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Abstract
We study a quantumSzilard engine that is not powered by heat drawn from a thermal reservoir, but
rather by projectivemeasurements. The engine is constituted of a system  , a weight , and a
Maxwell demon, and extracts work viameasurement-assisted feedback control. By imposing
natural constraints on themeasurement and feedback processes, such as energy conservation and
leaving thememory of the demon intact, we show that while the engine can functionwithout heat
from a thermal reservoir, itmust give up at least one of the following features that are satisfied by a
standard Szilard engine: (i) repeatability ofmeasurements; (ii) invariant weight entropy; or (iii)
positive work extraction for allmeasurement outcomes. This result is shown to be a consequence of
theWigner–Araki–Yanase theorem,which imposes restrictions on the observables that can be
measured under additive conservation laws. This observation is afirst-step towards developing
‘second-law-like’ relations formeasurement-assisted feedback control beyond thermality.

1. Introduction

The possibility of extractingwork from a system that is in thermal equilibrium, bymeans ofmeasurement-
assisted feedback control [1, 2], wasfirst introduced byMaxwell [3, 4]. Seemingly violating the second law of
thermodynamics, this observation sparked an intense debate, with a key contribution coming fromLeo Szilard
[5]. Szilard envisioned an enginewhere the system,  , is a single particle in a box of volumeV.Maxwell’s demon,
, extracts work from the systemby performing two operations, namely,measurement and feedback. During
themeasurement stage, the demonplaces a frictionless partition inside the box, thus dividing it into two
volumesVL andVR. Thereafter, the demonmeasures onwhich side the particle is located. During the feedback
stage, conditional on the particle being found on the right (left) side of the partition, the demon attaches a
weight-and-pulleymechanism to the right (left) of the partition so that, as the particle collides with the partition,
theweight is elevated. The increase in theweight’s gravitational potential energy is identified as the extracted
work. This is shown schematically infigure 1.

By considering an infinite ensemble of such boxes, the average state of the particle can be interpreted as being
an ideal gas occupying volumeVx for x L R,Î { }which, after feedback, ‘expands’ to volumeV. If the box is in
thermal contact with a single reservoir of temperatureT, and the gas expands quasistatically, the enginewill

extractW K T V V K T V Vd lnx V

V
xB B

x
ò= ¢ ¢ = ( ) units of work, whereKB is Boltzmann’s constant. This is of

course an average quantity of work, taken over the infinite ensemble of boxes.Moreover, the source of the
extractedwork is the heat drawn from the thermal reservoir. As the (average) state of the system at the start and
end of the process is the same—an ideal gas occupying volumeV—the Szilard engine is in apparent violation of
theKelvin statement of the second law; it is a cyclically operating device, the sole effect of which is to absorb
energy in the formof heat from a single thermal reservoir and to produce an equal amount of work [6].

As shown by Penrose andBennett [7–9], onemay salvage the second law by observing that the demon is itself
a physical entity, whosememory is altered by themeasuring process. In order tomake the engine cyclical the
demon’smemorymust be returned to its initial configuration, i.e., the demon’smemorymust be ‘reset’ or
‘erased’. If the erasure process is conducted bymeans of an interactionwith the same thermal reservoir, it will
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require an averagework cost no less than the average extractedwork, which is dissipated as heat to the reservoir
[10–12]; wemay never win in the long run.

In recent years,much attention has been paid to the interplay between quantum theory and
thermodynamics [13–23]. This has included the extension of work extraction through feedback control to the
quantum regime, culminating in both theoretical [24–29] and experimental [30, 31] investigations. Of particular
interest to our discussion is thework presented in [32, 33], wherein the authors consider the possibility of a
Maxwell demon engine that functions in thermal isolation.Here, the source of work can no longer be identified
as heat from a thermal reservoir, but rather as the energetic changes due to projectivemeasurements. Such
quantummeasurements, however, ultimately result from a physical interaction between the system to be
measured, and themeasuring apparatus; in the case of a Szilard engine, themeasuring apparatus is the demon’s
memory. It stands to reason, therefore, that energetic considerations come to bear on themeasuring process
[34–38], whichwill pose limitations on the performance of Szilard engines that, in lieu of a thermal reservoir,
drawpower fromprojectivemeasurements.

We recall from the classical Szilard engine that hidden entropy sinks, when the demon’smemory is not
explicitly accounted for, allow for a violation of the second law. Similarly, hiddenwork sources involved in the
measuring process can also allow us to ‘cheat’. Consequently, a constraint of primary importance thatmust be
imposed on themeasuring process of a Szilard engine is energy conservation; if the energy of the system is
increased by projectivemeasurements, the demon’s energymust decrease in kind. A central result from
quantummeasurement theory that is relevant to us is theWigner–Araki–Yanase (WAY) theorem [39–44]
which, under additive conservation laws, will limit the observables that can bemeasured. Using this, we shall
show that while a Szilard engine can be powered by projectivemeasurements instead of heat from a reservoir, it
will have to give up at least one of three features that are present in the classical Szilard engine. The three features
of the classical Szilard engine in question are:

Feature 1.Themeasurement is repeatable. If the demonmeasures the box andfinds that the particle was on the
right (left) hand side, a subsequentmeasurement would reveal that the particle is on the right (left) hand side
with certainty. This allows for the interpretation that, after themeasurement has been completed, the system
‘possesses’ the revealed value.

Feature 2.Theweight’s entropy does not change as a result of work extraction.Work is extracted by raising the
weight, thus increasing its gravitational potential energy. In general, the height of theweight’s center ofmasswill
be afluctuating quantity, with an uncertainty hD . However, hD does not change as a result of work extraction.
In otherwords, theweight is neither ‘cooled’ nor ‘heated’ as it is elevated.

Feature 3.The engine works reliably—thework extracted is strictly positive for allmeasurement outcomes.
Whether the particle is on the right or left hand side of the box, the extractedwork has the value
W K T V Vlnx xB= ( )where x L R,Î { }. AsV andV Vx < are always positive, finite numbers, thenW 0x > for
all x L R,Î { }.

Figure 1. Szilard’s engine. The demon, , places a partition inside a box containing a single particle. This is the system  . During the
measurement stage the demonmeasures the system and determines that the particle is on the right (left) hand side. This is stored in the
demon’smemory as the stateR (L). During the feedback stage, the demon attaches a weight to the partition via a pulleymechanism
placed on the right (left) hand side. As the particle collides with the partition,moving it to the left (right), theweight is elevated and
thus work is extracted. Each time the particle collides with thewalls, it exchanges energywith the thermal reservoir, . As such, the
source of work is the heat drawn from the reservoir.

2
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2.Modeling a quantumSzilard engine

Ageneral quantumSzilard engine is constituted of four subsystems: a system ; a demon ; aweight ; and a
thermal reservoir. These have theHilbert space       = Ä Ä Ä , and respectively the
Hamiltonians H , H , H, and H.When describing operators that act non-trivially on only one subsystem,
we shall omit identities on the other subsystems for simplicity. Furthermore, we shall only consider finite-
dimensionalHilbert spaces. Thismodel has in commonwith [45, 46] and [29, 38] that it includes respectively the
weight and the demon’smemorywithin the quantumdescription. As with the classical Szilard engine, each cycle
of our quantumSzilard engine involves two stages, namely,measurement and feedback. Before  can perform
measurements in the next cycle, itsmemorymustfirst be erased. This is achieved by an appropriate interaction
with. As the state of  can be different at the end of the cycle, then unlike the classical Szilard engine, the
quantumSzilard engine is, strictly speaking, not cyclical. However, as will be shown, such non-cyclicality will
not result in a violation of the second law.

All Szilard enginesmust satisfy the following two requirements. Here, we shall state them colloquially, but
will offermathematically precise formulations in the next two subsections.

Requirement 1.Both themeasuring and feedback processesmust be energy conserving on the total system.

This is necessary for all work sources to be explicitly accounted for; if either themeasuring or feedback
process does not conserve the energy of the total system, then it will require work from an outside source.

Requirement 2. If the demon’smemory is in a state corresponding to ameasurement outcome x, the feedback
processmust result in a closed evolution of the compound of systemplusweight (and reservoir, if it is present).
After feedback, the demon’smemorymust remain in the same state.

This is necessary in order to conformwith the functioning of the classical Szilard engine described above.
There, upon discovering the particle’s location, the demon arranges theweight-and-pulleymechanism
accordingly so as to facilitate work extraction. Aftermaking its arrangements, theweight, system, and reservoir
evolve as a closed,mechanically isolated system, while the demon’smemory is unaltered.

In the subsequent sections, we shall depart from the traditional set-up of the Szilard engine by altering the
feedback stage; this will no longer involve, and the source of workwill not be identified as heat from the
reservoir, but rather the internal energy of the compound  + . Each cycle of work extraction is depicted
schematically infigure 2. Ourwork is similar in spirit to that of [33], except thatwemodel both theweight and
demon’smemory as explicit quantum systems, and impose energy conservation on themeasuring process.

2.1.Measurement stage
During themeasurement stage, the demon  performs ameasurement on  , and by doing so prepares it in a
state that is correlated with themeasurement outcome. For now,wewill restrict ourselves to standard, non-

Figure 2.The circuitmodel ofmeasurement-assisted work extraction, without heat from the thermal reservoir. ,  ,  and are
initially prepared in states r , r , yñ∣ , and t

b respectively. (I)Measurement: first,  and  are coupled by the joint premeasurement
unitaryUM. This correlates the two systems so that themeasurement outcomes of the observable M on  , namely x Î , are
‘stored’ in ʼsmemory as the eigenstates of an observable Z. These are the states x x y ñ Î{∣ } . The system’s post-measurement state

xj ñ∣ ˜ will be classically correlated with the demonmemory state xy ñ∣ , occurringwith a probability p xM


r ( ). (II) Feedback: the global

feedback unitary operatorV then couples and  such that, conditional on the outcome x, they evolve by theCPTPmaps x*L and
xL , respectively. (III)Erasure: at the end of feedback, the demon’smemory is erased by coupling to the thermal reservoir  with the

unitary interactionUR.
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degenerate projectivemeasurements, and shall generalize to degenerate observables in appendixC.2. If
d  , the observable can be represented as the self-adjoint operator

M xP , 2.1
x

x


å j=
Î

[ ] ( )

where d1, , ¼≔ { }are themeasurement outcomes. Here P x x x j j jº ñá[ ] ∣ ∣ is a projection on the vector
x j ñ Î∣ .Wewish tomodel themeasurement of M as resulting from a physical interaction between  and
, so that the outcomes are stored in thememory of  by the orthogonal set of states x x y ñ Î Î{∣ } .
Therefore, we describe themeasurementmodel of M , as defined in equation (2.1), by the tuple

U Z, , ,MM  yñ≔ ( ∣ ) [47–51]. Here yñ Î∣ is the initial state of ; UM is the premeasurement unitary
interaction between  and , characterized by

U : , 2.2M x x xj y j yñ Ä ñ ñ Ä ñ∣ ∣ ∣ ˜ ∣ ( )

where x x j ñ Î{∣ ˜ } can be any set of vectors on , which do not have to be orthogonal; and

Z xP 2.3
x

x



å=

Î

( )

is an observable on  with each outcome x corresponding to the same for M . Here, P x
 is a projection operator

of arbitrary rank, such that for all x Î , Px
x  y ñ Î∣ ( ). If   , then P Px

x  y= [ ].
For an arbitrary initial state r of  , the total state of  + after premeasurement is

U P U . 2.4M
M M   r r yÄ+ ≔ ( [ ]) ( )†

In order for themeasuring process to leave a classical record of outcomes, the demon’smemorymust be
objectified [52]. That is to say, after coupling  with  by the premeasurement unitary as defined by
equation (2.2), thus preparing the entangled state M

 r + as defined in equation (2.4), wemust prepare the
statisticalmixture

P P

p x P P

,

, 2.5

M O

x

x M x

x

M
x x

,
 


   


 



å

å

r r

j y= Är

+
Î

+

Î

≔

( ) [ ˜ ] [ ] ( )

where

p x Ptr 2.6M
x 



j rr ( ) ≔ [ [ ] ] ( )

is the Born rule probability of observing outcome x, given ameasurement of M on  , prepared in state r .
Equation (2.5) is a propermixture, or aGemenge p x P P,M

x x 


j yÄr( ( ) [ ˜ ] [ ]), which can be interpreted as each

state P Px x j yÄ[ ˜ ] [ ]being prepared according to a probability distribution p xM


r ( ), as given by equation (2.6).

Moreover, x x j ñ Î{∣ ˜ } can be interpreted as the set of post-measurement states on  .Wemay objectify  by
performing an unselective Lüdersmeasurement of Z [50], as defined in equation (2.3), on . Alternatively, as
shown in [38],  can be objectified by unitarily coupling it with an auxiliary system. In the subsequent section
we show that imposing requirement 2 on the feedback process implies that it does notmatter whetherwe
objectify the demon before or after the feedback stage.

Definition 1.Consider a systemwithHilbert space andHamiltonianH. The completely positive, trace
preserving (CPTP)map  is said to conserve energy if

H Htr tr 2.7r r=[ ] [ ( )] ( )

for all states ρ on.

Lemma1.Themeasuring process satisfies requirement 1, i.e., is energy conserving, if both Z H,  =-[ ] and
U H H,M   + =-[ ] , where H and H are the system and demonHamiltonians, respectively, and Z is the
demon observable defined in equation (2.3).

Proof.Themeasuring process consists of premeasurement and objectification. Given definition 1, these are
energy conserving if

H H H H Ptr tr 2.8M O,
       r r y+ = + Ä+[( ) ] [( ) [ ]] ( )

for all r on , where
M O,
 r + is given by equation (2.5). Therefore, wemust have U H H,M   + =-[ ] and

P H,x
  =-[ ] for all x Î . The latter condition is equivalent to Z H,  =-[ ] . ,

Nowwemay analyze feature 1with respect to requirement 1.

4
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Lemma2. Let themeasuring process satisfy requirement 1. It follows that themeasurement of M , as defined by
equation (2.1), will satisfy feature 1, i.e., it will be repeatable, if and only if the post-measurement states x x j ñ Î{∣ ˜ }
are eigenvectors of H .

Proof.The post-measurement state of  , conditional on outcome x, is xj ñ∣ ˜ . The probability of observing
outcome x in a subsequentmeasurement of M will be p xM

x x
2

x
j j= á ñj ( ) ∣ ˜ ∣ ∣˜ , as determined by equation (2.6).

This equals unity if and only if ex x
ij jñ = ñq∣ ˜ ∣ . Therefore, x x j ñ Î{∣ ˜ } must be eigenvectors of M .

To show that x x j ñ Î{∣ ˜ } must be eigenvectors of H if themeasurement is repeatable, we use theWAY
theorem. TheWAY theorem can be stated thusly: let the premeasurement unitary operator in themeasurement
model of M , i.e.,UM, commutewith H H + . If themeasurement of M is repeatable, or Z H,  =-[ ] ,
where Z is defined in equation (2.3), then M H,  =-[ ] .We refer to [42] for a proof. If M commutes with
H , then theywill share the same eigenvectors. ,

2.2. Feedback stage
During the feedback stage, the demon brings the system in contact with theweight, , which is initially
prepared in state r . Conformingwith requirement 2, the demon then evolves the compound systemof
 + by the unitary operatorUx, which is chosen conditional on themeasurement outcome x Î .Wewish
to determine the global feedback unitary operatorV that achieves this.

Lemma3. Feedback is implemented by a unitary operator V acting on the compound system  + + . Vwill
satisfy requirement 2 if and only if it can be written as

V U P , 2.9
x

x
x


å= Ä

Î

( )

such thatUx are unitary operators on  Ä , and P x
 are the projection operators defined in equation (2.3).

Proof.Requirement 2 states that if the demon is in a state corresponding to ameasurement outcome x, the
system andweightmust undergo a closed evolution. Consequently,Vmust satisfy

V U 2.10x x xy yYñ Ä ñ = Yñ Ä ñ(∣ ∣ ) ( ∣ ) ∣ ( )

for all x Î and   Yñ Î Ä∣ , where xy ñ∣ is an eigenstate of the demon observable Z as defined in
equation (2.3). This is clearly satisfied ifV is of the form equation (2.9). To prove only if, we note that
equation (2.10) implies that

V P VP 2.11x
x x

x y yYñ Ä ñ = Yñ Ä ñ(∣ ∣ ) ( )(∣ ∣ ) ( )

for all x Î , where P x
 is a projection on the subspace of that contains xy ñ∣ . Therefore, it follows that

V P VP , 2.12
x

x x


 å=

Î

( )

and soVmust be of the form equation (2.9). ,

Corollary 1. Let the feedback unitary satisfy requirement 2. Then the state of the compound  + + will be
identical whether  is objectified prior to feedback, or after it.

Proof.The compound of  + after premeasurement and objectification is given by equation (2.5). After
feedback, the state of the compound  + + is

V V V P P V . 2.13M O

x

x M x,
  


    år r r rÄ = Ä+

Î
+

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )† †

If the feedback unitary is of the form equation (2.9), then V P, x
 =-[ ] for all x Î , and sowe have

V P P V P V V P . 2.14
x

x M x

x

x M x


    


    å år r r rÄ = Ä

Î
+

Î
+

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )† †

The second line corresponds to performing feedback after premeasurement, but before objectification has
occurred. ,

Wenow show that ifV as defined by equation (2.9) is to satisfy requirement 1, then eachUxmust
conserve H H + .

5
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Lemma4. Let V be a feedback unitary operator that satisfies requirement 2. It will also satisfy requirement 1 if and
only if: (i) U H H,x   + =-[ ] for all x ;Î and (ii) for every subset ¢ Í such thatUx=Uy for all
x y, Î ¢, P H,x

x
   å =Î ¢ -[ ] .

Proof. In order forV as defined by equation (2.9) to conserve the total energy, by definition 1we require that

HV V Htr tr 2.15r r=[ ] [ ] ( )†

for all states ρ on    Ä Ä , where H H H H  = + + . Therefore,Vmust commutewith the total
Hamiltonian. Because of the additivity of theHamiltonian, V H, =-[ ] can bewritten as

U H H P U P H, , . 2.16
x

x
x

x
x

x


  


 å å+ Ä = - Ä

Î
-

Î
-[ ] [ ] ( )

Given an arbitrary pair of states Px
x  y ñ Î∣ ( ) and Py

y  y ñ Î∣ ( ), such that x y¹ , and referring to the right
hand and left hand sides of equation (2.16) as RHS and LHS, respectively, we see that

H U U

LHS ,

RHS . 2.17

x y

x y x y y x

y y
y y y y
á ñ =

á ñ= á ñ -

∣ ∣
∣ ∣ ∣ ∣ ( ) ( )

However, given equation (2.16), wemust have LHS RHSx y x yy y y yá ñ = á ñ∣ ∣ ∣ ∣ . This is satisfied if either: (i)
P H,z
  =-[ ] for z x y, ;Î { } or (ii)Ux=Uy. Option (i) satisfies the if statement of the lemma.Option (ii)

implies that equation (2.16) is satisfied if

U H H P U P H, , 2.18
   


 


+ Ä = - Ä¢ -

¢
¢

¢
-[ ] [ ] ( )

for allmaximal subsets ¢ Í such that, given all x y, Î ¢,U U Ux y 
= = ¢. Here we

define P Px
x




 å¢
Î ¢≔ .

Equation (2.18) is satisfied if : (a) P H P,


 
µ¢

-
¢[ ] and U H H U, ;

   
+ µ¢ - ¢[ ] or (b) if P H,


 =¢

-[ ]
and U H H,

   + =¢ -[ ] . It is easy to verify that (a) is impossible, and so only option (b) is available. This
concludes the proof of the only if portion of the lemma. ,

For eachmeasurement outcome x, as a result of the global feedback unitary operatorV given in
equation (2.9),  and undergo the complementary CPTPmaps

P U P U

U P U

: tr ,

: tr , 2.19

x x x x x

x x x x*

   

   

j r j

r r j

L Ä

L Ä





[ ˜ ] [ ( [ ˜ ]) ]
[ ( [ ˜ ]) ] ( )

†

†

wherewe recall that x x j ñ Î{∣ ˜ } are the post-measurement states of  .
We nowwish to define the (average)work that is transferred from  into , for eachmeasurement

outcome, as a result of feedback. To this end, we use the following definition.

Definition 2. For eachmeasurement outcome x Î , the averagework transferred into theweight is defined as

W F F , 2.20x x*  r rL -≔ ( [ ]) ( ) ( )

where: x*L is theCPTPmap defined by equation (2.19);

F H K T Str 2.21Br r r-( ) ≔ [ ] ( ) ( )

is the non-equilibrium free energy of a systemwith state ρ, relative to theHamiltonianH and temperatureT; and
S tr lnr r r-( ) ≔ [ ( )] is the von-Neumann entropy of ρ.

This definition has been argued for previously in [53, 54]. Even though the thermal reservoir is not involved
during feedback, it is still part of the thermodynamic context of the Szilard engine. As such, work can be
extracted fromboth the system, and theweight, by letting them interact appropriately with the reservoir.
Therefore, the quantifier of work transfermust be temperature dependent, in the formof free energy difference,
in order to: (i) ensure consistencywith the ‘internal’ description of work extraction from  , wherein theweight
is not included in the quantumdescription; and (ii) avoid violation of the second law. For a detailed argumentwe
refer the reader to appendixA.Wenote that an alternative definition forwork transfer to theweight is the
increase in the internal energy of .While this formulationwill be consistent with the second law only if the
feedback unitaryV induces unital dynamics on the system  [55], definition 2 does not suffer from such
limitations.Moreover, definition 2 reduces to the increase in internal energywhen feature 2 is satisfied.

Now that we have definedwork extraction, wemay analyze this with respect to feature 2.

6
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Definition 3.The Szilard engine satisfies feature 2 if for all x Î ,

S S . 2.22x*  r rL =( [ ]) ( ) ( )

Lemma5.When the Szilard engine satisfies feature 2, it follows that

W H Hmin , 2.23x x x  j j sá ñ -˜ ∣ ∣ ˜ [ ( )] ( )

where Hs ( ) is the spectrum of H .

Proof.Thework transferred into is, by definition 2 and lemma 4, given as

W H P

K T S S

tr

. 2.24

x x x x

xB *
 

 

j j

r r

- L

+ - L

≔ [ ( [ ˜ ] [ ˜ ])]
( ( ) ( [ ])) ( )

As H Htr minx x j sL[ [ ˜ ]] [ ( )], it follows that

W H H

K T S S

min

. 2.25

x x x

xB *
 

 

 j j s

r r

á ñ -

+ - L

˜ ∣ ∣ ˜ [ ( )]
( ( ) ( [ ])) ( )

If the Szilard engine satisfies feature 2, then by definition 3we have equation (2.23). ,

3. The impossibility theorem

Weare now ready to prove amain result of this paper. The impossibility theorem is illustrated by Penrose’s
impossible triangle infigure 3.

Theorem1.Consider a quantum Szilard engine that, during the feedback stage, operates in thermal isolation. Let the
engine satisfy requirements 1 and 2. It follows that if the engine satisfies any two from features 1, 2, and 3, it will
necessarily fail to satisfy the third.

Proof. Let the engine satisfy features 1 and 2. By lemma 2 the post-measurement states x x j ñ Î{∣ ˜ } are the
eigenvectors of M and, hence, H . Consequently, for some outcome x Î , H Hminx x j j sá ñ =˜ ∣ ∣ ˜ [ ( )]. By
lemma 5, for this outcomewe haveW 0x  , and feature 3 cannot be satisfied.

Let the engine satisfy features 1 and 3. By lemma 2 the post-measurement states x x j ñ Î{∣ ˜ } are the
eigenvectors of M and, hence, H . Consequently, for some outcome x Î , H Hminx x j j sá ñ =˜ ∣ ∣ ˜ [ ( )]. By
lemma 5, for this outcomeW 0x > only if S Sx*  r rL <( [ ]) ( ). Hence, feature 2 cannot be satisfied.

Let the engine satisfy features 2 and 3. By lemma 5, for all x Î , thework is bounded as
W H Hminx x x  j j sá ñ -˜ ∣ ∣ ˜ [ ( )]. AsW 0x > for all x Î , it follows that H Hminx x j j sá ñ >˜ ∣ ∣ ˜ [ ( )] for all
x Î . Therefore, the post-measurement states x x j ñ Î{∣ ˜ } cannot be the eigenvectors of H . By lemma 2,
feature 1 cannot be satisfied. ,

Theorem 1, simply stated, says that if the system ismeasuredwith respect to a non-degenerate observable, in
a repeatable and energy conserving fashion, itmust be projected onto the eigenstates of H . Consequently, if we
do not allow theweight’s entropy to decrease, then for the outcome that projects the systemonto the groundstate
of H , zerowork can be extracted.

Figure 3.The impossible triangle of a quantumSzilard engine powered by projectivemeasurements. Features 1, 2, and 3 signify
respectively the repeatability of themeasurement; invariant weight entropy; and the reliability of the engine. The fact that only two
vertices of the impossible triangle can be physically connected, but not the third, represents the result that all three features cannot be
simultaneously satisfied.
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In appendixB,we illustrate the incompatibility between the three features by looking at a concretemodel
where both  and  are qubits, while is a harmonic oscillator. In appendixCwe show that theorem1 can be
circumvented if: (i) the thermal reservoir is involved during the feedback stage so that, just as in the classical
Szilard engine, the source of workwill be heat drawn from the reservoir; or (ii) the observablemeasured on  is
degenerate and ismeasured ‘inefficiently’.

4.Network extraction per cycle

Figure 2 depicts a single cycle of the Szilard engine under consideration. In appendixDwe evaluate the net work
extraction per cycle, whereinwe do not distinguish betweenmeasurement outcomes. Labeling the ‘coarse-
grained’work transferred to theweight asW F F  r r¢ -≔ ( ) ( ), and thework cost of erasure asWR, the net
coarse-grainedwork is shown to obey the inequality

W W W F F , 4.1R
net
    r r- - ¢≔ ( ) ( ) ( )

where r¢ and r¢ are the average states of  and at the end of the cycle, respectively, obtained by sampling

the states x xjL ( ˜ ) and x* rL ( ) by the probability distribution p xM


r ( ) as defined by equation (2.6).We note that

equation (4.1) holds irrespective of whether the Szilard engine satisfies any of features 1, 2, or 3.Moreover, we
note that the coarse-grainedwork is generally smaller than the averagework, i.e.,
W W p x Wx x

M
x 



 á ñ å rÎ≔ ( ) , whereWx is defined in equation (2.20).While the coarse-grainedwork

extraction obeys the second law, the average workwill not; if r is thermal, thenW 0net
  whereas

W W Wx x R
netá ñ á ñ -≔ can be positive.
To be sure, the second law is a statistical statement, held true precisely whenwe do not have access to the

individualmeasurement outcomes. Let us recall the definition for work transferred into theweight when it
transforms as x* r rL ( ), given by definition 2 and articulated in appendixA. This was given operational
meaning as being themaximumvalue of work that can be extracted from theweight, by an isothermal process

x*  r rL ( ) involving the reservoir of temperatureT. However, if wewere to forget themeasurement
outcomes, thenwe could not use such information to tailor our process of extractingwork from theweight.
Indeed, this protocolmust be designedwith only the average state of theweight inmind. Themaximumvalue of
work extractable from theweight, given an isothermal process  r r¢  , is preciselyW .

5.Discussion

Wegive a generalmathematical description of a quantumSzilard engine that operates in two stages, namely,
projectivemeasurement and feedback. In ourmodel, in contradistinction to the classical Szilard engine, the
feedback stage does not involve the thermal reservoir. Here, the source of work is the energetic changes due to
(non-degenerate) projectivemeasurements. In order to avoid cheating by the inclusion of hiddenwork sources,
we impose energy conservation on themeasuring process. As a result of theWAY theorem, the observables that
the demon canmeasurewill be limited to those that commutewith the system’sHamiltonian.

We showed thatwhile the Szilard engine, in lieu of a thermal reservoir, can be powered by (non-degenerate)
projectivemeasurements, it cannot simultaneously satisfy three features of the classical Szilard enginemodel;
the conjunction of any twowill preclude the possibility of the third. These features are: (i) themeasurement
performed by the demon is repeatable,meaning that conditional on obtaining outcome x, a subsequent
measurement of the same observable would yield xwith certainty; (ii) theweight’s entropy does not change as a
result of feedback; and (iii)work extraction is reliable, i.e., is strictly positive for allmeasurement outcomes. This
observation is a first step towards developing ‘second-law-like’ relations in the context ofmeasurement-assisted
feedback control beyond thermality.While the second law results from entropic considerations, these ‘second-
law-like’ relationswould result from energy conservation of unitary interactions that implementmeasurements.

The Szilard engine here discussed is, strictly speaking, not cyclical; at the end of a cycle ofwork extraction, the
state of the system, r¢ , will not be the same as its initial state, r . For the engine to bemade cyclical, therefore, we
must have at our disposal an infinite supply of systemswith state r such that, at the endof each cycle, the system’s
state is swappedwith oneof these.One example of such ‘free resources’ is if r is thermal.Here, wemay interpret
the closure of the cycle to result from the systembeing brought to thermal equilibriumwith the reservoir.

The strict non-cyclicality of the engine notwithstanding, the statistical second lawwill not be violated. This is
because, when taking the erasure cost of the demon into consideration, the total net work extracted from the
systemwill be bounded by the decrease in its free energy—a quantity that will not be positive if the system is
initially at thermal equilibrium.However, this requires a careful consideration of howone should evaluate work
when choosing to ‘forget’ themeasurement outcomes—precisely the domainwhere the second law is applicable.
Aswith unselectivemeasurements, thework transferred to theweight when the indvidualmeasurement
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outcomes are not distinguished fromone anothermust be defined by how theweight’s state changes on average.
Indeed, the extractable work from theweight, when themeasurement outcomes are forgotten, is smaller than
the average value of work, when themeasurement outcomes are taken into consideration.
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AppendixA.Definition ofwork transferred into theweight

Herewewish to justify defining thework transferred into theweight, as a result of feedback, by definition 2. To
this end, let usfirst recall a known result from standard non-equilibriumquantum thermodynamics. In the
internal description of work extraction, in contradistinction to the external description, theweight is not
included in the quantum formalism.Here, thework extracted from a systemundergoing a (non-energy
conserving) unitary evolution is defined as the decrease in its internal energy. Consequently, if a system 
undergoes a transformation U Utr    r r r t¢ Ä b ≔ [ ( ) ]† , whereU is a global unitary operator and

e tr eH H


 tb b b- -≔ [ ] is the thermal state of the thermal reservoir, with K TB
1b -≔ ( ) the inverse

temperature, thework extracted obeys the inequality

W H H H H U U F Ftr tr , A.1ext            r r r t r t r r¢ + Ä - + Ä - ¢b b( ) ≔ [( ) ] [( ) ( ) ] ( ) ( ) ( )†

with the equality obtainedwhen the interaction between system and thermal reservoir is ‘quasi-static’ [56].
Therefore, definition 2 can be justifiedwith the following argument.When theweight interacts with the

system, thereby transforming as x* r rL ( ), where x*L is given by equation (2.19), work is transferred to it.
Wemay then perform the reverse transformation on theweight, i.e., x*  r rL ( ) , by an appropriate unitary
interactionwith the thermal reservoir, so as to extract this work. Thework extracted herewill be in the internal
description, as there is no secondweight intowhich thework is being transferred. By equation (A.1), theworkwe
may extract obeys the inequality

W F F . A.2x xext * *   r r r rL L -( ( ) ) ( [ ]) ( ) ( )

Clearly, thework transferred into theweightmust be at least as great as thework that can be extracted from the
weight, i.e.,

W W . A.3x xext *   r rL ( ( ) ) ( )

Anatural assumption tomake is that, since the process of transferringwork into theweight is independent of the
process bywhichwork is extracted from theweight, the right hand side of the above equation should be replaced
by the upper bound of equation (A.2). If we also take the view that transferringmorework into theweight than
can possibly be extracted from it is physicallymeaningless, we arrive at definition 2.

We also note that definition 2 is consistent with the internal description of work from the system  , and that
it satisfies the second law.

Lemma6. Let the system andweight be initially prepared in the states r and r , respectively. Let the two systems
evolve by a unitary operator U that conserves the total Hamiltonian H H + , and induces the complementary
CPTPmapsΛ on  and *L on . Then the work transferred into the weight,W, as defined by definition 2, will never
exceed themaximumwork that can be directly extracted from the system by the process  r rL ( ), in the internal
description, and using a single thermal reservoir at temperature T. If r is thermal, thenW cannot be positive.

Proof.By definition 2, energy conservation ofU, and the subadditivity of the von-Neumann entropy, we have

W F F

H K T S S

H

K T S S

H K T S S

F F

,

tr ,

tr

,

tr ,

. A.4

B

B

B

*

* *

*





 

    

  

 

    

 



r r
r r r

r r
r

r r r r
r r

L -

= L - + - L
= - L

+ - L
- L + L -

= - L

≔ ( [ ]) ( )
[ ( [ ] )] ( ( ) ( [ ]))
[ ( [ ])]

( ( ) ( [ ]))
[ ( [ ])] ( ( [ ]) ( ))

( ) ( [ ]) ( )
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By equation (A.1), we see thatW is never greater than the upper bound ofWext  r rL( [ ]).Moreover, if the

system is initially in the thermal state e tr eH H
 

 r r= b b b- -≔ [ ], we have

W F F

K T S

,

, A.5B

 

 

 r r

r r

- L

=- L

b b

b b

( ) ( [ ])

( [ ] ) ( )

where S tr ln lnr s r r s-( ) ≔ [ ( ( ) ( ))] is the entropy of ρ relative toσ, which is a non-negative number and
vanishes if and only if r s= . Therefore,W 0 . ,

Appendix B. An examplewith qubits

As an illustrative example, consider the simple case where  and  are both qubits, with theHamiltonians

H P P

H P P
2

,

. B.1

  

  

w
j j

l y l y

-

+

+ -

+ + - -

≔ ( [ ] [ ])

≔ [ ] [ ] ( )

Furthermore, let the initial state of the systembe

qP q P1 , B.2  r j j= + -+ -[ ] ( ) [ ] ( )

while that of  is yñ∣ .Wewish tomeasure a two-valued observable M , with outcomes±, with the
measurementmodel U Z, , ,MM  y= ñ( ∣ ). In order to satisfy requirement 1 for themeasuring process, as
shownby lemmas 1 and 2, M and Zmust commutewith H and H, respectively. Therefore, we choose

M xP , B.3
x

x å j
Î

≔ [ ] ( )

and

Z xP . B.4
x

x å y=
Î

[ ] ( )

Given our choice of M and Z, the premeasurement unitary operator is chosen as

U : . B.5M j y j yñ Ä ñ ñ Ä ñ  ∣ ∣ ∣ ˜ ∣ ( )

Finally, in order for the engine to satisfy requirements 1 and 2 for the feedback process, we choose the global
feedback unitary operator

V U P . B.6
x

x å y= Ä
Î

[ ] ( )

Following [46], wewill use a harmonic oscillator of frequencyω as theweight, with theHamiltonian

H n P n . B.7
n

 


åw
Î

≔ [ ] ( )

Consequently, the conditional work extraction unitaries on + , namely,U, can be constructed as

U n f n g G

P 1 , B.8
n a b

a b a b
3 ,

 

å å j j j j- ñá - Ä ñá á ñ

+ Ä


=

¥

Î 
≔ ∣ ∣ ∣ ∣ ∣ ∣

[ ] ( )
{ }

where f a bmax 1, 1 1-≔ { }and g b amax 1, 1 1-≔ { }, with a b, Î { }. Here, G j j j jñá + ñá -  + 
^≔ ∣ ˜ ∣ ∣ ˜ ∣

is a unitary operator on  , such that 0j já ñ = 
^˜ ∣ ˜ . Therefore, when the systemundergoes a transition

j jñ ñ+ -∣ ∣ , theweight eigenstates are shifted up by one quantum, and vice versa.
It can be easily verified that U H H,   + = -[ ] , evenwhen j ñ∣ ˜ are not eigenstates of the system

Hamiltonian. If theweight is initialized in a pure state P r Y≔ [ ], where Yñ∣ is an equal superposition ofN
Hamiltonian eigenstates,

N
n

1
, B.9

n

N

2

1

åYñ ñ
=

+

∣ ≔ ∣ ( )

then it can function as a work storage device. This is a result of the energy-translational invariance of ;Yñ∣ adding
or removing one quantum is identical to a coordinate transformation n n 1+ and n n 1- , respectively.
Moreover, if j ñ∣ ˜ are the eigenvectors of H , then irrespective ofN the resulting dynamics on both  and will
be unitary. As such, feature 2will be satisfied in this case. This is not sowhen j ñ∣ ˜ are superpositions of H
eigenvectors. For example, in the case of 1

2
j j jñ = ñ  ñ + -∣ ˜ (∣ ∣ ), we have
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N

N

2 1

2
, B.10j j já L ñ =

-
-   -∣ ( ˜ )∣ ( )

with

S
N

N
N

N

N

N

1

2
ln 2

2 1

2
ln

2

2 1
. B.11* rL < +

-
- ⎜ ⎟⎛

⎝
⎞
⎠( ( )) ( ) ( )

In the limit asN tends to infinity, the increase in theweight’s entropy can bemade arbitrarily small, thus
approximately satisfying feature 2.

We now look at two possible implementations ofmeasurement-assistedwork extraction, labeled I and II. In
I, the observable M ismeasured repeatably, thus satisfying feature 1, while in II this is not the case. As the
weight is initially pure, its entropy can never decrease. Therefore, feature 3 is satisfied in II, but not in I.

B.1. Example I: repeatablemeasurement
Let j jñ = ñ ∣ ˜ ∣ , thus satisfying feature 1. Consequently, the state of  + after premeasurement is

U P U qP q P1 . B.12M M     r y j y j yÄ = Ä + - Ä+ + + + - -( [ ]) [ ] ( ) [ ] ( )†

Transforming this state with theweight by the global unitaryV prepares

VU P P U V qP q Ptr 1 . B.13M M       r y j y j yY Ä Ä = Ä + - Ä+ - + + - -[ ( [ ] [ ]) ] [ ] ( ) [ ] ( )† †

Comparing equation (B.12)with (B.13), we see that, as a result of feedback, the systemundergoes the transition
j jñ ñ+ -∣ ∣ when the demon is in the state y ñ+∣ , resulting in awork extraction ofω.When the demon is in the
state y ñ-∣ , on the other hand, the systemwas already in the groundstate j ñ-∣ and is left the same, resulting in zero
work extraction. Therefore, feature 3 is not satisfied.

B.2. Example II: non-repeatablemeasurement
Let 1

2
j j jñ = ñ  ñ + -∣ ˜ (∣ ∣ ). Hence, feature 1 is not satisfied. Consequently, the state of  + after

premeasurement is

U P U qP q P
2

1
2

. B.14M M     r y
j j

y
j j

yÄ =
+

Ä + -
-

Ä+
+ -

+ +
+ -

-
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( [ ])

( )
( )

( )
( )†

Transforming this state with theweight by the global unitaryV prepares, in the ideal limit of N  ¥,

VU P P U V qP q Ptr 1 . B.15M M       r y j y j yY Ä Ä = Ä + - Ä+ - + + - -[ ( [ ] [ ]) ] [ ] ( ) [ ] ( )† †

Comparing equation (B.14)with (B.15)we see that, as a result of feedback, the systemundergoes the transition
1

2
j j jñ  ñ ñ+ - -(∣ ∣ ) ∣ when the demon is in the states y ñ∣ , resulting in awork extraction of 2w for both

measurement outcomes. Therefore, feature 3 is satisfied.

AppendixC. Satisfying all three featureswith either a thermal reservoir, or degenerate
observables

There are at least twoways inwhich theorem 1 can be circumvented: (i) letting the reservoir be involved
during the feedback stage; and (ii)measure  with a degenerate observable.

C.1. Szilard enginewith heat froma thermal reservoir
As a simple example, let  be a d-dimensional system, and let be a system initially prepared in the thermal
state

e

tr e
, C.1

H

H




tb

b

b

-

-
≔

[ ]
( )

where K TB
1b = -( ) is the inverse temperature. By lemma 2, the non-degenerate observable M Px x  j= å Î [ ]

can only bemeasured repeatably if it commutes with the systemHamiltonian H . As such, in order to satisfy
feature 1 the post-measurement states x x j ñ Î{∣ } must be eigenstates of H . Including the reservoir in the
feedback stagemeans that theUx in the feedback unitary operator defined in equation (2.9) are unitary operators
on the compound  + + such that U H H H,x    + + =-[ ] . TheCPTPmaps defined in
equation (2.19)will therefore bemodified as
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P U P U

U P U

U P U

: tr ,

: tr ,

: tr . C.2

x x x x x

x x x x

x x x x*

     

     

     

j r j t

t r j t

r r j t

L Ä Ä

L¢ Ä Ä

L Ä Ä

b

b b

b

+

+

+







[ ] [ ( [ ] ) ]
[ ( [ ] ) ]
[ ( [ ] ) ] ( )

†

†

†

The subadditivity of the von-Neumann entropy and its invariance under unitary evolution implies that

S S S S S . C.3x x x x*   t t r r jL¢ - - L - Lb b( [ ]) ( ) ( ) ( [ ]) ( [ ]) ( )

Recalling thatwhen feature 2 is satisfied, S S 0x* r r- L =( ) ( [ ]) , thenby definition 2 and equation (C.3), the
work that canbe extracted for eachmeasurement outcome,whenboth features 1 and2 are satisfied, is boundedby

W H H P

S S S

H P

S S

H P

S H P

tr tr ,

tr ,

tr ,

tr .

x x x x x

x x

x x x

x x x

x x x

x x x x x

1

1

1

    

   

 

 

 

 





t t j j

b t t t t
j j

b j t t
j j

b j j j

= - L¢ + - L

= - L¢ - L¢

+ - L

L - L¢

+ - L

L + - L

b b

b b b b

b b

-

-

-





[ ( [ ])] [ ( [ ] [ ])]
( ( ) ( [ ]) ( [ ] ))
[ ( [ ] [ ])]
( ( [ ]) ( [ ] ))
[ ( [ ] [ ])]
( [ ]) [ ( [ ] [ ])]

Thefinal inequality can be saturatedwhen the relative entropy term, S x  t tL¢ b b( [ ] ), which is a non-negative
number, ismade vanishingly small. As shown in [12], this can be done if the dimension of is chosen to be
sufficiently large, and itsHamiltonian spectrum is carefully chosen. As S x xjL( [ ]) can be positive evenwhen the
weight’s entropy is not allowed to change, we can always have positive work extraction. This is true even if the
post-measurement state xj ñ∣ is the groundstate of H .Moreover, if H is fully degenerate, and dx x jL =[ ] ,
then themaximumvalue ofWxwill be K T dlnB ( ) for all x Î . If d=2, this coincides with thework extracted
from the classical Szilard engine when the volumes of the left and right side of the partition are identical.

C.2.Degenerate observables
Recall that theorem1 states that, when feature 2 is satisfied, then the extractedworkwill not be positive for the
outcomewhere the post-measurement state coincides with the groundstate of the systemHamiltonian. Herewe
show that, if the observableM is both degenerate and ismeasured ‘inefficiently’, then the post-measurement
states can always be chosen so as to havemore energy than the groundstate of H , thus allowing for the
circumvention of theorem1.

For a system  withHilbert space d  such that d 2> , let M be a degenerate observable

M xP , C.4
x

x



å=

Î

( )

such that d <∣ ∣ , and P x
x Î{ } is a complete and orthogonal set of projection operators on .We label the

orthonormal eigenstates of M as xj ña∣ , whereα is a degeneracy label, such that M xx x j jñ = ña a∣ ∣ for allα and x.
Themeasurementmodel for this observable, U Z, , ,MM  y= ñ( ∣ ), will be repeatable if for all x Î , the
post-measurement states lie in the support of P x

 .Moreover, by theWAY theorem, ifM is to be repeatable,
given thatUM conserves the totalHamiltonian, then P x

 must commutewith H for all x Î . Consider the
projector Py

 whose support contains the groundstate(s) of H . It follows that for a repeatablemeasurement, y is
the only outcomewhose post-measurement statewill have support on the groundstate(s) of H . Therefore, in
order to circumvent theorem1we need to show that, for all r , the post-measurement state given outcome yhas
more energy than theminimumeigenvalue of H .

Wewill now look at two repeatable, and energy conservingmeasurementmodels for the degenerate
observable M . Thefirstmodel is a generalization of a Lüdersmeasurement [51, 52]. Here, for some state r , the
post-measurement state of outcome y is the groundstate of H . Consequently, thismeasurementmodel will not
circumvent theorem 1. In the secondmodel, wemay always ensure that the post-measurement state for
outcome ywill havemore energy than the groundstate, thus circumventing theorem1.We show that this is
equivalent to coarse-graining themeasurement outcomes of a non-degenerate observable, in such away so as to
allow for a repeatablemeasurement that is also ‘inefficient’.

C.2.1. Strong value-correlationmeasurements. Thesemeasurements, just as the standardmeasurements for
non-degenerate observables, have the property that, for any pure state Yñ Î∣ , the post-measurement state
for outcome x Î will also be pure.Here, the premeasurement unitary operator is

U : , C.5M x x xj y j yñ Ä ñ ñ Ä ña a∣ ∣ ∣ ˜ ∣ ( )

where xj ña a{∣ ˜ } is an orthonormal basis that spans P x  ( ). The instrument implemented by thismeasurement
model will be
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V P P V: , C.6x
M

x
x x

x    r r ( )†

whereVx is a unitary operator acting on the support of P x
 . This instrument has only oneKraus operator,

K V Px x
x
= , and it is said to result in an ‘efficient’measurement. IfVx = , whereby x xj jñ = ña a∣ ˜ ∣ , we have a

Lüdersmeasurement.
If the system is initially in the pure state

c , C.7
x

x x
,
å jYñ = ñ
a

a a∣ ∣ ( )

the post-measurement state for outcome ywill be

P

P
P

N
c N c

tr
,

1
, . C.8

y
M

y
M y

y y y y
2 2










å åj

Y

Y
= Y

Y ñ = ñ =
a

a a

a

a

( [ ])
[ ( [ ])]

[ ]

∣ ∣ ˜ ∣ ∣ ( )

Therefore, for some state Yñ∣ , the post-measurement state yY ñ∣ will be equal to the groundstate of the
Hamiltonian. As such, theorem 1will not be circumvented.

C.2.2. Coarse-grained standardmeasurements. Let us denote the degenerate eigenstates of Z as the
orthonormal set of vectors xy ña{∣ } such that Z xx x y yñ = ña a∣ ∣ for all x andα. The premeasurement unitary
operator can then be defined as

U : . C.9M x x xj y j yñ Ä ñ ñ Ä ña a a∣ ∣ ∣ ˜ ∣ ( )

Comparingwith equation (2.2), wemay see this as a coarse-grainedmeasurement of a standard, non-degenerate
observable. Now, the vectors in xj ña a{∣ ˜ } no longer have to be orthonormal. But, theymust still be eigenstates of
M with eigenvalue x for themeasurement to be repeatable. The instrument implemented by thismeasurement
model will be

V P P V: , C.10x
M

x x x x, ,    år j r j
a

a
a a

a [ ] [ ] ( )†

whereVx,a are unitary operators acting on the support of P x
 . In contrast to the generalized Lüdersmeasurement

discussed previously, this instrument hasmore than oneKraus operator, and leads to an ‘inefficient’
measurement.

If the system is initially in the pure state

c , C.11
x

x x
,
å jYñ = ñ
a

a a∣ ∣ ( )

the post-measurement state for outcome ywill be

P

P c
c P

tr

1
. C.12

y
M

y
M

y
y y2

2









å å j
Y

Y
=

a

a
a

a a( [ ])
[ ( [ ])] ∣ ∣

∣ ∣ [ ˜ ] ( )

Due to the orthogonality of the vectors xy ña∣ in equation (C.9), for each x andα, the vectors yj ña∣ ˜ can be any

superpositions ofHamiltonian eigenstates that live in the support of Py
 . Sowemay simply choose these as the

highest energy state within that subspace. Consequently, theorem1will be circumvented.

AppendixD.Network extraction per cycle of a quantumSzilard enginewithout heat from
a thermal reservoir

Each cycle of work extraction involves the following steps: (i)  is given in state ;r (ii)  and  undergo a joint
unitary evolution byUM; (iii)work is extracted from  by a feedback unitary operatorV on ;  + + (iv) 
is reset to its initial state yñ∣ by coupling to a thermal reservoir. Figure 2 shows this schematically.

The initial state of the compound   + + + is

P , D.1   r r r y t= Ä Ä Ä b[ ] ( )

where e tr eH H


 tb b b- -≔ [ ] is theGibbs state of the reservoir at inverse temperature K TB
1b = -( ) . After

premeasurement, objectification, and feedback the statewill be

V V , D.2M O,
   r r r t¢ Ä Ä b

+≔ ( ) ( )†
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where M O,
 r + is defined in equation (2.5). Themarginal states of r¢ satisfy the relations

p x V V

p x V V

V V

tr ,

tr ,

tr , D.3

x

M
x x

M O

x

M
x

M O

M O

,

,

,

*




    




     

     





å

å

r j r r

r r r r

r r r

¢ L º Ä

¢ L º Ä

¢ Ä

r

r

Î
+ +

Î
+ +

+ +

≔ ( ) [ ˜ ] [ ( ) ]

≔ ( ) [ ] [ ( ) ]

≔ [ ( ) ] ( )

†

†

†

where p xM


r ( ) is the Born rule probability defined in equation (2.6), while xL and x*L are theCPTPmaps induced

by feedback, as defined in equation (2.19).
Using definition 2, wemay view thework transferred into theweight, when the differentmeasurement

outcomes are not distinguished fromone another, to be

W H K T S S

H H P K T S S

tr ,

tr tr . D.4

B

B

     

       

r r r r

r r y r r r

¢ - + - ¢

= - ¢ + - ¢ + - ¢

≔ [ ( )] ( ( ) ( ))
[ ( )] [ ( [ ] )] ( ( ) ( )) ( )

Herewe have used the fact that feedback andmeasurement are energy conserving on the total system.We call
W the ‘coarse-grained’work, which is different to the averagework, obtained by averagingWx over all
measurement outcomes x Î , which is

W p x W

H K T S p x S

W

,

tr ,

. D.5

x
x

M
x

x

M
xB *



   












å

år r r r

á ñ

= ¢ - + - L

r

r

Î

Î

⎛
⎝⎜

⎞
⎠⎟

≔ ( )

[ ( )] ( ) ( ) ( [ ])

( )

The inequality here is due to the concavity of the von-Neumann entropy.
Before the cycle can begin anew, the demonmust be reset to the original pure state yñ∣ . This is achieved

within the Landauer framework, by coupling  with by the ‘erasure’ unitary operator
U :R       Ä  Ä . If the reservoir is infinitely large, thenUR can be chosen so that

U U Ptr . D.6R R   r t y¢ Ä =b[ ( ) ] [ ] ( )†

To be sure,UR is generally not energy conserving, and thus needs a hiddenwork source. Notwithstanding, this is
not a problem, because erasure always consumeswork. Therefore, this hiddenwork source does not contribute
towork extractionwithin a cycle. Defining the reduced state of the reservoir after its interactionwith  as t¢ ,
the consequent increase in energy of the reservoir, defined as heat, obeys Landauer’s inequality

Q H Str . D.71
   t t b r¢ - ¢b -≔ [ ( )] ( ) ( )

As shown in [12], this bound can be achieved if the reservoir is infinitely large, and itsHamiltonian has a specific
spectrum. Furthermore, we note that premeasurement, objectification, and feedback results in a unital CPTP
map, which does not decrease the von-Neumann entropy [57, 58]. This, together with the subadditivity of the
von-Neumann entropy [59], implies that

S S S P

S V V

S S S

,

,

. D.8

M O,

    

  

  




r r r r y

r r

r r r

+ = Ä Ä

Ä

¢ + ¢ + ¢
+

( ) ( ) ( [ ])
( ( ) )

( ) ( ) ( ) ( )

†

Consequently, by combining equations (D.7) and (D.8), and also taking into account the energy change of the
demondue to erasure, thework cost of erasure is shown to obey the inequality

W H P Q

H P K T S S S S

tr ,

tr . D.9

R

B

  

      
y r

y r r r r r

- ¢ +

- ¢ + + - ¢ - ¢

≔ [ ( [ ] )]
[ ( [ ] )] ( ( ) ( ) ( ) ( )) ( )

Defining the net coarse-grainedwork extraction asW W WR
net
  -≔ , by combining equations (D.4) and (D.9)

we arrive at the inequality

W F F W H

K T S S Q F F

tr

, . D.10

R
net

B

     

   
r r r r

r r r r

= ¢ - - = - ¢

+ - ¢ - - ¢

( ) ( ) [ ( )]
( ( ) ( )) ( ) ( ) ( )

The net averagework extraction W W Wx x R
netá ñ á ñ -≔ , on the other hand, obeys themodified inequality

W F F K T S p x S . D.11x
x

M
x

net
B *  






 år r r rá ñ - ¢ + ¢ - Lr
Î

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( [ ]) ( )

Therefore, we see that while the coarse-grainedwork definition of equation (D.4)will satisfy the second law, the
averagework extraction defined in equation (D.5)will not; if r is initially thermal, the net coarse-grainedwork
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extraction given by equation (D.10)will never be positive, whereas the net averagework extraction given by
equation (D.11) could be.

ORCID iDs

MHamedMohammady https://orcid.org/0000-0002-0443-5242

References

[1] SagawaT andUedaM2012Phys. Rev.E 85 021104
[2] ShiraishiN, Ito S, Kawaguchi K and SagawaT 2015New J. Phys. 17 045012
[3] Maxwell J C 1871Theory ofHeat (London: Longmans)
[4] MaruyamaK,Nori F andVedral V 2009Rev.Mod. Phys. 81 1
[5] Szilard L 1929Z. Phys. 53 840
[6] BalianR 2007 FromMicrophysics toMacrophysics vol 1 (Berlin: Springer)
[7] PenroseO1970 Foundations of StatisticalMechanics: ADeductive Treatment (Oxford: Pergamon)
[8] Bennett CH1982 Int. J. Theor. Phys. 21 905
[9] Bennett CH2003 Stud.Hist. Phil.Mod. Phys. 34 501
[10] Landauer R 1961 IBM J. Res. Dev. 5 183
[11] Landauer R 1996Phys. Lett.A 217 188
[12] ReebD andWolfMM2014New J. Phys. 16 103011
[13] Vinjanampathy S andAnders J 2016Contemp. Phys. 57 545
[14] Goold J, HuberM, Riera A, del Rio L and Skrzypczyk P 2016 J. Phys. A:Math. Theor. 49 143001
[15] Millen J andXuerebA 2016New J. Phys. 18 011002
[16] HorodeckiM andOppenheim J 2013Nat. Commun. 4 2059
[17] Kammerlander P andAnders J 2015 Sci. Rep. 6 22174
[18] LostaglioM, JenningsD andRudolph T 2015Nat. Commun. 6 6383
[19] Perarnau-LlobetM,HovhannisyanKV,HuberM, Skrzypczyk P, BrunnerN andAcínA 2015 Phys. Rev.X 5 041011
[20] Gogolin C and Eisert J 2016Rep. Prog. Phys. (https://doi.org/10.1088/0034-4885/79/5/056001)
[21] Guryanova Y, Popescu S, Short A J, Silva R and Skrzypczyk P 2016Nat. Commun. 7 12049
[22] YungerHalpernN, Faist P, Oppenheim J andWinter A 2016Nat. Commun. 7 12051
[23] AlhambraÁM,Masanes L,Oppenheim J and Perry C 2016Phys. Rev.X 6 041017
[24] ZurekWH1986Maxwell’s demon, Szilard’s engine and quantummeasurements Frontiers of Nonequilibrium Statistical Physics ed

GTMoore andMOScully (Boston,MA: Springer) pp 151–61
[25] PleschM,DahlstenO,Goold J andVedral V 2014 Sci. Rep. 4 6995
[26] KimSW, SagawaT,De Liberato S andUedaM2011Phys. Rev. Lett. 106 070401
[27] SagawaT andUedaM2008Phys. Rev. Lett. 100 080403
[28] Jacobs K 2009Phys. Rev.A 80 012322
[29] Park J J, KimK-H, SagawaT andKimSW2013Phys. Rev. Lett. 111 230402
[30] Camati PA,Peterson J P S,BatalhãoTB,MicadeiK, SouzaAM,SarthourRS,Oliveira I S andSerraRM2016Phys. Rev. Lett.117 240502
[31] CottetN et al 2017PNAS 114 7561
[32] ElouardC,Herrera-Martí D, CluselM andAuffèves A 2017 npjQuantum Inf. 3 9
[33] ElouardC,Herrera-Martí D,Huard B andAuffèves A 2017Phys. Rev. Lett. 118 260603
[34] SagawaT andUedaM2009Phys. Rev. Lett. 102 250602
[35] Jacobs K 2012Phys. Rev.E 86 040106
[36] NavascuésM and Popescu S 2014Phys. Rev. Lett. 112 140502
[37] Miyadera T 2016 Found. Phys. 46 1522
[38] AbdelkhalekK,Nakata Y andReebD 2016 arXiv:1609.06981
[39] Wigner E 1952Z. Phys. 133 101
[40] ArakiH andYanaseMM1960Phys. Rev. 120 622
[41] Miyadera T and ImaiH2006Phys. Rev.A 74 024101
[42] Loveridge L andBusch P 2011Eur. Phys. J.D 62 297
[43] Busch P and Loveridge L 2011Phys. Rev. Lett. 106 110406
[44] AhmadiM, Jennings D andRudolph T 2013New J. Phys. 15 013057
[45] Skrzypczyk P, Short A J and Popescu S 2014Nat. Commun. 5 4185
[46] Åberg J 2014Phys. Rev. Lett. 113 150402
[47] vonNeumann J 1996Mathematical Foundations of QuantumMechanics (Princeton, NJ: PrincetonUniversity Press)
[48] Busch P, GrabowskiM andLahti P J 1995Operational QuantumPhysics (Berlin: Springer)
[49] Busch P, Lahti P J andMittelstaedt P 1996TheQuantumTheory ofMeasurement (Berlin: Springer)
[50] Busch P, Lahti P J, Pellonpää J P andYlinenK2016QuantumMeasurement (Berlin: Springer)
[51] Heinosaari T andZimanM2011TheMathematical Language of QuantumTheory (Cambridge: CambridgeUniversity Press)
[52] Mittelstaedt P 2004The Interpretation of QuantumMechanics and theMeasurement Process (Cambridge: CambridgeUniversity Press)
[53] Gemmer J andAnders J 2015New J. Phys. 17 085006
[54] Gallego R, Eisert J andWilmingH2016New J. Phys. 18 103017
[55] Morikuni Y, TajimaH andHatanoN2017Physi. Rev.E 95 032147
[56] Anders J andGiovannetti V 2013New J. Phys. 15 033022
[57] Alberti P andUhlmannA 1982 Stochasticity and Partial Order: Doubly StochasticMaps andUnitaryMixing (Berlin: Springer)
[58] NakaharaM, Rahimi R and SaitohA 2008Decoherence Suppression inQuantumSystems (Singapore:World Scientific)
[59] PetzD 2008Quantum Information Theory andQuantumStatistics (Berlin: Springer)

15

New J. Phys. 19 (2017) 113026 MHMohammady and J Anders

https://orcid.org/0000-0002-0443-5242
https://orcid.org/0000-0002-0443-5242
https://orcid.org/0000-0002-0443-5242
https://orcid.org/0000-0002-0443-5242
https://doi.org/10.1103/PhysRevE.85.021104
https://doi.org/10.1088/1367-2630/17/4/045012
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1007/BF01341281
https://doi.org/10.1007/BF02084158
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1016/0375-9601(96)00453-7
https://doi.org/10.1088/1367-2630/16/10/103011
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1088/1367-2630/18/1/011002
https://doi.org/10.1038/ncomms3059
https://doi.org/10.1038/srep22174
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1103/PhysRevX.5.041011
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1038/ncomms12049
https://doi.org/10.1038/ncomms12051
https://doi.org/10.1103/PhysRevX.6.041017
https://doi.org/10.1038/srep06995
https://doi.org/10.1103/PhysRevLett.106.070401
https://doi.org/10.1103/PhysRevLett.100.080403
https://doi.org/10.1103/PhysRevA.80.012322
https://doi.org/10.1103/PhysRevLett.111.230402
https://doi.org/10.1103/PhysRevLett.117.240502
https://doi.org/10.1073/pnas.1704827114
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1103/PhysRevLett.118.260603
https://doi.org/10.1103/PhysRevLett.102.250602
https://doi.org/10.1103/PhysRevE.86.040106
https://doi.org/10.1103/PhysRevLett.112.140502
https://doi.org/10.1007/s10701-016-0027-6
http://arxiv.org/abs/1609.06981
https://doi.org/10.1007/BF01948686
https://doi.org/10.1103/PhysRev.120.622
https://doi.org/10.1103/PhysRevA.74.024101
https://doi.org/10.1140/epjd/e2011-10714-3
https://doi.org/10.1103/PhysRevLett.106.110406
https://doi.org/10.1088/1367-2630/15/1/013057
https://doi.org/10.1038/ncomms5185
https://doi.org/10.1103/PhysRevLett.113.150402
https://doi.org/10.1088/1367-2630/17/8/085006
https://doi.org/10.1088/1367-2630/18/10/103017
https://doi.org/10.1103/PhysRevE.95.032147
https://doi.org/10.1088/1367-2630/15/3/033022

	1. Introduction
	2. Modeling a quantum Szilard engine
	2.1. Measurement stage
	2.2. Feedback stage

	3. The impossibility theorem
	4. Net work extraction per cycle
	5. Discussion
	Acknowledgments
	Appendix A.
	Appendix B.
	B.1. Example I: repeatable measurement
	B.2. Example II: non-repeatable measurement

	Appendix C.
	C.1. Szilard engine with heat from a thermal reservoir
	C.2. Degenerate observables
	C.2.1. Strong value-correlation measurements
	C.2.2. Coarse-grained standard measurements


	Appendix D.
	References



