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Abstract
Optomechanical devices have been cooled to ground-state and genuine quantum features, as well as
long-predicted nonlinear phenomena, have been observed.When packing close enoughmore than
one optomechanical unit in the same substrate the question arises as towhether collective or
independent dissipation channels are the correct description of the system.Herewe explore the effects
arisingwhen introducing dissipative couplings betweenmechanical degrees of freedom.We
investigate synchronization, entanglement and cooling, finding that collective dissipation can drive
synchronization even in the absence ofmechanical direct coupling, and allow to attain larger
entanglement and optomechanical cooling. Themechanisms responsible for these enhancements are
explored and provide a full and consistent picture.

1. Introduction

Cavity optomechanical systems (OMs) consist of a set of cavity lightmodes coupled to one ormoremechanical
elements typically by radiation pressure forces. OMs encompassmany physical implementations ranging from
the canonical Fabry–Perot resonator with amoving endmirror, to intracavitymembranes, to the co-localized
photonic and phononicmodes of optomechanical crystals, tomention some [1]. The nonlinear character of the
optomechanical interaction enablesOMs towork in various dynamical regimes and to exhibit a rich dynamical
behavior. OMs can settle both infixed points and display phenomena such as optical bistability [2, 3], as well as
into limit cycles or self-sustained oscillations [4, 5], inwhich dynamicalmultistability is found [6–8].Moreover,
arrays of coupledOMs can synchronize their self-sustained oscillations, as it has been shown both theoretically
[9–11] and experimentally [12–14]. Spontaneous (ormutual) quantum synchronization (recently overviewed in
[15])has also been considered in several systems [15–26], also for commonbath (CB) dissipation [16–18,
20–23], beingOMs a promising platform to study this phenomenon [19–21, 24–26]. In the quantum regime
optomechanical cooling allows efficient ground state cooling of themechanicalmodes deep in the resolved
sideband regime [27, 28], andmechanical occupation numbers belowone have been experimentally achieved
[29, 30]. A variety of non-classical states and correlations have been predicted forOMs [1], some of thembeing
recently observed [31–33]. In particular entanglement in the asymptotic state has been considered between light
andmirror [34, 35], andmembranes [36, 37], even atfinite temperatures.

The ubiquitous interaction of a systemwith its surroundings introduces noise and damping, andmight lead
to the complete erasure of quantum coherence [38]. In the case of a spatially extendedmultipartite system—e.g.
(optomechanical) array—the spatial structure of the environment—like afield, a lattice or a photonic crystal—
becomes crucial in determining different dissipation scenarios. Two prototypicalmodels are often considered:
the separate bathmodel (SB) inwhich the units of the systemdissipate into different uncorrelated environments,
and theCBmodel inwhich they dissipate collectively into the same environment. The particular dissipation
scenario influences deeply the system.While SB dissipation usually destroys quantum correlations [38],
dissipation in aCB leads to different results and enables phenomena such as decoherence free/noiseless
subspaces [39], dark states [40], superradiance [38, 41], dissipation-induced synchronization of linear networks
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of quantumharmonic oscillators [16, 18] and of non-interacting spins [22], or no sudden-death of
entanglement in systems of decoupled oscillators [42, 43], that would not be present in these systems for SB
dissipation. CB dissipationwasfirst considered in the context of superradiance of atoms at distances smaller
than the emitted radiationwavelength [41] and often assumed to arise when the spatial extension of a system is
smaller than the correlation length of the structured bath. A recent analysis of the CB/SB crossover in a lattice
environment reveals the failure of this simple criteria and that actually collective dissipation can emerge even at
large distances between the system’s units (also for 2D and 3D environments [17, 43]).

A detailed analysis of the CB/SB crossover in optomechanical arrays has not yet been reported andmost of
theworks generally assume independent dissipation affecting optical andmechanical units. On the other hand,
collectivemechanical dissipation has been recently reported in some experimental platforms [44, 45], such as
OMs composed by two coupled nanobeams in a photonic crystal platform (environment). Photonic crystals are
indeed also a known tool to suppressmechanical dissipation [46, 47]. In the peculiar case of devices [44, 45] the
main dissipationmechanism of the nanobeams is found to be the emission of elastic radiation by the center of
mass coordinate of the beams. Furthermore, an analogous collective dissipationmechanismhas been
experimentally observed in piezoelectric resonators with a similar geometry [48, 49]. In general collective
dissipation can lead to quantitative and qualitative differences andwe showhow it can be beneficial for collective
phenomena and quantum correlations. In this workwe investigate the effects of CB dissipation inOMs.We
focus on a particularOMconsisting of two coupledmechanical elements each optomechanically coupled to a
different opticalmode (figure 1).We consider two dissipation schemes: independent SB for all optical and
mechanicalmodes (figure 1(a)), or CB for themechanicalmodes and SB for the optical ones (figure 1(b)).We
analyze the effects of collective dissipation both in the classical and in the quantum regime, focusing on two
phenomena already addressed in the literature in presence of SB, namely synchronization and entanglement
[9, 36]. CB dissipationwill be shown to have beneficial effects when compared to the SB case, both on classical
synchronization (section 3) and on asymptotic entanglement and optomechanical cooling (section 4).

2.Model andmethods

2.1.Hamiltonianmodel
A simple configuration to assess collective or independent forms of dissipation consists of two optomechanical
coupled units, as sketched infigure 1.We allow for afinitemechanical–mechanical coupling to be compared
with dissipative coupling effects, whilemixing between opticalmodes is not addressed here for simplicity. The
totalHamiltonian is:

k
x x

2
, 1S 1 2 1 2

2  = + + -ˆ ˆ ˆ ( ˆ ˆ ) ( )

where 1,2̂ are theHamiltonians for each optomechanical oscillator and the last term is themechanical coupling
between them. This kind ofmechanical coupling can be found for instance in nanoresonators clamped to the
same substrate as in [44, 45, 50], as well as it can be induced optically using off-resonant lasers [51]. Alternatively,
interactionwith a common (and single) optical field can also induce coupling betweenmechanicalmodes of
OMs, as in [11, 14]. TheHamiltonian for each unit of the optomechanical system reads as [52]:

Figure 1. In this workwe consider an optomechanical system composed by two opticalmodes and twomechanicalmodes, andwe
allow for afinitemechanical coupling.We consider two dissipation scenarios. (a)All themodes of the systemdissipate into
independent environments (separate baths). (b)Themechanicalmodes dissipate collectively into the same environment (common
bath), while the opticalmodes dissipate into separate baths.
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in the frame rotatingwith the input laser frequencies [1]. Thefirst two terms of theHamiltonian correspond to
themechanical elements, described as harmonic oscillators of frequency m j,w , effectivemassm, and position and
momentumoperators xjˆ , and pĵ, where x p, ij j =[ ˆ ˆ ] . The third and fourth terms describe the driven optical

cavities in the frame rotating at the laser frequency, where L c0 w wD = - , cw is the cavity resonance frequency,

Lw is the laser frequency, Pin is the laser input power,κ is the cavity energy decay rate, and ajˆ†, ajˆ are the creation

and annihilation operators of the lightmodes, with a a, 1j j =[ ˆ ˆ ]† . Notice that wemake the simplifying
assumption of identical optomechanical oscillators except for themechanical frequencies, inwhich allowing
disparity is essential for the study of synchronization. Finally the last term in equation (2) describes the
optomechanical couplingwith a strength parametrized by the effective optomechanical length Lom, whose
precise definition is systemdependent andmight involve the particular properties of the interacting optical and
mechanicalmodes (see for instance its definition for optomechanical crystals [53]). Finally we remark that this
model is appropriate formany differentOMs as long as the parameters of the system, such asm or Lom,
appropriately refer to specific devices (like e.g. examples as diverse as in [53, 54]).

The optical andmechanical environments are described as an infinite collection of harmonic oscillators in
thermal equilibrium. The standardmodel for the environment of an optical cavity, and themaster/Langevin
equations describing its dynamics, can be found inmany textbooks on open quantum systems [38, 55, 56].We
describe themechanical environments using themodel of [57], inwhich the Born–Markovmaster equations of
two coupled nonidentical harmonic oscillators for theCB/SB cases are derived, starting from the following
Hamiltonians. In the SB case eachmechanical oscillator is coupled to its own reservoir, so there are two different
baths described by:

r r q x j, , 1, 2, 3j j j j j j jbath,
SB

1
, , , int,
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, å åw l= = =

a
a a a

a
a

=
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=

¥
ˆ ˆ ˆ ˆ ˆ ˆ ( )†

where r j,â
† , r j,â are the creation and annihilation operators of the bathmodes, and q j,aˆ their position operators.

On the other hand, in theCB case there is only one collective environment for both systemunits:

r r q x, 2 , 4bath
CB

1
int
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a
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resulting in coupling through the center ofmass coordinate x x x 21 2= ++ˆ ( ˆ ˆ ) [16, 17, 38, 39, 41–44]. Notice
thatwe have included a factor two in equation (4) to enforce an equal energy damping rate for bothmodels: in SB
case two independent channels dissipate, in CB case only one coordinate (center ofmass) dissipates, but it is
coupled to the bathwith double strength 2l. This allows for a quantitative, not only qualitative, comparison of
both dissipation regimes.

2.2.Dimensionless parameters and observables
A set of dimensionless observables and parameters can be introduced similarly to [6]. First we define the
quantities x L com omk w= and n P4 Lmax in w k= , whichwe use to achieve a dimensionless time and
dimensionless operators of the system:
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where the dimensionless quantities are denoted by a prime. Then the following dimensionless parameters
appear in the equations ofmotion:
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Unless stated otherwise wewill workwith these dimensionless parameters in the following, and thuswe can drop
the primes.

2.3. Nonlinear classical equations
After defining the set of dimensionless parameters and observables used in this work, we canwrite down the
dimensionless equations describing the classical dynamics of this system [9], both for SB andCB. The classical
dynamics can be obtained by the quantum equations ofmotion taking the firstmoments andmaking the
approximation of factorizing expectation values of nonlinear terms, as usual. The quantumdynamics can be
obtained either from amaster equation approach aswell as from the quantumLangevin equations of the system
(see next section) [1, 56, 57]:
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where variables without hat denote expectation values, e.g., x x= á ñˆ . Themechanical dissipation terms are
defined as pjSB = G for the SB case [9], and p pCB 1 2 = G +( ) for theCB case [57].

The dynamical behavior ofOMs can be very diverse depending on the parameter choice [1].When the
mechanical resonator is ‘too slow’with respect to the cavity lifetime (lowmechanical quality factor, and mw
smaller thanκ, in dimensional units), the intracavity power follows adiabatically changes in themechanical
displacement, and a fixed point inwhich radiation pressure equilibrates with themechanical restoring force is
reached [2]. Otherwise, when themechanical resonator is able to follow the fast cavity dynamics (high quality
factors, and mw comparable toκ), dynamical backaction enables striking phenomena such as damping (cooling)
or anti-damping (heating) of themechanicalmotion by the optical cavity [1, 58]. In fact optomechanical cooling
is enhanced in the red-sideband regime ( 00D < )whereas anti-damping in the blue-sideband regime ( 00D > ).
For enough laser power,  , anti-damping can overcome intrinsicmechanical damping resulting in a dynamical
instability and self-sustained oscillations [1, 58]. In these conditions theOMexperiences a supercriticalHopf
bifurcationwhen varying continuously 0D fromnegative to positive values [6, 59].Moreover, for strong driving
a dynamicalmultistability is found, and self-sustained oscillations are possible even in the red-sideband regime
[6]. The regime of self-sustained oscillations has been explored in the context of spontaneous synchronization in
presence of independent dissipation for two coupledmechanical units [9] and in section 3we are going to
address the effect of dissipative coupling (CB).

2.4. Linear quantumLangevin equations
From the aboveHamiltonianmodel and the input–output formalismwe can obtain a set of Langevin equations
describing the noise driven damped dynamics of the operators [1] (see also the appendix), that will be used in
section 4 to explore a possible improvement of non-classical effects in presence of collective dissipation.We are
going to consider the system in a stable and stationary statewhere a linearized treatment is a suitable
approximation for thefluctuations dynamics (formore details see for instance [1, 34, 60]). Low temperatures
and highmechanical and optical quality factors [1] also contribute tomaintain low levels of noise (fluctuations).
Indeed setting theOMs in a stable fixed point [34, 60] thefluctuation operators can be defined as:
O O Ostd = á ñ -ˆ ˆ , where O stá ñ is the constant solution of equations (7) and (8), and the linear equations for the
fluctuation operators are:

Q x P P x Q Q j
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2
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m
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w
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1 2 SB CB st st in,d w d d d d d w= - + - - - + á ñ + á ñ +ˆ̇ ˆ ( ) ( ˆ ˆ ) ( ˆ ˆ ) ˆ ( )

In the followingwe are going to consider the light quadratures Q a a 2j j j= +ˆ ( ˆ ˆ )† and P a ai 2j j j= -ˆ ( ˆ ˆ )† .
We also notice that we are considering identical optomechanical oscillators in the study of quantum correlations
(section 4). As usual, thefluctuation operators are rescaled by the parameter x xzpf omz = ˜ with

x mzpf m w=˜ , so that O Onew oldd d z=ˆ ˆ .
Themechanical dissipation terms are:

d x d p d x x d p p, , , , 13x
j

p
j

x p
SB SB CB 1 2 CB 1 2d d d d d d= G = G = G + = G +ˆ ˆ ( ˆ ˆ ) ( ˆ ˆ ) ( )

where the known equivalence in position andmomentumdamping results from the rotatingwave
approximation in the system-bath coupling, a valid approximation in the limit mwG  (i.e. highmechanical
quality factors) [38]. In theMarkovian limit, the zeromeanGaussian noise terms of equations (9)–(12) are
characterized by the following symmetrized correlations [34]:

Q t Q t P t P t t t j, , , 1, 2, 14j j j jin, in, in, in, dá ¢ ñ = á ¢ ñ = - ¢ ={ ˆ ( ) ˆ ( )} { ˆ ( ) ˆ ( )} ( ) ( )

x t x t p t p t n t t
1

2
,

1

2
, 2 1 , 15j j j jin, in, in, in, th dá ¢ ñ = á ¢ ñ = G + - ¢{ ˆ ( ) ˆ ( )} { ˆ ( ) ˆ ( )} ( ) ( ) ( )

where ..., ¼{ }denotes anticommutator, ...á ñdenotes an ensemble average, t td - ¢( ) is theDirac delta, and
n k Texp 1m Bth

1w= - -( [ ] ) is the phonon occupancy number of themechanical baths, assumed to be at the
same temperatureT. The light noise correlations for the corresponding quadratures are obtained by considering
optical environments at zero temperature forwhich the only nonvanishing correlations are
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a t a t t tj jin, in, dá ¢ ñ = - ¢ˆ ( ) ˆ ( ) ( )† for j= 1, 2 [34]. In theCB case additional cross-correlations appear:
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Finally we remark that as the fluctuations dynamics is linear and the noise is Gaussian, states initially
Gaussianwill remainGaussian at all times [61, 62]. NotablyGaussian states are completely characterized by their
first and secondmoments, which are all encoded in the covariancematrix of the system [61, 62]. Rewriting the
Langevin equations (9)–(12) as R R D= +

  ˙ , where R

is the vector of the fluctuations of position,

momentum, and light quadratures of the system, D

is the vector containing the zeromeanGaussian noise terms,

and is thematrix generating the dynamics of the system, the following equation for the covariancematrix can
bewritten down:

, 17T    = + +˙ ( )

with the covariancematrix and the noise covariancematrix defined respectively as:

t
R t R t R t R t
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D t D t D t D t
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( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

with i j, 1, , 8= ¼ . By solving equation (17) at any timewe can completely characterize the quantum
correlations present in the system [63, 64].

3. Classical synchronization

In this sectionwe analyze the effects of collective dissipation on the synchronization of the firstmoments of the
system, or classical synchronization. In the SB case classical synchronization has been already studied in [9],
where it has been shown that theOMs described by equations (7) and (8) can synchronize with a locked phase
difference either tending to 0, in-phase synchronization, or toπ, anti-phase synchronization. To study the
presence of synchronizationwe integrate numerically equations (7) and (8) in bothCB/SB cases and in a
parameter region inwhich the system is self-oscillating. Once the system is in the steady state we compute a
synchronizationmeasure. Synchronization is characterized by a Pearson correlation function defined as:

C t t
x x

x x
, , 19x x,

1 2

1
2

2
2

1 2

d d

d d
D =( ) ( )

where the bar represents a time averagewith timewindow tD , i.e. x s x sd
t t

t t1
ò=

D

+D
( ), and x x t xd = -( ) .

This correlation function has proven to be a useful indicator of synchronization both in classical and quantum
systems [15, 65]. In particular thismeasure provides an absolute scale for synchronization strength as it takes
values between –1 and 1, where –1means perfect anti-phase synchronization and 1 perfect in-phase
synchronization. Furthermore thismeasure can be generalized also in presence of time delays accounting for
regimeswhereOMs synchronize with a phase difference depending on the parameter values. In this case two
delayed functions, x t1( ) and x t2 t+( ), need to be considered in equation (19). The bestfigure ofmerit
accounting for delay is foundmaximizing the synchronizationmeasure for different values of τ: in particular we
take an interval of time tD such that it includesmany periodic oscillations, andwe compute the correlation
function (19) between x t1( ) and x t2 t+( ), where τ is varied between 0, [ ], being  the period of the
oscillation. By keeping themaximumcorrelationCmax, and the temporal shift at which it occurs maxt , we obtain
ameasure of the degree or quality of synchronization,Cmax, and the locked phase difference, max t , in units
of 2p.

The degree of synchronization accounting for delay,Cmax, as a function of the frequency detuning,

m m m,2 ,1w w wD = - , and themechanical coupling strength,Kc, is shown infigure 2, where synchronization is
found for coupling overcoming detuning between themechanical oscillators. The case of dissipation in aCB is
represented also including a comparisonwith the SB case studied in [9] inwhich a similar synchronization
diagramwas already observed. In the synchronized regions, C 1max » , themechanical elements oscillate at the
same frequency describing sinusoidal trajectories with constant amplitude. Conversely, when there is no
synchronization ( C0 0.6max  in the represented case), themechanical oscillations have different
frequencies and display strong amplitudemodulations.

In presence of synchronization two further regimes are recognized depending onwhether the locked phase
difference tends to 0 or toπ. At threshold the system first anti-synchronize and by further increasing the
coupling for a given detuning there is a transition to in-phase synchronization (respectively, dashed and dashed-
dotted lines of figure 2, for bothCB (salmon lines) and SB (blue lines)). The comparison allows to identify how
collective dissipation favors spontaneous synchronization: indeed, the synchronized area for CB ismuch larger
than for SB, as thefirst anti-phase synchronization threshold coupling is lowered (salmon and blue dashed ‘π-
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sync.’ lines). The anti-phase synchronization regime is also enlarged for CB case as the second threshold to in-
phase synchronization increases for CBwith respect to SB. The fact the anti-phase synchronization is favored is
consistent with the particular dissipation form in theCB case: it is the common coordinate x x1 2+ that is
damped by the environment, see equation (8), leading to a ‘preferred’ amplitude ofmotion in x x1 2- , and thus
an anti-phase locking.

The effect of dissipation on the synchronization threshold is quantified for CB and SB infigure 3, forfixed
detuning, looking at themechanical coupling needed for the system to synchronize when increasing the
damping rateΓ. Thismechanical coupling threshold, Kc

thres, is defined as theminimumamount ofmechanical
coupling,Kc, needed for the oscillators to synchronize, and can be easily obtained as the synchronization of the
system is signaled by a sharp transition of the synchronization indicator from small values (for our parameters
below C 0.6max » ) to the values around unity that characterize synchronized oscillations. The damping strength
does not influence significantly the synchronization threshold in SB case, in stark contrast with theCB case,
which is very sensitive to the damping strength and improving significantly when increasingΓ. The enlargement
in the (anti-)synchronization area for theCB case is also displayed in the full parameter plots (figure 3(b)). This
clearly shows how the presence of an additional (dissipative) coupling termbetween the oscillators in theCB case
triggers the emergence of spontaneous synchronization. In otherwords, both reactive and dissipative couplings

Figure 2.Colorscale: degree of synchronizationCmax between the classicalmechanical positions of two coupledOMs for the CB case,
as a function of themechanical frequency detunig, mwD , and themechanical coupling,Kc. The fixed parameters take the following
values: 0.36 = , 10D = , 0.01G = , and 1m,1w = (like in [9]). Dashed lines indicate the onset of anti-phase synchronization.
Dashed-dotted lines indicate the onset of in-phase synchronization. Salmon lines correspond to theCB case, and blue lines to the SB
case.

Figure 3. (a)Minimummechanical coupling necessary to synchronize the oscillators, Kc
thres, as a function of the dissipation rate,Γ.

The other parameters arefixed to: 0.36 = , 10D = , 1m,1w = , and 0.05mwD = . Colorscale: locked phase difference in units ofπ.
Inset:minimumdissipation rate,Γ, necessary to synchronize the oscillators in the CB case, for a given detuning, mwD , withKc= 0,
and the other parameters as in themain panel. The dashed black line corresponds to mwG = D . (b)Panels: locked phase difference
(using the same colorscale as infigure 3(a)) as a function of themechanical frequency detunig, mwD , and themechanical coupling,Kc,
for theCB case. Different values ofΓ are used ( 0.005, 0.015, 0.03, 0.05G = ), and the other parameters arefixed to 0.36 = ,

10D = , 1m,1w = .White regions correspond to unsynchronized regions.
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contribute similarly in overcoming detuning effects in the context of synchronization. Furthermore CB specially
favors anti-phase synchronization being the relativemotion of the oscillators shielded by damping effects.

An interesting effect of collective dissipation is that actually spontaneous synchronization can emerge even
in absence of directmechanical coupling (see figure 2 for 0.01m wD andfigure 3(a) for 0.05G ). This is a
specific signature of CB dissipation, being indeed not possible between uncoupledOMswith SB, and shows the
constructive role played by the dissipative coupling due toCB even in absence of any other optical ormechanical
coherent coupling. The threshold for synchronization between decoupled oscillators (Kc= 0) in theCB case is
indeed set by the damping strength occurring forΓ overcoming detuning effects ( mwD ) as nicely shown in the
inset offigure 3(a).We also notice that, forΓ small enough, synchronization is always in-phase (red points)while
when increasing it different phase (delays) can be favored at threshold (figure 3). In particular, in theCB case, the
phase-locked difference does not always correspond to in-phase or anti-phase synchronization, as it also takes
intermediate values 2p~ . This occurs bothwith (figure 3(a)) andwithout (inset infigures 3(a) and (b)) direct
mechanical coupling, beingmore evident for larger dissipation rates (figures 3(a) and (b)). The exactmechanism
behind these 2p values of the locked phase-difference is an open question.

4. Asymptotic entanglement and optomechanical cooling

In this sectionwe study the entanglement betweenmechanicalmodes in the asymptotic state of the dynamics. As
explained in section 2we set the system in a stablefixed point andwe study the linear fluctuations around the
mean state. The stationary state of the fluctuations is independent of the initial conditions andwe characterize it
obtaining numerically the stationary covariancematrix from equation (17). From this covariancematrix we can
compute entanglement between the different degrees of freedom [61, 62], for whichwe use the logarithmic
negativity, a valid entanglementmonotone formixedGaussian states [61, 62]. Its definition formodes described
by quadratures with commutation relations q p i,1,2 1,2 =[ ] is E max 0, ln2N n= - -{ ˜ }, where n-̃ is the smallest
symplectic eigenvalue of the partially transposed covariancematrix of the subsystem [62].

One of themain results discussed below is the tight relation between the effective temperature of the
mechanicalmodes and the amount of asymptotic entanglement that is preserved between them: the linear
regime inwhich the system is operated basically consists of four coupled units which in the stationary state reach
a given effective temperature depending on the effectivity of the optomechanical cooling. It seems that this
effective temperature regulates the entanglement behavior, which is that of a coupled thermal system.
Furthermorewe find that theCB case has highermechanical entanglement and is easier to cool down than the
SB case, specially when increasing the relativemechanical coupling strength Kc m

2w .We analyze next the
dependence of cooling and entanglement on the different systemparameters, showing that this is a puzzle with
several pieces. At this point we remark that as in the followingwe are dealingwith identical optomechanical
oscillators, quantities such as the occupation number of each of themechanical oscillators (neff ), or the optical-
mechanical entanglement between amechanicalmode and its opticalmode, are the same for the two
optomechanical oscillators.

Mechanical coupling Kc.Wefirst consider asymptotic entanglementwhen varying themechanical coupling
between the oscillators. Aminimumcoupling is needed to attain non-vanishing entanglement between the
mechanicalmodes (solid lines infigure 4(a)), both for CB and SB. Indeed, only above someminimum
mechanical coupling entanglement overcomes heating effects as shown (through themechanical occupancy
number neff ) infigure 4(b). This is known to occur also in the simplest configuration of a pair of coupled
harmonic oscillators atfinite temperature [66, 67].Wemention that actually for similar (effective) temperatures
and similarmechanical coupling strengths wefind that both harmonic andOMs display similar amounts of
entanglement. Slightly above this threshold the build-up of entanglement is similar in presence of CB or SB
(figure 4(a)), as also the heating of themechanical components (figure 4(b)), but further increasing the coupling
differences arise and entanglement worsen for SB. This effect is accompanied by a stronger heating in the SB than
in theCB case (figure 4(b)). Overall, larger entanglement, as well as better cooling (smaller neff ), are found for the
CB case.

From these observations we infer that themechanical coupling between the oscillators influences their
entanglement through two competingmechanisms: on the one hand it is the coupling that entangles the two
mechanical oscillators, on the otherKcmodifies the effective temperature of the oscillators. This is because the
normalmode frequencies changewithKc reducing their resonance with the opticalmodes and therefore
hindering their cooling (see discussion below andfigure 5). As the heating produced increasingKc ismore
pronounced for independent dissipation, best entanglement values are attained in theCB case. This picture is
confirmedwhen looking at light-mirror entanglement:Kc is not expected to contribute significantly to the light-
mirror correlations in eachOMoscillator, while the effects of heatingwill still be present. Aswe see from
figure 4(a) (dashed-dotted lines) the optical-mechanical entanglement is present for all couplings (no threshold)
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and diminisheswhen increasingKc. Both for CB and SB cases the loss of entanglement is similar to the effective
heating (increasing effective temperature) in accordance with the above considerations.

Cavity-laser detuning 0D . The detuning 0D , set to values comparable to themechanical frequencies, allows
for quanta exchange between the very disparate optical andmechanicalmodes. In this way the optical reservoir,
effectively atT=0, acts as a heat sink for themechanical degrees of freedomwhen the systemoperates in the
red-sideband regime [27, 28]. Thus, resonance between optical andmechanical degrees of freedom controls the
effectiveness of the cooling process. Looking atfigures 4(c) and (d)we see that the entanglement between
oscillators and their effective temperature display a strong inverse behavior, i.e. as the effective temperature
drops the entanglement grows and vice versa, and themaximumof entanglement is very close to theminimum
of temperature for bothCB/SB cases. This behavior is found also for different temperatures andmechanical
couplings. Despite the fact that the optimal 0D values for cooling and entanglement are slightly (less than 2%)
shifted onewith respect to the other, the strong anticorrelations between the two curves and the small size of

Figure 4.CB case: purple lines. SB case: green lines. Fixed parameters: 3mw = , Q 10m m
5w= G = and k T 0.1m Bw =

(n 9.5th » ). (a)Asymptotic entanglement between themechanicalmodes (solid lines) and between themechanicalmodes and their
respective opticalmodes (dashed-dotted lines) as a function of the ratio Kc m

2w . This is an indicator of the frequency splitting of the
normalmodes of two coupled oscillators, i.e. K O Km c m c m

2 2 2w w wW - W » +- +( ) [( ) ]. (b)Mechanical occupancy numbers. In
(a) and (b) m0 wD = - and 12 = . (c), (d)Asymptoticmechanical entanglement andmechanical occupancy numbers with
K 1c m

2w = and 12 = . (e), (f)Asymptoticmechanical entanglement andmechanical occupancy numbers with K 1c m
2w = and

m0 wD = - .

Figure 5.CB case in purple. SB case in green. (a)Entanglement for different values of K 0.2, 0.6, 1c m
2w = as a function of 0D and

with 3mw = , Q 10m
5= , k T 0.1m Bw = and 12 = . Dashed lines at themaxima positions. (b)Maximumentanglement for 0D as

a function of Kc m
2w . (c) Solid colored lines: 0D maximizing optomechanical cooling as a function of Kc m

2w . Dashed colored lines:

0D maximizingmechanical entanglement as a function of Kc m
2w . The black solid line is 0D = -W+, the black dashed-dotted is

0D = -W-, and the black cross-line is 0D = -W, defined in themain text.

8

New J. Phys. 19 (2017) 113007 ACabot et al



these shifts,make us conclude that the laser detuning 0D modifies the asymptoticmechanical entanglement
mainly through the degree of optomechanical cooling.We also note that the detuning for optimal cooling in
bothCB/SB cases is displacedwith respect to known values for singleOM m0 wD » - [27, 28] (see discussion
on optimal detuning). Finally we note that entanglement and cooling are again enhanced in theCB case, and that
the optimal detunings formaximumentanglement are quite different in theCB and SB case (the same applies to
the detunings for optimal cooling).

Laser power  . Similarly to the case of 0D ,  modifies themechanical entanglementmainly bymodifying
the degree of optomechanical cooling as it follows from the strong inverse behavior offigures 4(e) and (f). Recall
from the linear quantumLangevin equations, that  has the role of a coupling strength between the optical and
mechanical quantum fluctuations. It is then to be expected that optomechanical cooling improves with  .
However, when  becomes very high, it is known [28, 68] that optical andmechanicalmodes begin to hybridize
and heating fromquantumbackaction noise enters the scene. Thus atfirst higher  implies an enhancement of
the optomechanical cooling effect, since this coupling parametrizes the strength of the optomechanical cooling
rate [27, 28]. As  is further increased, the regime of strong coupling is reached and heating of themechanical
modes by radiation pressure becomes important. The competition between these two effects leads to a
minimumof neff as a function of the optomechanical coupling strength, as derived for a singleOM in [28, 68]
and observed infigure 4(f). Finally, the CB case requires less power to achieve the same cooling as compared to
the SB case.

Optimal detuning.Aswe have observed in the discussion offigures 4(c) and (d), the asymptoticmechanical
entanglement changes with 0D mainly because of the effectiveness of the optomechanical cooling process. The
detuning optimizing each process indeed takes very similar values asmentioned above. Infigure 5we analyze in
more detail the detunings 0D which are optimal for optomechanical cooling andmechanical entanglement as a
function of the relativemechanical coupling strength Kc m

2w , and address some of the differences between the
CB/SB cases that have been pointed out in the above discussions. Infigure 5(a)we can see that as Kc m

2w
increases, the 0D maximizing entanglement is shifted towardsmore negative values. Infigure 5(b)wehave
plotted themaximumentanglement for the optimal value of 0D as a function of Kc m

2w , andwe see that it
increases in both cases and it is larger for theCB case.We note that the increase with Kc m

2w is similar to that in
4(a), but that herewe compute the value at the optimal 0D for each Kc m

2w , E Kmax N c m
2

0
wD ( ), thus increasing

a bit the level of achieved entanglement. Analogous results are obtainedwhen studying the detuning for
minimumeffective temperature (not shown here).

Infigure 5(c)we address the question of how the detunings thatmaximize entanglement orminimize the
effective temperature varywith the relativemechanical coupling strength. In particular we plot the 0D that
optimizes cooling (solid lines) and the one that optimizes entanglement (dashed lines) as a function of Kc m

2w .
The solid black line corresponds to 0D = -W+, the dashed-dotted line to 0D = -W-, and the cross-line to

20D = -W = - W + W+ -( ) .Where W are the frequencies of the normalmodes of the isolatedmechanical
system x x x 21 2=  ( ) (i.e. without optomechanical coupling), andwhich take the values mwW =+ and

K2m c
2wW = +- . From this figure it is appreciated that the shift between the optimal detunings for cooling

and entanglement increases slightly with themechanical coupling, but it remains small in all the range both for
CB and SB.We also observe that in the SB case, the optimal strategy for cooling is to set ( 0D » -W), and thus
theminimummechanical effective temperature is achievedwhen bothmechanical normalmodes (of the
isolated system) are cooled at the same rate. Notice that given the small difference between the detunings
optimizing each quantity, the same strategy applies, to a good approximation, to obtain themaximum
entanglement. On the other hand, in theCB case the optimal 0D for cooling and entanglement is shifted
towards-W+, consistent with the fact that dissipation enters through this coordinate.Why is it then not the case
that the optimal detuning coincides with W+?Well, the common coordinate x+ is a normalmode of the isolated
mechanical system, but it is not of the full OM, so x+ and x- are coupled through the optical degrees of freedom.
This is why it is necessary to cool both coordinates, although it ismore important to cool the one that dissipates
most (x+). In fact, as we increase Kc m

2w , the role of the optomechanical coupling is diminished,moving the
optimal detuning towards W+. This also explains why the SB case is harder to cool than theCBone: in SBwe
need to address both normalmodes xwith a single laser frequency, whereas for CB it is better to address
only x+.

Resolved sideband. In the followingwe exploremechanical entanglement (figure 6(a)) and optomechanical
cooling (figure 6(b)) aswe go deeper into the resolved sideband regime 1mw > , where the parameter mw
measures howwell the linewidth of the opticalmodes resolves the frequency of themechanical ones. It is known
that the efficiency of the cooling process of a singleOM increases initially as mw increases [27, 28, 68] (recall that

m mw k w in our dimensionless units, see section 2.2), and thus lower phonon numbers can be achieved
when the intracavity power is adjusted optimally [68]. It is then interesting to analyze whether increasing mw can
enhance cooling and entanglement in theCB/SB cases too. Themaximalmechanical entanglement and the
minimalmechanical occupancy number optimized in terms of  for each value of mw are displayed infigure 6.
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Infigures 6(a), (b), we can see how for theCB case themaximal entanglement (minimal occupancy number)
increases (decreases) as mw is increased. The SB case atfirst behaves as theCB case, but for larger mw maximal
entanglement begins to diminish and the phonon number increases. Notice that again the asymptotic
mechanical entanglement and the effectivemechanical temperature are strongly anticorrelated following an
inverse behavior in bothCB/SB cases. The increase of theminimumeffective temperature in the SB case ismore
evident in the high temperature case (dashed linesfigures 6(a) and (b)), and occurs even at optimal detuning

0D = -W (not shownhere). The difference betweenCB and SB cases can be explained as follows: for CB,
cooling the coordinate x+ (by setting m0 wD = - = -W+) is almost optimal, and themorewe resolve this
frequencywith our opticalmodes the better. For SB however, we need to cool both x+ and x-, but this has to be
donewith a single optical frequency: the result is that the better we address W+, theworsewe address W-which
gets heated up. Thus in a SB situation it will bemore appropriate to have one opticalmode targeted at

1D = -W+, and another at 2D = -W-, providedwe can resolve the difference between W+ and W-which
requires highmechanical couplings or very lowκ.

In order to point out further differences between theCB/SB cases it is also interesting to study the relative

linear optomechanical coupling, g mw (with g x L a a0.5c zpf om stw= á ñ( ˜ ) † [1], in dimensional units), at which
optimal cooling is achieved (insetfigure 6(b)). From thisfigure we can observe that as we operate the system
deeper in the resolved sideband regime (larger mw ) this optomechanical coupling for optimal cooling diminishes
in theCB case. This is so because the exchange between optical andmechanicalmodes ismore efficient, and it is
the case both for oneOM (yellow solid lines and blue cross-lines) [68], and for theCB case (where addressing x+

mattersmost). In fact, if we increase it toomuch, we end up heating themechanicalmodes due to radiation
pressure as shown infigure 4(f) and in [28, 68]. Peculiarly, in the SB case, the optimal g mw increases
monotonically with mw . This can be interpreted as follows: as before, themorewe resolve, theworsewe cool one
of the coordinates x ; the interesting thing is that this effect is initially counteracted by increasing g mw (see
small values of mw , figure 6(b)), which increases the range of frequency that themechanicalmode is able to
exchange energy with the opticalmodes. This is just thewell-known fact that stronger couplings allow for
resonancewith further detuned frequencies, which here counteracts the decreasing optical linewidth.However,
as a side effect, radiation pressure heating also growswith the optomechanical coupling, and thus themaximum
achievable entanglement (degree of cooling) eventually decreases as shown infigures 6(a) and (b).

For amore quantitative discussion of cooling we simulate the case of a singleOM (yellow solid lines and blue
cross-lines, figure 6(b) and inset), modeled by equations (9)–(12) for one of the twoOMs in the SB case andwith
Kc= 0. The case of a singleOM is studied in [68], where the optimization of the cooling process in terms of the
linear optomechanical coupling is addressed. This is equivalent towhat it is shown in figure 6(b) and in the inset,
andwe plot their results (see last equations of [68]) in blue cross-lines, using the parameters of the low
temperature case.We have also obtained the same quantities numerically (yellow solid lines)finding good
agreement between the analytical expressions of [68] and the exact results. Comparing the singleOMcase and
theCB case, we find that they follow very similar behaviors both for theminimal occupancy number aswell as
for the optimal g mw for cooling. In particular, lower phonon numbers are achieved in the singleOMcase,
while the optimal g mw for cooling takes very close values in both cases. On the contrary, the behavior displayed
in the SB case is qualitatively different as discussed above. The similitudes between the singleOMcase and the

Figure 6.CB case: purple lines. SB case: green lines. Solid lines: Q 10m
5= , k T 0.1m Bw = (n 9.5th » ). Dashed lines:

Q 2 10m
5= ´ , k T 0.01m Bw = (n 99.5th » ).Maximum entanglement (a) andminimumphonon number (b) optimizedwith

respect to  (or equivalently with respect to g mw , defined in themain text) and varying mw , with K 0.5c m
2w = , and m0 wD = - .

Inset: optimal relative linear optomechanical coupling (g mw ) at which theminimumphonon number is achieved, for the low
temperature case. In (b) and in the inset the case of a single optomechanical oscillator has been plotted: yellow solid lines have been
obtained numerically, blue cross-lines correspond to the analytical expressions of [68].
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CB case reinforce the the overall idea that in theCB casewemainly need to address only one dissipativemode,
i.e. x+.

5.Discussion and conclusions

Miniaturization and dense packing of optomechanical devices can give rise to collective effects in dissipation
[17], whatwe have called here CB, in contrast to thewidely used SB dissipation.We have explored the
consequences of this formof dissipation in two interesting facets of these kind of nonlinear systems: classical
synchronization and steady-state quantum correlations.We have found that the parameter rangewhere
synchronization occurs is notably enlarged for CB, and also that in theCB casemore dissipation can be
beneficial, leading to synchronization even in the absence ofmechanical coupling as both the dissipative
coupling and the coherent one lead to synchronization between detunedmechanical elements.

With respect to steady-state entanglement ofmechanicalmotion, we have found that theCB case requires
less input laser power, because it ismore effectively used for cooling, yielding higher levels of entanglement. This
can be understoodwhen considering that in this case it is possible to address only the x+mechanical eigenmode,
which is the only one dissipating, whereas for SB bothmodes dissipate equally. This easy picture is quantitatively
shown to hold exploring different parameter regions. Furthermore we have shown that going to the resolved
sideband regime, the CB case getsmonotonically better entanglement and cooling, whereas in SB it improves
only up to a point, after which it begins toworsen. This is also due to the inability to cool both eigenmodes with a
perfectly resolved sideband at only one of the eigenfrequencies, for whichwe also propose a two-tone cooling
scheme as solution.

As stated in the introduction, a collective dissipation channel is found to be the dominant one in the
optomechanical setup of references [44, 45], consisting on the emission of elastic radiation by the common
mechanicalmode x+, and thus being analogous to ourCBmodel.Moreover the fact that this samemechanism is
observed in othermechanical oscillators with a similar geometry [48, 49], indicates that collective dissipation is
relevant in closely clampedmechanical resonators. Despite themechanical coupling strength in this device
[44, 45] is an order ofmagnitude smaller than the regime studied here, it is possible to increase it up to the
analyzed values by reducing the separation of the beams’ clamping points and increasing the size of the overhang
or common substrate, as shown in [69]. Interestingly this last point suggests that strongmechanical coupling
and collective dissipationmight go hand in hand.On the other hand, a complementary approach consists on
inducing themechanical coupling by strongly driving the systemwith off-resonant lasers [51].

In this workwe have chosen to study the particular collective dissipation channel x+motivated by the
numerous previousworks studying this particular type of dissipation emerging frommicroscopic physical
models in different contexts, starting fromworks on superradiance [41]. Furthermore this collective dissipation
has actually been reported in somemechanical platforms as discussed in the introduction [44, 45, 48, 49].
However, other forms of collective dissipation are also possible: x-dissipation can arise inmicroscopic lattice
models [17], and it has been reported in certain systems of trapped ions [70], whilemore complex forms of
collective jumps are considered in [40].Moreover, quantum correlations and quantum synchronization for x-
CBdissipation have been studied both for harmonic oscillators [16, 57], for two level systems [43], and quantum
Vander Pol oscillators [20, 21]. In general, it would be interesting to study the robustness of our results also
when both collective and individual dissipation channels are present, as this is probably themost common case
in experiments.

Finally we discuss the experimental feasibility of the chosen parameters values, noticing thatmost of them
have been reached in experimental platforms (see [1] section IV for a review on the subject). Specifically, the
dimensionless laser power isfixed to 12 = , which in terms of themore commonly quoted g, is
g 0.079mw » , andwhen varied takes values atmost of g 0.19mw » infigure 6, or g 0.37mw » when the
dynamical instability is reached infigures 4(e), (f). The values ranges in figure 4 have been achieved for instance
in the experimental setups of references [71–73], with the exception of the highest range values explored for 
and Kc m

2w , for which previous considerations hold. The resolved sideband regime has been reached in
numerous optomechanical devices, from theGHzmechanical frequencies of optomechanical crystals [53], to
MHz frequencies inmicrotoroidal and LC resonators where values such as 11mw k » [72] or 63mw k » [73]
are reported.Moreover in optimized optomechanical crystals [29, 74] bath phononic occupancies between 10
and 100 are reported forGHzmechanicalmodes, together withmechanical quality factors of the order of
Q 10 10m

4 6~ – . Therefore, based on an analysis of actual state-of-the-art systems [1], this study represents afirst
step in establishing dynamical and quantum effects of collective dissipation expected to play a key role towards
miniaturization of optomechanical devices.
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Appendix. Derivation of the Langevin equations for theCB case

In this appendixwewrite down themain steps to derive the Langevin equations for themechanical oscillators in
theCB case. Notice that in this sectionwe are not using the dimensionless variables and parameters introduced
in section 2.2. As usual we assume the cavities and the oscillators to dissipate independently so that we can derive
the Langevin equations separately, as if therewas no optomechanical coupling [1, 75]. First wewrite down the
mechanicalHamiltonian in the normalmode basis together with the bathHamiltonians written in equation (4):

m x x
m

p p x q
1

2

1

2
2 , A.12 2 2 2 2 2

1
bath
CB^ ^ ^ ^ ^ ^ ^ ^ ål= W + W + + + +

a
a+ + - - + -

=

¥

+( ) ( ) ( )

wherewe recall that we are assuming identical oscillators, and thus mwW =+ , k m2m
2wW = +- .Making

the rotatingwave approximation in the system-bath coupling andwriting theHamiltonian using the creation
and annihilation operators we arrive to:

b b b b b r b r2 , A.2
1

bath
CB^ ^ ^ ^ ^ ^ ^ ^ ^ ^   åg= W + W + + +

a
a a+ + + - - -

=

¥

+ +( ) ( )† † † †

where 2g is the CBdissipation ratewhich is twice the SB one γ. Nowwe can obtain the Langevin equations of
motion for themodes x following the standard input–ouput formalism [76]:

b b b b b bi 2 4 , i , A.3ing g= - W - + = - W+ + + + - - -
ˆ̇ ˆ ˆ ˆ ˆ̇ ˆ ( )

b b b b b bi 2 4 , i , A.4ing g= W - + = W+ + + + - - -
ˆ̇ ˆ ˆ ˆ ˆ̇ ˆ ( )

† † † † † †

where the equations for themode x- are just theHeisenberg equations ofmotion, since thismode is not coupled
to a thermal bath. In theMarkovian limit the zeromeanGaussian noise terms are characterized by the following
correlations [34]:

b t b t n t t b t b t n t t, 1 , A.5in in th in in thd dá ¢ ñ = - ¢ á ¢ ñ = + - ¢ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( ) ( ) ( )
† †

where nth is the thermal occupancy of the phonon bath defined previously. From these equationswe can obtain
the equations for the position andmomentumoperators:

x
p

m
x x

b b
x

p

m
2 4

2
, , A.6zpf
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2

, . A.7zpf
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-
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⎣
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⎤
⎦
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†

Finally wemove to the coupled oscillators picture, where x x x 21 2= ˆ ( ˆ ˆ ) and p p p 21 2= ̂ ( ˆ ˆ ) ,
obtaining:

x
p

m
x x x x j, 1, 2 A.8j

j
zpf1 2 ing= - + + =ˆ̇

ˆ
( ˆ ˆ ) ˜ ˆ ( )

p m x p p k x x m x p1 , A.9j m j
j

m zpf
2

1 2 1 2 inw g w= - - + + - - +ˆ̇ ˆ ( ˆ ˆ ) ( ) ( ˆ ˆ ) ˜ ˆ ( )

wherewe have defined x b bin in ing= +ˆ ( ˆ ˆ )
†
and p b biin in ing= -ˆ ( ˆ ˆ )

†
. From these equationswe can obtain

equations (11) and (12) by coupling the oscillators to the cavities and applying the nondimensionalization/
rescaling procedure described in section 2.2. Furthermore, note that as the noise terms are the same for both
oscillators there appear the cross-correlations defined in equation (16).
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