
differentiate between an asymptotic regime and a pre-asymptotic one that would have a crossover at very large
system sizes, well beyond those relevant to practical applications such as human crowds.

6. Continuummodel

To gain insight on the picture emerging fromour simulations, we have developed a continuummodel that
describes the systemon length scales large compared to the particle size and time scales long compared to those
controlling themicroscopic dynamics. In this limit we describe themixture offlocking (aligning) and dissenter
agents in terms of the local number density of aligners and dissenters at position x and time t, x t,r ( ) and

x t,Dr ( ), respectively, and the corresponding polarization densities P x t,( ) and P x t,D ( ). In this continuum
model the net polarization P x P xt t, ,D+( ) ( ) serves as the order parameter for the flocking transition.

6.1.Hydrodynamics of amixture of aligners and dissenters
The continuumequations have been derived via a standard coarse-graining procedure for a simplified
continuous-timeVicsekmodel where all agents are treated as point particles that align their polarization to that
of of their neighbors (see, e.g., [32]). The derivation is outlined in appendix C.We stress that themodel used for
the derivation of the hydrodynamic theory differs from the one used in the simulations as it considers point
particles that alignwith themean polarization of their neighbors, not with their own velocity.While the formof
the hydrodynamic equations does not depend on the specific formof themicroscopic dynamics, the latter does
of course affect the expression of the parameters in the equations. The use of a continuous-timeVicsekmodel
greatly simplifies the algebra. In addition, the assumption of point particles allows a direct comparison of the
effect of dissenters with that of static obstacles as of course point static obstacles would have no effect on the
organization of the aligners. The continuumequations obtained in appendix C are given by
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where for generality we have distinguished the self-propulsion speed vD of dissenters from that of aligners
given by v0. Here we have added a white noise term f with zeromean and correlations x xf t f t, ,i já ¢ ¢ ñ =( ) ( )

x xt tijd d d- ¢ - ¢( ) ( ), needed to compute correlation functions, andwe estimate DrL ~ . The polarization
decay rate a r( ) changes sign at a critical density cr and , 0g b > . For themicroscopicmodel described in
appendix C.1, the various parameters in equation (12) are expressed in terms of the rotational diffusion rateDr

and the rate J at which particles align with their neighbors’ polarization (see equation (C.1)). Although the
alignment interaction used in the derivation of hydrodynamics differs form that employed in the numerical
simulations described in equations (2), bothmodels exhibit a flocking transition driven by alignment at low
noise and high density, andwe can estimate J 1 t~ . This is also supported by the discussion of the role of the
range of the alignment interaction presented in appendix A. For the continuous-timeVicsekmodel used in
appendix Cwe find Ja Dr

2a r r= -( ) , J a D2 r
2 4b = and Ja2g = , with a the range of the aligning

interaction. The continuum equations then yield a transition at D Jarc
2r = ( ) from an isotropic state with

vanishingmean polarization at low density to a polarized or flocking state with 0r r= , D
D
0r r= , P 0D

0 = and

P xP0 0= ˆ , and P0 0a r b= ( ) . The flocking state breaks rotational symmetry spontaneously.Without loss of
generality we have then chosen the x axis along the flocking direction. The dissenters never order and their
presence does not affect themean-field transition. Finally, the stiffnessesKD andKA are controlled by the

interplay of self-propulsion and rotational noise, with KA
v
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l = .We have neglected other advective nonlinearities that do not affect the behavior deep in the

ordered phase.

6.2. Correlation functions
Wenow examine the effect of dissenters on the correlation function offluctuations of the order parameter away
from the direction of order.We linearize the equations deep in the ordered phase by letting 0dr r r= - and
P x yP Px 0d d dq= +ˆ ˆ . For simplicity in the followingwe set P0 0r= . Using the linearized equations given in
appendix C.2 and eliminating Pxd in favor of density fluctuations, we evaluate the correlation function of the
Fourier components of the angular fluctuations q x t, e ,
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qP
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,
2

, 14y
D

D

r

2 0
2 2

w
r

w
á ñ

L

+
∣ ( )∣ ( )

and v v P v21 0 0 0 0 0a r a r= ¢ »[ ( ) ] [ ( )] , where the prime ′ denotes a derivative with respect to density and the
approximate equality holds deep into the flocking state. It is evident from equations (13) and (14) that the
dissenters play the role of noise that is correlated over the time scale Dr r

1t = - .We examine the longwavelength

behavior of the equal time correlation function, given by q q,2 2òq q wá ñ = á ñ
w

∣ ( )∣ ∣ ( )∣ , where ... ...d

2ò ò=
w

w
p

for

wavevectors along the direction of broken symmetry, i.e., by letting q 0=^ . In this limit density and angle
fluctuations decouple. Incorporating afinite q 0¹^ changes the angular angular dependence of the correlation
function, but not the leading longwavelength behavior [33]. Furthermore, afinite q̂ affect the contributions
from annealed noise and dissenters in the sameway. The details of the calculation are given in appendix C.2,
with the result

q
K q K q D K q
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Thefirst termon the right hand side of equation (15) is the result for the pure system,while the second is the
contribution from the dissenters. Both terms have the same behavior at large length scales, with the dissenters
enhancing the noise strength by an amount proportional to D J Dr r

2 2g ~( ) ( ) . Although the correlation
function here diverges as q1 2 at small wavevectors, as expected for the fluctuations associatedwith the
Goldstonemodes of the broken symmetry phase in two dimensions, it is known that nonlinearities stabilize the
polarflocks [33]. Our numerics suggest that a small fraction of dissenters enhances the effective noise, hence
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shifting the order–disorder transition. This is also supported by themeanfield calculation presented in the next
section.

In contrast, in the limit of point particles considered here, static obstacles would have simply no effect as they
would not couple at all to our active agents, leaving the flocking state unperturbed. In a systemoffinite size
particles with steric interactions, an areal density D

0r of static obstacles described by quenched disorder with

correlations x x x xF t F t, ,i j i j0
2b dá ¢ ¢ ñ ~  - ¢( ) ( ) ( ), yields angular spatial fluctuations [12]

q
k

k
, 162 0

2 2

0
2 2 2

q w
b
r l

á ñ ~ ^


∣ ( )∣ ( )

that, although anisotropic, remain finite at large scale. Self-propelled agents essentially only interact with static
obstacles for a time inversely proportional to their self-propulsion speed. In contrast, our dissenters travel at the
same speed as the aligners and their influence persists over times of order rt , duringwhich aligners can alignwith
dissenters provided Jr

1t > - .

6.3. Shift of the order–disorder transition
The effect of dissenters on the flocking transition can be quantified by a simplemean-field argument. To do this,
we consider the homogeneous equation for the polarization of the aligners and replace the terms coupling to the
polarization of dissenters by theirmean-field value. Denoting by P̄ the homogeneous aligners polarization, we
obtain

P P P P P, 17t
D

0
2 2a r b b¶ = - á ñ -¯ [ ( ) ∣ ∣ ] ¯ ¯ ¯ ( )

wherewe recall Ja Dr0
2a r = -( ) . Since P 0D 2á ñ >∣ ∣ , dissenters suppress the transition by shifting 0a r( ) to

smaller values, or, equivalently, suppressing the alignment rate J and enhancing the noiseDr. This effect can be
quantified by estimating P D 2á ñ∣ ∣ by using equation (C.10) as

P r
q

P qt,
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2
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The integral over q has to be regularized by introducing a short wavelength cutoff. To estimate this integral we
examine the limit of small dissenter speed v 0D ~ and
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,
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Using a short wavelength cutoff of the order of the average separation among aligners in equation (18), we obtain

P r t,
2

. 20D
D

2 0 0r r

p
á ñ =∣ ( )∣ ( )

The correction can then be recast as an effective rotational diffusion constant PD Dr r
D 2b¢ = + á ñ∣ ∣ , given by
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wherewe have used Ja D2 r
2 2b = ( ) . If the persistence time rt of the dissenters is large compared to the time

scale J 1t ~ - required for alignment, dissenters strongly enhance the effective rotational noise, driving the
flocking transition to higher density. If, in contrast, rt t , (D Jr  ), the dissenters have little disrupting effect
on awell aligned flock asmoving aligners do not have time to alignwith dissenters that are rapidly changing their
orientation. As expected, the enhancement of noise also increases with the packing fraction of dissenters Df . For
the values ofDrused in our simulations, the enhancement of the noise due to the dissenters can be very strong,
even for a very low Df , in agreementwith our observations. This simple estimate offers a qualitative, but not
quantitative, agreementwith our numerics. Finally we note that unlike the numericalmodel, equation (21) does
not depend on the ratio Dr r but only on Dr . This is likely due to the absence of excluded volume interactions
in our analytical description. Note that dissenters enhance rotational noise evenwhen vD= 0. In this limit they
simply provide a noisy alignment interaction.

7.Discussion

Wehave shown that a small number of dissenters can break up awell-formedflock. The critical fraction of
dissenters does not seem to depend on the total density of the system and ismuch lower than the number of
static obstacles required for an equally disruptive effect. Such results are qualitatively understood by using a
continuummodel for amixture of aligners and dissenters. For the simulated system sizes, we find evidence of
scale invariance. Indeed, the presence of excluded-volume interactions suppresses density fluctuations as
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compared tomodels of point particles, as shown in appendix B. It is therefore likely that our system sizes are
below the crossover ones required to observe band formation, and that the transition in this system is indeedfirst
order. Establishing the nature of theflocking transition is not, however, the focus of ourwork.Ourmain new
results are the demonstration that (i) very few dissenters, far fewer than static obstacles, are needed to disorder a
flock, and (ii) that the fraction of dissenters that causes the flock to break is independent of the system’s total
density. These results are obtained formoderate system sizes relevant to experimental realizations such as
human crowds.

It is interesting to contrast our results with those of [34], where it was found that the proportion of leaders
needed to guide a group to the desired destination decreases with increasing group size. In contrast, we find that
the proportion of dissenters needed to break aflock does not depend on theflock size. There is, however, an
important difference between the leadersmodeled in [34] and our dissenters, in that leaders, like dissenters, are
not influenced by the rest of the pack, but, unlike dissenters,maintain afixed, as opposed to random,
orientation.

Previous workwith static obstacles has found that tuning particle properties such as their repulsion [35] or
their noise [10] can have a non-monotonic effect on their order and that, therefore, there are optimal values that
maximize flocking in a disordered environment. These results, are, however, not directly applicable to the case
withmoving dissenters. For instance, we have found that changing the intensity of rotational noise (but using the
same value for aligners and dissenters) has almost no effect on the critical fraction of dissenters, as long as the
noise is low enough to permit flocking in the p=0 limit. On the other hand, the fact that the dissenters rapidly
diffuse across the system,which is therefore effectively homogeneous averaged over intermediate time scales,
probablymeans that there is no optimal aligner noise for afixed value of the dissenter noise (except in the limit of
slow-moving dissenters). Therefore, trying tofind a simplemechanism that wouldmitigate the effect of
dissenters remains an interesting open question.

We believe that our systembased onABPswith excluded volume interactions is especially well suited to
model collective phenomena in densely packed human crowds (in contrast to themore commonmodels with
point-like particles). Therefore, our results could have implications for crowd control in high-risk situations,
suggesting that a small number of randomly placedmotile agents could be very effective at, for instance,
dispersing human avalanches.
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AppendixA. Increasing the alignment range

In this paper, we have considered amodel where particles align their self-propulsion speedwith their own
velocity, which is in turn determined by interactions with other particles. This seems themost natural choice for
ourmodel offinite-size disks.Many flocking studies use, however, a different alignment interaction, with each
particle trying to relax to the average orientation of its neighbors within a finite rangeR (this is the case in the
Vicsekmodel [1], which consists of point particles). In this appendixwe consider this alternative and stronger
alignmentmechanismbymodifying our equations ofmotion to read

1
, A.1i i

R
i iq

t
y q h= - +˙ ( ) ( )

1

1
arctan

sin

cos
. A.2i

R

j r R j r R

j

j: :
ij ij å åy

y
y

= ( )

Notice thatwe are using the average angle ofmotion i
Ry instead of the average orientation i

Rq .We do this so the
limitR=0 coincides with our originalmodel. Choosing i

Rq or i
Ry makes no practical difference, since at a given

timemost particles are not interactingwith any other and therefore have i iq y= .
The result of using this alternative alignmentmechanism is shown infigure A1. Clearly, for ourfinite system

of L=200, this enhanced alignmentmakes itmore difficult for the dissenters to completely destroy the
alignment. However, the derivative of V p,á ñf at the origin is still very large.More importantly, the peak of the
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susceptibility for thismodel is still at p 0.01max » forR= 2, 3, as in theR=0 case. Therefore, the introduction
of this stronger alignment has no noticeable effect on the crossover between the ordered and disordered phases.
Itmerely results in awiderχ peak, with longer tails and, therefore, strongerfinite-size effects (whichmakes
sense, considering that the system size in units of the alignment range is smaller).

Appendix B. The effect of excluded-volume interactions

Most numerical studies offlocking, startingwith the seminal paper byVicsek et al [1], consider point particles.
We have, instead, opted for amodel which, in addition to alignment, has excluded-volume interactions, because
we believe that this in an important factor for practical applications (such as human crowds), even though it
makes simulations harder. In this appendixwe briefly explain the qualitative difference between these two kinds
offlocking systems.

In order to simulateflocking point particles, we drop the excluded-volume interaction from themodified
model presented in appendix A (weneed themodel with explicit alignment rangeR since therewill be no
collisions). That is, aligners willmove according to the equations

v r nv t , B.1i i i0= =˙ ˆ ( ) ( )

1
, B.2i i

R
i iq

t
y q h= - +˙ ( ) ( )

1

1
arctan

sin

cos
. B.3i

R

j r R j r R

j

j: :
ij ij å åy

y
y

= ( )

This is very similar to themodel considered in [17].
Let usfirst consider the case p=0, for whichwe plot two snapshot of the system in panels (a) and (b) of

figure B1. Panel (a) considers the casewith particle radius a=1, just like in the rest of the paper. Since there are
no dissenters the particles aremoving in basically the same direction, with some small deviations due to
occasional random collisions. Crucially, the disks are distributed essentially homogeneously throughout the
simulation box. In panel (b), on the other hand, we show an equal number offlocking point particles. The
configuration is now very different: since there is nothing to keep the particles apart, the flock ismuchmore
concentrated and the local density is very heterogeneous. In fact, theflock is starting to form awell-defined band,
as has beenwidely reported for theVicsekmodel (see, e.g., [8]).

Oncewe introduce dissenters, the differences betweenfinite disks and point particles become evenmore
striking. On panel (c) offigure B1we show a snapshot of the systemwith excluded volume and a high
concentration of dissenters (p= 0.1). Now there is noflock, but the excluded-volume interactions still force the
particles to space themselves uniformly. Panel (d) shows the corresponding configuration for the same number
of point particles and p= 0.1. Now the dissenters have forced the aligners to aggregate in tiny but very

Figure A1.The figure displays the effect of increasing the alignment range using themodifiedmodel of equation (A.1). All the data are
for 0.50f = . The curve forR=0 corresponds to themodel previously shown infigure 3. Increasing the alignment rangemakes it
more difficult for the dissenters to completely break theflock, resulting in a slower decay of V p,á ñf . The effect of just a few dissenters is,
however, still very strong and the peak in the susceptibility (i.e., the transition point) hardlymoveswith respect to theR=0 case (see
inset).
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concentrated clusters, eachmoving in a randomdirection, while the dissenters themselves are naturally still
distributed uniformly throughout the system.

Notice that this comparison explains why, unlike in [17] or recent studies of the flocking transition in the
Vicsekmodel, wefind scale invariance at the transition, since the steric repulsion prevents concentrated bands of
particles from forming and keeps density fluctuations small.

AppendixC.Hydrodynamics of amixture of aligners and dissenters

Herewe derive the hydrodynamic equations for aligners and dissenters using a continuous-timeVicsekmodel
of point particles. Themodel contains two simplifications as compared to the one used in simulations: (i)we
neglect excluded volume interactions among the particles; and (ii) aligners alignwith the orientation of
neighboring particles, instead of aligningwith their own direction ofmotion. These simplifications allowus to
carry out the derivation of the continuum equations analytically. Note that the findings of appendix A indicate
that the details of the alignment affect the dynamics only quantitatively, but not qualitatively.

C.1.Derivation of the continuum equations
Aligners are located at positions ri for i N1,= ¼ and are self-propelled at speed v0 in the direction
n cos , sini i iq q=ˆ ( ). Likewise, dissenters located at positions ri

D, for i M1,= ¼ , have self-propulsion speed vD
along n cos , sini

D
i
D

i
Dq q=ˆ ( ). Aligners alignwith each other and alsowith dissenters, whereas dissenters cannot

align. The dynamics of the system is governed by

Figure B1.Comparison of the system’s behavior with andwithout excluded volume interactions.We show snapshots of steady-state
configurations for four cases. The left column of plots, panels (a) and (c), consider self-propelled disks of radius a=1, just as in the
rest of the paper. Each disk is plottedwith a color given by its instantaneous orientation (the packing fraction is 0.5f = ). In panel (a),
there are no dissenters (p = 0) andmost particles have the same orientation. In panel (c), on the other hand, we have introduced a
fraction p= 0.1 of dissenters (in black) and the system is disordered, as shown by the very different disk colors. The right column
considers analogous cases, but now for an equal number of point particles (which are nevertheless plotted as disks for comparison
purposes). Panel (b) shows the pure system,with a very ordered flock that, unlike in panel (a), is forming a band. In panel (d), the
dissenters have caused the aligners to aggregate in several small and very concentrated clusters. In all cases we have used themodified
model of appendix AwithR=2.
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The alignment couplings have the form r rJ Ja2ij i j
2d= -( ), which describe contact interactions between

particles of size a. This determines a range of interaction comparable to that of our simulations. As in the
numericalmodel discussed in section 2, ih are stochastic terms describing white noise with correla-
tions t t D t t2i j ijrh h d dá ¢ ñ = - ¢( ) ( ) ( ).

We introduce the one-particle density of aligners (dissenters) describing the probability offinding an aligner
(dissenter) at position r (r D)moving in the direction n cos , sinDq q=ˆ ( ) (n cos , sinD D Dq q=ˆ ( )) at time t as
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The continuumequations for aligners and dissenters can be derived by coarse-graining themicroscopic
equation (C.1), following a standard procedure (see, e.g., [32]). First, one obtains noise-averaged Smoluchowski
equations for both aligners and dissenters of the form
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To obtain equations for density and polarizationwe now consider the angularmoment of the probability
densities, given by

x xf t c t, d e , , , C.3
n

niò q q=a q a( ) ( ) ( )

with A D,a = labeling aligners or dissenters.We indicate complex conjugated using an overbar. Thefirst few
moments are related todensity and polarization density, with
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denoting for simplicity the zerothmoments by ρ and Dr , the equations for the first fewmoments of the aligners
density are given by
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Similarly, for the dissenters we obtain
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As discussed in [36], a consistent approximation for a systemwith polar symmetry is obtained by neglecting
allmoments of order equal to or higher than n=3 andnoting that the secondmoment f

2
a is proportional to the

component of a nematic order parameter that in a systemwith polar interactions decays onmicroscopic time
scales even in the orderedflocking state.We therefore neglect ft 2

¶ a in equations (C.5) and (C.6) and eliminate
f

2
a from the dynamics using
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Replacing these expressions in equations (C.5) and (C.6)we obtain a closed systemof equations for f
0
a and f

1
a

which result in the set of hydrodynamic equations, equation (12) of themain text.

C.2. Correlation functions
To evaluate the correlation function of polarization fluctuations, we linearize the hydrodynamic equations deep
in the flocking state by letting 0r r dr= + , D D D

0r r dr= + , P PD Dd= and P P P0 d= + , with P xP0 0= ˆ .
We set P0 0r= . andwrite P x yP P0d d dq= +[ ˆ ˆ ]. Keeping terms to linear order in the fluctuations
inequation (12) and eliminating Pd in favor of dr yields
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with v v v21 0 0 0 0 0r a r a r= ¢ ( ) [ ( )] , where the second equality holds deep in the flocking state.We evaluate
correlation functions in Fourier space by introducing the Fourier amplitudes of the fluctuations,
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wherewe let q x yq q= + ^ ˆ ˆ. The equations for the dissenters are decoupled form those of the aligners. The
correlation function of thefluctuations in the dissenters’ polarization density is then easily calculated, with the
result
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where q q q, ,=^ ^ ˆ . The equal-time correlation is given by q q,2 2òq q wá ñ = á ñ
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Thefirst termon the right hand side of equation (C.11) are the fluctuations in the pure system, the second one is
the contribution for the dissenters. In the longwavelength limit, and using that Ja2g = , equation (C.11) can be
rewritten as equation (15). In other words the presence of dissenters essentially renormalizes the noise strength.

Finally, for comparisonwenote that static obstacles couldbe incorporated in the continuummodel byquenched
disorder corresponding to a stochastic force in equation (C.9)of the form F 0b f= - , obtained as the gradient
of a randompotentialf (see, e.g. [12]) andwith correlations x x x xF t F t, ,i j i j0

2b dá ¢ ¢ ñ =  - ¢( ) ( ) ( ).Using this
expression in equation (C.9) and considering the limit k k̂ as in [12], oneobtains the result presented in the
main text, equation (16).
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