
            

PAPER • OPEN ACCESS

Micromotion-enabled improvement of quantum
logic gates with trapped ions
To cite this article: Alejandro Bermudez et al 2017 New J. Phys. 19 113038

 

View the article online for updates and enhancements.

You may also like
Micromotion minimization using Ramsey
interferometry
Gerard Higgins, Shalina Salim, Chi Zhang
et al.

-

High-frequency approximation for
periodically driven quantum systems from
a Floquet-space perspective
André Eckardt and Egidijus Anisimovas

-

Prospects of reaching the quantum regime
in Li–Yb+ mixtures
H A Fürst, N V Ewald, T Secker et al.

-

This content was downloaded from IP address 18.216.239.46 on 05/05/2024 at 17:47

https://doi.org/10.1088/1367-2630/aa86eb
/article/10.1088/1367-2630/ac3db6
/article/10.1088/1367-2630/ac3db6
/article/10.1088/1367-2630/17/9/093039
/article/10.1088/1367-2630/17/9/093039
/article/10.1088/1367-2630/17/9/093039
/article/10.1088/1361-6455/aadd7d
/article/10.1088/1361-6455/aadd7d
/article/10.1088/1361-6455/aadd7d
/article/10.1088/1361-6455/aadd7d


New J. Phys. 19 (2017) 113038 https://doi.org/10.1088/1367-2630/aa86eb

PAPER

Micromotion-enabled improvement of quantum logic gates with
trapped ions

AlejandroBermudez1,2, Philipp Schindler3, ThomasMonz3, Rainer Blatt3,4 andMarkusMüller1

1 Department of Physics, College of Science, SwanseaUniversity, Singleton Park, Swansea SA2 8PP,UnitedKingdom
2 Instituto de Física Fundamental, IFF-CSIC,Madrid E-28006, Spain
3 Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
4 Institute forQuantumOptics andQuantum Information of theAustrian Academy of Sciences, A-6020 Innsbruck, Austria

E-mail: bermudez.carballo@gmail.com

Keywords: trapped ions, entangling gates,micromotion

Abstract
Themicromotion of ion crystals confined in Paul traps is usually considered an inconvenient
nuisance, and is thus typicallyminimized in high-precision experiments such as high-fidelity
quantumgates for quantum information processing (QIP). In this work, we introduce a particular
schemewhere this behavior can be reversed,makingmicromotion beneficial forQIP.We show that
using laser-drivenmicromotion sidebands, it is possible to engineer state-dependent dipole forces
with a reduced effect of off-resonant couplings to the carrier transition. This allows one, in a certain
parameter regime, to devise entangling gate schemes based on geometric phase gates with both a
higher speed and a lower error, which is attractive in light of current efforts towards fault-tolerant
QIP.We discuss the prospects of reaching the parameters required to observe thismicromotion-
enabled improvement in experiments with current and future trap designs.

1. Introduction

The possibility of harnessing the distinctive behavior of quantum-mechanical systems to process information in
newways has raised the interest of researchers formore than three decades now. This has given rise to themulti-
disciplinary field of quantum information processing (QIP) [1], which could, for instance, have an impact on
current cryptographic protocols [2], or revolutionize our approach to solve long-standing problems in quantum
many-body physics [3].Motivated by such remarkable applications, QIP has now turned into amaturefield
where experimentalists are using different technologies [4] to face the challenge of building registers of ever-
increasing sizes, while trying to preserve andmanipulate their quantum features for ever-longer periods of time.

Among these so-called quantum technologies, crystals of trapped and laser-cooled atomic ions [5–7]have
played a leading role in the progress ofQIP. Pioneering proposals to build a quantum-information processor
based on trapped ions [8], and successfully implemented in the laboratory [9], have opened an active avenue of
researchwith the ultimate goal of building a large-scale trapped-ion quantum computer [10]. As emphasized
early in the literature [11], success in such an enterprise would require (i) a careful assessment of the possible
imperfections of the quantumprocessor, which lead to errors in the computation, and (ii) a thorough study of
the unavoidable coupling to an external environment, which degrades the quantum coherence responsible for
the advantages of QIP. The former yields errors that can accumulate quickly since the information is not stored
in classical binary variables [11], whereas the latter yields an exponential decrease of quantum coherencewith
the size of the register [12].

Despite such a daunting perspective, the subsequent development of quantum error correction showed that
these difficulties can be overcome if (i) one encodes the information redundantly in an enlarged quantum
mechanical system instead of using a bare quantum register, and (ii) errors are detected and corrected during the
storage and processing of encoded states [13]. Increasing levels of protection against noise can be achieved
e.g.by concatenating elementary quantum error correcting codes, or by storing logical states in global,
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topological properties of larger quantummany-body systems [14]. It has been shown that fault-tolerantQIP is
possible provided that errors, either due to imperfections of gates or to environmental decoherence, occur below
certain critical rates. The particular threshold values depend on the details of the implementation, the noise
model, and the chosen encoding. For circuit noisemodels, a common estimate for concatenated codes is around
10−4 [15], whereas topological codes typically offer higher error thresholds up to about 10−2 [14]. Essentially,
once below the threshold, quantum error correction allows for slowing down the occurrence of errors at the
level of the logical qubits, such that longer computations can tolerate noise on the physical qubits at amuch
higher rate. Trapped ions have already demonstrated remarkable progress in experimental demonstrations of
quantum error correction [16–18].

In order tomeet such a threshold, onemust optimize the hardware (i.e. quantum technology) and the
software (i.e. schemes tomanipulate the quantum information), which can be understood as a built-in error
suppression. At the software level, one canmitigate decoherence by encoding the information in a section of the
Hilbert space that ismore robust to the typical environmental noise, as occurs for decoherence-free subspaces
[19, 20], and for the so-called clock-state qubits [21]. Regarding imperfections of gates, pulsed [22, 23] and
continuous [24, 25] dynamical decoupling have also been implemented in ion traps. Another possible source of
error arises in certain quantum technologies that exploit additional auxiliary (quasi)particles tomediate an
entangling gate between distant qubits, since quantum/classical fluctuations affecting these (quasi)particles can
introduce errors in the computation. Such is the situationwith trapped ions, where phonons serve as a quantum
bus to generate entanglement, and thermalfluctuations lead to significant errors when the ion crystals are not
laser cooled to the groundstate [8]. In this respect, the development of gate schemes thatminimize such thermal
sensitivity has been of paramount importance to the field. These schemes typically use a state-dependent dipole
force in the resolved-sideband regime, which forces the ions along a closed trajectory in phase space depending
on the state of the qubits, either in the sz [26, 27] or sf [28, 29] eigenstate basis, where
s f s f s= - -f ( ) ( )cos siny x. This effectively leads to state-dependentmulti-qubit geometric phases that can
be exploited to generate entanglement, which underlies the remarkably low errors that have been achieved in
experiments so far [30–32], with infidelities reaching values below 10−3.

An increase of gate speed yields another clear route for further error suppression, as the environmental
decoherence affecting the qubits, or other external sources of noise affecting the phonon bus, would have a
smaller impact during a shorter computation. Schemes for ultra-fast entangling gates based on concatenated
resonant state-dependent kicks have been studied in detail [33], which abandon the resolved-sideband regime to
avoid the associated limitations on the gate speed. These schemes give a clear advantage provided that high laser
repetition rates [34], and small laser intensityfluctuations [35], can be achieved in the laboratory. Pulse splitting
techniques have been implemented in order to increase the number of pulses incident on the ion [36], increasing
thus the repetition rate towards a regimewhere ultra-fast gates are expected to have small errors [34]. To
overcome the stringent conditions on the laser intensity stability [35], dynamical decoupling approachesmay
have to be applied in order tominimize the error of each resonant state-dependent kick [37].

In order to avoid these technical difficulties, but still get an increase on gate speedwith respect to previous
realizations [27, 29], schemes based on state-dependent sz-forces with an increased laser intensity have also
been studied [38], which take into account the leading-order corrections as one abandons the resolved-sideband
regime. In this case, such corrections correspond to a time-dependent ac-Stark shift, which is usually neglected
in the resolved-sideband limit [27], but starts contributing as one increases the laser power, and thus the gate
speed [38]. The particular formof the sz-force allows one to take into account this term easily,finding robust
pulse sequences for faster quantumgates [38]. Unfortunately, the state-dependent laser forces of this scheme (i)
cannot be implementedwith clock-state hyperfine qubits [39], and (ii)have some limitations for optical qubits
in comparison to the entangling gates generated by sf-forces [40]. It would be thus desirable to consider
schemes to speed up entangling gates based on sf-forces valid for both hyperfine and optical qubits.
Unfortunately, the leading-order corrections to the resolved-sideband limit correspond to a time-dependent
carrier driving that interferes with the sf-force (see our discussion in section 3.2 below), and thus compromises
the geometric character of the gate and the achievable fidelities.

In this work, we show that s sf f
i j -gates with higher speeds and lower errors can be achieved by exploiting the

micromotion of ion crystals, namely a periodicmotion synchronouswith the oscillations of the quadrupole
potential that confines the ions in a Paul trap.We consider two different types ofmicromotion: excess and
intrinsicmicromotion. Excessmicromotion can be described as a classical drivenmotion of the ions that lie off
the rf null, either due to imperfections of the trap or to crystal configurationswith equilibriumpositionswhere
the rffield does not vanish. The role of this excessmicromotion on entangling-gate schemes has been considered
previously, showing that (i)purposely induced excessmicromotion can be exploited to address different ions in
a crystal via differential Rabi frequencies of secular sidebands [41]; (ii)micromotion sidebands can be exploited
to increase the gate speedwith respect to schemes based on secular sidebands, in situations where the excess
micromotion cannot be perfectly compensated [32]; and (iii) pulse sequences for entangling gates based on

2
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either standard normalmodes [42, 43] or solitonic vibrational excitations [44], can be designed even in the
presence of the excessmicromotion.With the exception of [42], the role of another type ofmicromotion in
schemes of entangling gates, namely the intrinsicmicromotion, has remained largely unexplored. Intrinsic
micromotion corresponds to a quantum-mechanical drivenmotion synchronouswith the rf frequencywhich
cannot be compensated. Being quantum-mechanical, the intrinsicmicromotion has a different impact on the
gate schemes. In contrast to [42], where pulsed gate schemes are used tomake the performance of the gate equal
to the ideal case where nomicromotion is present, we explore in this work the possibility of actively exploiting
the intrinsicmicromotion in order improve the gate performance, both in speed and fidelity, beyond the values
of the schemeswhere nomicromotion is considered.

This article is organized as follows. In section 2, we introduce the formalism that allows us to describe excess
and intrinsicmicromotion in generic ion crystals confined by Paul traps. This formalism is the starting point to
develop in section 3 a general theory of laser-ion interactions in the regime of resolved sidebands in presence of
both excess and intrinsicmicromotion. The expressions obtained are then used to describe themain differences
of the schemes that generate state-dependent dipole forces using bi-chromatic laser beams, either tuned to the
secular or to themicromotion sidebands.We also describe how these forces can be used to implement
entangling gates, and discuss the speed andfidelity limitations of various gate schemes, identifying a parameter
regimewhere a gate improvement can be obtained by exploiting the intrinsicmicromotion. In section 4, we
discuss the possible experimental challenges in reaching such parameter regime. Finally, we present our
conclusions and outlook in section 5.

2. Intrinsic and excessmicromotion

In this section, we start by reviewing the classical treatment ofmicromotion for a single trapped ion in
section 2.1. This will allow us to set the notation, and to explicitly define the notions of intrinsic and excess
micromotion in ion traps. Additionally, it will provide some results that will be useful in the subsequent
quantum-mechanical treatment in section 2.2. Themicromotion of a trapped-ion crystal is described in
section 2.3, which shall be the starting point for the scheme ofmicromotion-enabled improvement of quantum
gates in the following section.

2.1. Classical treatment ofmicromotion for a single trapped ion
For the ease of exposition, we focus in this section on the electric potential configuration andmicromotion
effects of an ion confined in a standard linear Paul trap [6].We note that a similar analysis would apply to
segmented linear traps [45], or to surface ion traps [46], which form a key central element in various scalable
architectures forQIP under development [10]. At the end of this section, wewill comment on the analogies and
possible differences for themicromotion in these other traps.

We consider an ion ofmassM and chargeQ, inside a standard linear Paul trap formed by (i) a pair of end-
caps separated by a distance 2z0 along the trap axis (i.e. z axis), and connected to dc potentialsU0; (ii) four
electrodes separated from the axis by a distance r0, and parallel to it, which are connected in pairs to either a dc
potentialV0, or an ac potential WV tcos0 rf , where Wrf is a fast rf frequency. Accordingly, the ion is subjected to an
oscillating quadrupole potential

k
= - + +

W
+ -

⎛
⎝⎜

⎞
⎠⎟( ( )) ( ) ( ) ( )V

U

z
z x y

V t

r
x y

2
2

cos

2
1

1
, 1q

0

0
2

2 2 2 0 rf

0
2

2 2

whereκ is a geometric factor that depends on the details of the electrodes.Here, we have assumed that the ions
positions fulfill ∣ ∣r r z,0 0, such that they lie close to the trap axis and trap center. In this way, we are neglecting
corrections to the quadrupole potential, such as as small component of the alternating rf field along the direction
of the trap axis.

In addition to the ideal quadrupole potential (1), there can be spurious potentials stemming from (a)
potential variations due to patch effects, or to unevenly coated (charged) electrodes with elements (electrons)
coming from the oven (ionization process), and (b) asymmetries in the electrode impedances [47]. The former
leads to spurious dc fields Edc that displace the ions from the nodal line of the ac potential, whereas the latter
induce small phase differences in the ac electrodesjac, which give rise to an additional acfield. Thisfield can be

approximated by that of a pair of parallel plates connected to potentials j W( )V tsin1

2 0 ac rf , and separated by

ãr2 0 with ã being another geometric factor that depends on the trap configuration. These spurious effects thus
lead to an additional potential
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The classical equations ofmotion for the ion correspond to a set of inhomogeneousMathieu equations

t
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wherewe have introduced the dimensionless time t = W t1

2 rf , and the following dimensionless parameters
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In addition, we get force terms in equation (3) due to the spurious potential(2), namely

t d
j a

t=
W

+
Wa

a

a( ) ˜ ( ) ( )f
QE

M

QV

Mr

4 2
sin 2 , 5x

dc

rf
2 ,

0 ac

0 rf
2

wherewe have used theKronecker delta da b, in front of the contribution that stems from the electron-
impedance asymmetries, which leads to the small phase difference between the electrodes along the x-axis. The
solution of these differential equations builds on the solution ta ( )r h to the homogeneousMathieu equation (i.e.

t =a ( )f 0) [48] by applying themethod of variation of constants [49]. Due to the periodicity of the equation, the
solution can be expressed using the Floquet theorem as follows


åt = +a

a
a

b t
a

b t

Î

+ - +a a( ) ( ) ( )( ) ( )

n
n

n nr C A Be e , 6h
2

i 2 i 2

where a aA B, are constants that depend on the initial conditions, ba are the so-called characteristic exponents,
and a

nC2 are the Floquet coefficients. By substitution, onefinds that these coefficients fulfill a recursion relation

b
- + = =

- +a a a a a a a

a
+ -

( ) ( )n
n n n n nC D C C D

a

q
0,

2
. 72 2 2 2 2 2 2

2

In typical experimental realizations, the parameters (4) fulfill

a a  ( )a q, 1, 82

and this allows one to solve the above recursion to the desired order of accuracy. To the lowest-possible order,
onefinds

b = + =
-

-
a a a

a a
a
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( )

(( )!)
( )ℓ
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,
1
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, 91
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2

wherewe have introduced a positive integerℓ to label the different harmonics. Note that ¹a a
- ℓ ℓC C2 2 for general

parameters. However, this difference can be neglected to leading order in the small parameters(8). Imposing
that t t= =a a a t=( ) ( ) ∣r r r0 , d d 00

0 , and =aC 10 , wefind that the homogeneous solution describing the
motion of an ion inside an ideal Paul trap is


åx
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Wa
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wherewe have introduced the so-called secular frequencies

w b=
W

a a ( )
2

, 11rf

which aremuch smaller than the trap rf frequency w Wa  rf .We have also introduced the parameter


åx = + -

-a
a

ℓ
( )

(( )!)
( )

ℓ

ℓ
ℓ

ℓ

q
1 1

2

4 1
. 12

1
2

Wecan rewrite equation (10) as = +a a a( ) ( ) ( )r t r t r th sec in , such that the ion in an ideal Paul trap displays slow
oscillations at the secular frequency described by

x
w=a

a

a
a( ) ( ) ( )r t

r
tcos , 13sec

0

accompanied by smaller and faster oscillations synchronouswith the ac potential


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These smaller oscillations are referred to asmicromotion, and occur roughly atmultiples of the rf frequency Wℓ rf

(i.e. micromotion sidebands). To distinguish this behavior from the one stemming from the spurious
potential(2), these fast oscillations a ( )r tin are sometimes referred to as intrinsicmicromotion [50], to highlight the
fact that such amotion is intrinsic to the oscillating quadrupole of an Paul trap, even for an ideal trap design
without any imperfection (2).

The solution to the forcedMathieu equation (3) can be found using themethod of variation of constants
with the two independent solutions associated to equation (6), namely = +a a a a a( ) ( ) ( )r t A r t B r th

,1 ,2 . The
complete solution is

= + +a a a a( ) ( ) ( ) ( ) ( )r t r t r t r t , 15sec in ex

where the additional part due to the spurious potential is

ò t
t t t t t

t
= ¢

¢ - ¢ ¢

¢a
a a a a a

a
( )

( ( ) ( ) ( ) ( )) ( )
( )

( )r t
r r r r f

d , 16ex ,2 ,1 ,1 ,2

and t t t t t t t¢ = ¢ ¢ ¢ - ¢ ¢ ¢a a a a a( ) ( ) ( ) ( ) ( )r r r rd d d d,1 ,2 ,2 ,1 is theWronskian of the two solutions, which can
be shown to be constant in this case t b¢ = - a( ) 2i .When performing the integrals, we keep only the slowly
varying terms, which give rise to the leading-order solution


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wherewe have introduced the following driven amplitude

w
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QE
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q r
t

4
sin . 18x

xdriv dc
2 ,

0 ac
rf

We thus observe that the spurious potential (2) induces a drivenmotion (17) that is also synchronouswith the rf
frequency, and is thus another type ofmicromotion. Since it is not linked to the secularmotion, and can only be
reduced by compensating the spurious potential terms (2), thismotion is usually referred to as excess
micromotion [47]. Along this text, wewill use thewordingmicromotion compensation to refer to the
compensation of the stray fields that produce excessmicromotion.

As a consistency check, we note that to linear order in qα, the complete solution(15) built from
equations (13),(14) and(17) coincides with the solution presented in [47], which includes the secularmotion
and thefirstmicromotion sideband. The higher-order powers of qα allow us to account for all higher
micromotion sidebands. Note also that the intrinsic(14) and excess(17)micromotion only occur in those trap
axes where ¹aq 0. According to equation (4), micromotion in an ideal linear Paul trap only occurs in the
transverse directions, as there is no rffield along the axial direction, such that qz=0.However, for realistic
experimental conditions that depart from this ideal case, theremight also be axialmicromotion ¹q 0z , as
occurs for instance in segmented linear traps [50]. Accordingly, wewill consider themost general case, and allow
formicromotion in all possible directions a¹ " Îa { }q x y z0, , , . The particularmicroscopic expression of
these parameters will generally differ from equation (4), and depend on specific details of the trap. For the excess
micromotion(17), the driven amplitude a ( )r tdriv will differ from the ideal case(18), and also depend on specific
details of the trap.However, one can treat themicromotion generically using equations (13),(14) and(17), with
generic parameters a a a( )r t a q, ,driv only restricted to fulfill equation (8).

2.2.Quantum-mechanical treatment ofmicromotion for a single trapped ion
Since the ultimate goal of this work is to exploit themicromotion to improve phonon-mediated quantum logic
gates between distant trapped-ion qubits, a full quantum-mechanical treatment of the secular vibrations and the
intrinsic/excessmicromotion in a trapped-ion crystal will be required. A detailed quantum-mechanical
treatment of the secular vibrations and intrinsicmicromotion for a single trapped ion has been described in [6]
using a formalism based on quantum-mechanical constants ofmotion [51].We nowuse this formalism to
generalize the description to situationswhere excessmicromotion of a single trapped ion is also present.

The quantum-mechanical Hamiltonian of the ion inside the Paul trap can be described as

å= + -
a

a a a a a⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ˆ ( ) ˆ ( )H

M
p K t r MF t r
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2
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2
, 192 2

wherewe have promoted the position andmomentum to quantum-mechanical operators fulfilling
d=a b a b[ˆ ˆ ]r p, i , . Here, we have introduced a time-dependent spring constant

= W - Wa a a( ) ( ) ( )K t
M

a q t
4

2 cos , 20rf
2

rf
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and used the time-dependent forces(5) caused by the deviations(2) from an ideal Paul trap, transformed back
into real time

= W Wa a( )( ) ( )F t f t . 211

4 rf
2 1

2 rf

TheHeisenberg equations ofmotion for thisHamiltonian lead to a quantum-mechanical version of the classical
forcedMathieu equations (3) for the position operator, namely
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Wenow construct an operator constant ofmotion by combining the position operator â ( )r t fulfilling
equation (22), with amode function a ( )u t that evolves according to the solution of the homogeneous classical
Mathieu equation (6), but with initial conditions w= =a a a=( ) ( ) ∣u u t t0 1, d d it 0 , and =aC 10 . This
generalizes the standardmode function =a

wa( )u t e tst i that appears in theHeisenberg picture of a time-
independent harmonic oscillator of frequency wa, and can be expressed as follows
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wherewe used the secular frequencies(11) and the normalization(12). The operator constant ofmotion is built
from theWronskian of the position operator and themode function
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is the standard annihilation operator of a harmonic oscillator vibrating at the secular frequency. Using these
expressions, and keeping oncemore the slowly varying terms under the integral of equation (23), wefind that the
quantum-mechanical position operator can be expressed as follows

̂= + +a a a aˆ ( ) ˆ ( ) ˆ ( ) ( ) ( )r t r t r t r t . 26sec in ex

Here, the secular-motion position operator is given by
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The intrinsicmicromotion operator can be expressed as


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t
1 2

4 1
cos , 28in sec

1
2 rf

and is thus again proportional to the secularmotion, as occurred in the classical case(14). Since the secular
motion is expressed in terms of quantum-mechanical creation-annihilation operators, the intrinsicmicromo-
tion can be argued to be a quantum-mechanicalmotion synchronouswith the rf oscillating field, as we advanced
in the introduction of this work. As a consistency check, we note that to linear order in qα, we recover the
expressions described in [6].

Finally, equation (26) also includes the effects of excessmicromotion in the position operator, which are
proportional to the identity operator in the vibrationalHilbert space ̂. As expected from the forces in
equation (19), the excessmicromotion corresponds to a simple displacement over the position operator

̂ +a a aˆ ( ) ˆ ( ) ( )r t r t r tsec sec driv , themagnitude of which coincides exactly with the classical driven amplitude(18).
One thusfinds that the deviations from an ideal Paul trap affect the quantum-mechanical position operator(26)
through the classical expression a ( )r tex of the excessmicromotion(17). Accordingly, the excessmicromotion
can be considered as a classical drivenmotion that can indeed be compensated byminimizing the spurious
terms(2), in contrast to the intrinsicmicromotion.

2.3.Quantum-mechanical treatment ofmicromotion in a trapped-ion crystal
The standard treatment of phonons in solids considers small quantized displacements of the ions d ar̂i, with
respect to an underlying Bravais lattice ari,

0 , namely d= +a a aˆ ( ) ˆr t r ri i i, ,
0

, , where Î ¼{ }i N1, , labels a particular
ion. The collectivemodes of vibration, whose quantum-mechanical excitations lead to the aforementioned
phonons, are usually obtained in the harmonic approximation by expanding the inter-ionic potential to second
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order in the displacements, and diagonalising the resulting quadraticHamiltonian [52]. For a collection ofN
ions inside a Paul trap, an analogous treatment exists in the so-called pseudo-potential approximation, which
assumes that the ions are effectively trapped by a time-independent quadratic potential with secular trap
frequencies(11). Themain difference with respect to a solid is that the equilibriumpositions ari

0 do not
correspond to a Bravais lattice, but instead form an inhomogeneous array known as aCoulomb crystal [53]. This
approximation, however, does not include possible effects ofmicromotion in the ion crystal.

A careful classical treatment of the crystalmicromotion [54] has recently shown that it can have non-trivial
effects, such as a renormalization of the normal-mode frequencies in planar crystals [55].We nowpresent a
detailed quantum-mechanical treatment of both the intrinsic and excessmicromotion in ion crystals, which
combines the techniques presented in section 2.1with the formalism in [54] to describe the effect of
micromotion on the classical crystal, and then generalizes section 2.2 to describe quantum-mechanically the
effect ofmicromotion on the phonons of the ion crystal.

To incorporate the different types ofmicromotion introduced above, we generalize the quantum-
mechanicalHamiltonian(19) to a systemofN ions confined by an oscillating quadrupole

å å= + - +
-a

a
a a a a

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ
( ) ˆ ( ) ˆ

˜
∣ˆ ˆ ∣

( )
r r

H
p

M
K t r MF t r

Q

2

1

2 2
, 29

i

i
i i i

i j i j,

,
2

,
2

, ,
,

2

wherewe have introduced vectorial operators defined in terms of the unit cartesian vectors = åa a aˆ ˆr r ei i, , and

the position-momentumoperators now fulfill d d=a b a b[ˆ ˆ ]r p, ii j i j, , , , . Here, p=Q̃ Q 42 2
0 eases notation, and

we have used the spring constants(20) and time-dependent forces(21) introduced above, allowing the spurious
dcfields in equation (5) to be inhomogeneous along the crystal. TheHeisenberg equations ofmotion lead to a
systemof equations

å+ -
-

-
=a a

a
a a

a
¹

ˆ ( ) ˆ ˜ ˆ ˆ
∣ˆ ˆ ∣

( ) ( )
r r

r

t

K t

M
r Q

r r
F t

d

d
. 30i

i
j i

i j

i j
i

2
,

2 ,
2 , ,

3 ,

Paralleling the standard treatment of phonons in solids, we substitute

̂ d +a a aˆ ( ) ˆ ( )r r t r , 31i i i, ,
0

,

where a ( )r ti,
0 are the equivalent of the equilibriumpositions in solids, which become time-dependent quantities

in the presence ofmicromotion (i.e. breathing crystal), and d ar̂i, are the small quantized vibrations around such a
breathing crystal.When these vibrations are sufficiently small, the equations (30) decouple into (i) a classical
systemof differential equations for the coordinates of the breathing crystal, and (ii) a linear systemof equations
for the quantum-mechanical displacements.

Let us focus on (i), and rescale the time t = W t1

2 rf , such that the time-periodic breathing crystal fulfills

åt
t+ - -

W

-

-
=a

a a a
a a

¹

( )
˜

∣ ∣
( )

r r

r
a q r

Q

M

r rd

d
2 cos 2

4
0. 32i

i
j i

i j

i j

2
,
0

2 ,
0

2

rf
2

,
0

,
0

0 0 3

These differential equations correspond to a systemof coupledMathieu equations (3) and, inspired by the
previous section, we thus propose a Floquet-type ansatz the formof equation (6), namely


åt = +a

a
a

b t
a

b t

Î

+ - +a a( ) ( ) ( )( ) ( )

n
n

n nr C A Be e , 33i i,
0

2 ,
i 2 i 2

where a aA B, are constants that depend on the initial conditions, ba is the so-called characteristic exponent,
and a

nC i2 , are the Floquet coefficients. The breathing crystal corresponds to a classical solution of the type(33)
synchronouswith the rf potential, i.e. b =a 0, and can also be considered as part of the excessmicromotion due
to ion positions lying off the rf null. By substituting this expression(33) in equation (32), one observes that the
Coulomb repulsion can introduce higher harmonics of the rf frequency. For the linear ion crystals of interest to
our purposes, these effects are absent in the relevant parameter regime(8), where the Floquet coefficients fulfill a
systemof coupled recursion relations

å
å

z
- -

-

-
+ =a a a

a a

a
a a

a
+

¹
-⎡⎣ ⎤⎦

( )

( )
( )n n n

n n
nC D C

C C

C C
C 0. 34i i

j i

i j

i j

i2 2, 2 2 ,
2 , 2 ,

0, 0,
2

2 2,3
2

Here, we have used the same notation as in the recursion relation for a single ion(7), = -a
a a( )nnD a q42

2 , and

introduced the parameter z = W aQ̃ M q4 2
rf
2 . To the lowest possible order in(8), onefinds that all the Floquet

coefficients

=
-

-
a a

a

 ℓ
( )

(( )!)
( )ℓ

ℓ ℓ

ℓC
q C1

4 1
35i

i
2 ,

0,

2
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are expressed in terms of the time-independent one aC i0, . This coefficient is in turn determined by the solutions
of the following systemof algebraic equations

å
å

w -
-

-
=a

a
a a

a
a a¹ ⎡⎣ ⎤⎦

˜ ( )

( )
( )M C

Q C C

C C
0, 36i

j i

i j

i j

2
0,

2
0, 0,

0, 0,
2

3
2

wherewe havemade use of the secular trapping frequencies introduced in equation (11). Let us note that these
equations display a clear competition between the harmonic trapping and theCoulomb repulsion, and coincide
with those that determine the equilibriumpositions of the ion crystal in the pseudo-potential approximation
[53]. Therefore, we shall denote the solutions as =a

ar Ci i,
eq

0, , which can be found numerically.

Sincewe are interested in the linear-trap configuration w w w ,z x y, where d=a ar zi i z,
eq 0

, , and the oscillating
quadrupole has no effect along the trap axis of an ideal Paul trap =q 0;z we find that = "a

 ℓℓC 0, 1i2 , at this
leading order. In fact, only terms at a higher-power of the non-vanishing parameters q q,x y can lead to

corrections [54], but these are negligible in the regime of equation (8). Accordingly, the time-periodic breathing
crystal(33) in an ideal Paul trap corresponds to a static Coulomb crystal

=( ) ( )r t z e . 37i i z
0 0

In a segmented linear trap, where residual axialmicromotionmay exist < q q q0 ,z x y, onewould still obtain
a static crystal to leading order. Conversely, for crystalline solutionswhere ions lie off the trap axis, the higher-
order harmonics introduced by theCoulomb interaction in equation (32) for a breathing crystal with >q q, 0x y

must be considered in detail for an accurate description [54, 55].
Given this solution(37), we can now turn our attention onto (ii), namely the quantum-mechanical

displacements about the crystal. After linearization, one can show that the corresponding operators evolve
according to a systemof forcedMathieu equations, similar to the single-ion case(22), but now coupled via the
linearizedCoulomb interaction


åd d+ =a

a

a aˆ ( )
( )

ˆ ( ) ( ) ( )
t

r t
t

M
r t F t

d

d
, 38i

j

ij
j i

2

2 , , ,

wherewe have now time-dependent spring constants that couple distant ions

 d= +a
a

a( ) ( ) ( ) ( )t K t t . 39ij i j ij,

Here, we have used the single-ion spring constants(20), and introduced thematrix of Coulomb-mediated
couplings

 å
d

d d d
d

d d d=
-

-
+ - -

-
+ -a

a a a a a a
¹

( )
( ) ˜

∣ ( ) ( )∣
( )

˜

∣ ( ) ( )∣
( ) ( )

ℓ ℓr r r r
t

Q

t t

Q

t t

1
2 2 . 40ij

i j

i j
x y z

i

i j

i
x y z

,
2

0 0 3 , , ,
,

2

0 0 3 , , ,

For the linear crystals(37) that concern us in this work, this couplingmatrix becomes time-independent
 =a a( )tij ij , and the systemof differential equations can be decoupled by a single orthogonal transformation,
in analogy to the standard theory of phonons in solids [52].We thus introduce the following normal-mode
operators

M Må åd= =a
a

a a
a

a
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )R t r t P t p t, , 41m

i
i m i m

i
i m i, , , , , ,

where the orthogonalmatrix is determined by diagonalizing thematrix of Coulomb-mediated couplings

M M Vå d=a a a a ( ), 42
i j

i n ij j m n m m
,

, , ,

wherewe have introduced the eigenvaluesVa
m. Using the orthogonality of the transformation, wefind a set of

decoupled forcedMathieu equations for the normal-mode operators

k
+ =a

a

a aˆ ( ) ( ) ˆ ( ) ( ) ( )F
t

R t
t

M
R t t

d

d
. 43m

m
m m

2

2 , , ,

Here, the eigenvalues of the spring-couplingmatrix

Vk = +a
a

a( ) ( ) ( )t K t 44m m

inherit the time-dependence via the single-ion spring constants(20), andwe have introduced forces that tend to
displace the ions along the normal-mode directions

Må=a
a

a( ) ˜ ( ) ( )F t F t . 45m
i

i m i, , ,

Hence, we have reduced the dynamics of the small quantumdisplacements about the crystalline solution into
N3 instances of the single-ion problem(22).Wemust thusfind 3N operators that are constants ofmotion,
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which requiresfinding a set of normalmode functions a ( )u tm, that are solutions of the homogeneousMathieu
equations (43), namely


å= +a

a
a

b
a

b

Î

+ W - + W
a a( ) ( ) ( )( ) ( )

n
n

n nu t C A Be e . 46m m m

t

m

t

, 2 , ,
i 2

2 ,
i 2

2m m,
rf

,
rf

This is the generalization of equation (6)with constants a aA B,m m, , that depend on the initial conditions,
characteristic exponents for each normalmode b am, , and Floquet coefficients a

nC m2 , .We impose the initial
conditions w= =a a a=( ) ( ) ∣u u t t0 1, d d im m t m, , 0 , , and =aC 1m0, , such that themode functions to leading
order in(8) can be expressed as


åx

= +
-

-
Wa

w

a

a
a ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ℓ

ℓ( )
( )
(( )!)

( ) ( )
ℓ

ℓ ℓ

ℓu t
q

t
e

1
1 2

4 1
cos , 47m

t

,

i

1
2 rf

m,

with the normalization constant defined in equation (12), and the normal-mode secular frequencies

Vw w= +a a
a ( ), 48m m,

2

wherewe have used the secular frequency in equation (11).
Given these normal-mode functions, one can obtain theWronskian and the constants ofmotion through a

straightforward generalization of equation (24) by introducing the annihilation operators for each collective
vibrationalmode

w
w

= +a
a

a
a

a

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ( )a
M

R
M

P
2

i
. 49m

m
m

m
m,

,
,

,
,

Therefore, the analog of equation (26) for the quantum-mechanical treatment ofmicromotion in a trapped-ion
crystal can be expressed as

^ ^ d d= + + +a a a a aˆ ( ) ( ) ˆ ( ) ˆ ( ) ( ) ( )r t r t r t r t r t . 50i i i i i, ,
0

,
sec

,
in

,
ex

Here, the secular-motion position operator is given by

M
åd

w x
= +a

a

a a
a

w
a

wa aˆ ( ) ( ) ( )†r t
M

a a
2

1
e e , 51i
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i m

m
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t
,
sec ,

,
,

i
,

im m, ,

and the intrinsicmicromotion operator can be expressed as


åd d=

-

-
Wa a

a
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1
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The excessmicromotion in equation (50) is expressed in terms of the identity operator in the vibrationalHilbert
space ̂, and


å= +

-

-
Wa a

a
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ℓ

ℓ( ) ( )
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(( )!)

( ) ( )
ℓ

ℓ ℓ

ℓr t r t
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cos , 53i i,

ex
,
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1
2 rf

wherewe have introduced the generic site-dependent amplitude a ( )r ti,
driv . For the standard Paul trap, this can be

obtained from equation (18) by considering inhomogeneous spurious fields

w
d

j a
= + Wa

a

a
a( )

˜
( ) ( )r t

QE

M

q r
t

4
sin . 54i

i
x

x
,
driv dc,

2 ,
0 ac

rf

For other situations, such as those arising for segmented traps, this amplitudewill depend on the specific trap
details.

In this way, we have presented a detailed quantum-mechanical description of the effects of intrinsic and
excessmicromotion in a linear crystal of trapped ions. The results in equations (50)–(54)will be the starting
point for the scheme ofmicromotion-enabled entangling gates in the following section. Our formalism can be
extended to planar crystals, although one has to consider the breathing of the crystal instead of equation (37),
and how this can lead tomicromotion-induced corrections of the secular vibrations of the planar crystal.

3. Entangling gates based onmicromotion sidebands

In this section, we start in section 3.1 by discussing the effects ofmicromotion in the theory of light–matter
interactions for a set of laser beams addressed to a particular electronic transition of the ions.We then describe
how to implement state-dependent forces by combining pairs of laser beams in section 3.2, and discuss the role
of intrinsic/excessmicromotion, paying special attention to the contribution of the often-neglected carrier
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excitations. In section 3.3, we start by reviewing the schemes for entangling gates based on secular state-
dependent sf-forces [28, 29–32], and discussing the gate speed limitations that arise due to the off-resonant
carrier. Building on this discussion, we then introduce a scheme ofmicromotion-enabled state-dependent
sf-forces, which can overcome the limitations on the gate speed due to the off-resonant carrier, provided that
the excessmicromotion is accurately compensated.

3.1.Micromotion effects in the laser-ion interaction
Let us consider a collection ofN trapped ions subjected to laser beams tuned close to the resonance of a
particular transition of frequency w0 between two electronic levels  ñ  ñ∣ ∣,i i . The dynamics of the internal
andmotional degrees of freedomof this ion crystal is described by the followingHamiltonian

å å åw
s d d d d= + + - +

a

a
a a a a

a
a a

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

ˆ
( ) ˆ ( ) ˆ ˆ ˆ ( )H t

p

M
K t r MF t r r r

2 2

1

2
, 55

i
i
z

i

i
i i i

j
ij i j0

0

,

,
2

,
2

, , , ,

wherewe have introduced s =  ñá  -  ñá ∣ ∣ ∣ ∣i
z

i i i i , applied the harmonic-crystal approximation
described in the previous section(31), and neglected an irrelevant c-number stemming from the classical energy
of the breathing crystal. The interaction between the laser beams and the ions is described by

å s=
W

+f w w+ + -( ) ( )( ·ˆ ( ) ( ) )H t
2

e e h.c., 56k r

i l

l
i

t t
I

,

i il l i l0

wherewe have introduced the spin raising s =  ñá + ∣ ∣i i i and lowering s =  ñá - ∣ ∣i i i operators. Here, l
labels the different laser beams that are described as classical travelingwaveswith w fk , ,l l l being the laser
wavevector, frequency, and phase, respectively, and Wl is the Rabi frequency of the particular transition.
Typically, one either considers a quadrupole-allowed transition between a groundstate level ñ∣ and ametastable
excited level ñ∣ , or uses a two-photonRaman scheme to couple a pair of groundstate levels ñ ñ∣ ∣, via a excited
level through a far-off-resonant dipole transition. In any case, the quadrupole or RamanRabi frequencies are
constrained to w wW +∣ ∣l l0 in order to neglect additional counter-rotating terms in equation (56).

We note that this expression is obtained in the interaction picture of the bareHamiltonian(55), namely

=( ) ( ) ( )†H t U t H U tI 0 I 0 , where T ò= - ¢ ¢( ) { ( ( ))}U t t H texp i d
t

0 0 0 . Thus, after substituting the position

operator in equations (50)–(54) corresponding to such an interaction picture, wefind

M *å ås h=
W

+ + + +
a

a
a a

a a a a
f w w+ -

⎛
⎝⎜

⎞
⎠⎟( ) ( ( ) ( )) ( )† ( ) ( )H t a u t a u t

2
1 i e e h.c., 57

i l

l i
i

m
i m l m m m m m

t t
I

, ,

,
, , , , , ,

i il i l, 0

wherewe have performed aTaylor series in the Lamb–Dicke parameters h w=a
a a ·k Me 2 1l m l m, , , and

introduced the renormalised Rabi frequencies M hW = W -åa a a{ ( ) }exp 2l i l m i m l m, , ,
2 , togetherwith laser phases

that getmodulated by the time-dependence of the breathing crystal and the excessmicromotion

f f= + +( ) · ( ( ) ( )) ( )k r rt t t . 58l i l l i i,
0 ex

Note that for a linear chain, the breathing crystal becomes static =( )r t z ei i z
0 0 (37), such that the phase

modulation is only caused by the excessmicromotion. Additionally, the effect of the intrinsicmicromotion on
the laser-ion interaction is encoded in the particular time-dependence of themode functions a ( )u tm, (47), which
yield additional periodicmodulations in processes involving the creation and annihilation of phonons.

Let us note that themode functions arewritten in equation (47) as =a
w aa( ) ( )u t f tem

t
,

i
in

m, , were a ( )f t
in

is a
functionwith period p W2 rf alreadywritten as a Fourier series. The excessmicromotion leads to

= f( ) ( )f t el t
ex

i l i, , which is also a periodic functionwith period p W2 rf , and could aswell be expressed as a Fourier
series with all the possible harmonics at the different frequencies Wℓ rf . In this sense, themicromotion
introduces a comb of equidistant sidebands in the laser-ion interaction(57), the so-calledmicromotion
sidebands. These can be exploited by choosing an appropriate detuning of the lasers with respect to the atomic
transition

w w- » Wℓ ( ), 59l 0 rf

where  Îℓ is a certain integer. Inmost trapped-ion experiments, one sets  =ℓ 0 [5], and compensates the
excessmicromotion in order tominimize its effects [47]. Themain result of this work is to point out that
addressing thefirstmicromotion sideband  =ℓ 1, whilemaintaining the compensation of excessmicromotion,
can be advantageous forQIP. In this way, one can exploit the effects of intrinsicmicromotion in the laser-ion
interaction, and find faster andmore accurate schemes for entangling quantum logic gates.

3.2. State-dependent dipole forces and off-resonant carriers
Wenowdiscuss how to induce a state-dependent sf-force [28] on the ions starting from equation (57), and thus
taking into account the new effects brought forth bymicromotion.We consider a pair of laser beams Î { }l 1, 2
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with equal wavevectors = ≔k k k1 2 L. By selecting the direction of these beams along a certain trap axis a∣∣k eL ,
the laser-ion interactionwill only couple the qubits to a particular phonon branch.

We also consider equal laser phases f f f= ≕1 2 , and equal intensities and polarizations leading to
W = W W≕1 2 . Conversely, the lasers will have opposite detunings with respect to the atomic transition
d w w w w- = - -≔ ( )1 0 2 0 . Due to these choices, we can simplify the laser-ion interaction(57) considerably
by defining commonLamb–Dicke parameters h h h=a a a≕n n n1, 2, , dressed Rabi frequencies W = W Wa a a≕i i i1, 2, ,
andmodulated phases f f f=( ) ( ) ≕ ( )t t ti i i1, 2, , where


åf f= + + +

- W

-a a
a
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⎝
⎜⎜

⎞
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1 2 cos

4 1
. 60i i iL ,
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rf

2

By keeping contributions tofirst order in the Lamb–Dicke parameter, = +( ) ( ) ( )H t H t H tI c s , we identify the
terms driving the carrier transitions

å s d= W +a f+( ) ( )( )H t te cos h.c., 61
i

i i
t

c
i i

and the spin-phonon couplings

å s d= + +a a
a a

f+( ) ( ( ) ) ( )† ( )FH t x a u t ti H.c. e cos h.c., 62
i m

i m m m m i
t

s
,

, , ,
i i

where the dipole forces are M= Wa a aF ki m i i m, , L, and the nthmode groundstate widths are w=a
ax M1 2m m, .

We now consider the effects of the excessmicromotion(60) to leading order in the regime(8), namely

f j b» + W( ) ˜ ( ) ( )t tcos , 63i i i rf

wherewe have introduced the parameters

j f b= + + = -a a a
a( ( )) ˜ ( ) ( )k r r k r

q
0 , 0

2
. 64i i i i iL ,

0
,
driv

L ,
driv

Using the Jacobi–Anger expansion [56], one finds


å b=f j

Î

+ Wp( ˜ ) ( )
ℓ

ℓ
ℓ ℓ( ) ( )Je e e , 65t

i
ti i ii i 2 rf

where ( )ℓJ x are theℓth order Bessel functions of thefirst class. This is the explicit expression for the Fourier
series that wasmentioned above equation (59), and leads to a clear picture for the appearance of the
micromotion sidebands at frequencies Wℓ rf . Depending on the particular value of the laser detuning d » Wℓ rf ,
it is possible to address a particularmicromotion sideband(59).Moreover, around each of thesemicromotion
sidebands, there is an additional combof frequencies representing the secular sidebands that occur atmultiples
of the secular normal-mode frequencies(48). By combining a pair offirst secular sidebands, the spin-phonon
couplings of equation (62) yield the desired state-dependent force.

3.2.1. Secular state-dependent dipole forces
The usual approach to obtain a state-dependent force relies on addressing the secular sidebands, d w~ Wa  rf

[28, 29–32], such that  =ℓ 0 according to our previous notation(59). By imposing the condition to resolve the
micromotion sidebands

W Wa ∣ ∣ ( ), 66i rf

and using the expression in equation (65) for the effects of excessmicromotion, and equation (47) for the effects
of the intrinsicmicromotion, wefind that the secular sidebands(62) can be expressed as aHamiltonianwith a
state-dependent force

å d» +a
a

w a( ) ( )†F sH t x a te cos h.c., 67
i m

i m m i m
t

s
,

,
r

,
i m,

wherewe have introduced a dipole-force strength
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and the following spin operator

b b
b s b s=

+
+ a
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Here, we have defined the Paulimatrices in a rotated basis with respect to the z-axis

s s s s s s+ -s s s s+ - - - + -j j j j
˜ ≔ ( ) ˜ ≔ ( ) ( )e e , e i i e . 70i

x
i i i

y
i i

i i i ii
i
z i

i
z i

i
z i

i
z

2 2 2 2

Accordingly, the spin operator(69) shares certain algebraic properties with the rotated Paulimatrices in
equation (70), namely = †s si i , =si

2 , and =[ ]s s, 0i j , which allow us to interpret equation (67) as a state-
dependent force that pushes the vibrationalmodes in opposite directions depending on the two eigenstates of
the spin operator = + ñá+ - - ñá-∣ ∣ ∣ ∣s s s s si i i i i

. In the limit of vanishing excessmicromotion b = 0i (64), the
phasej f d» + ak zi i zL

0
, , and equation (67) yields the aforementioned sf-force of theMølmer–Sørensen (MS)

scheme [28] used in several experiments [29–32], where s s s= -f f f+ - -ie iei i .
Let us note that, in addition to the desired state-dependent force(67), one has to consider the carrier

terms(61), which in this regime(66) can be expressed as

å b s d= Wa( ) ( ˜ ) ˜ ( )H t J tcos . 71
i

i i i
x

c 0

This residual carrier does not commutewith the dipole force(67), since the rotated Paulimatrices share the
same ( )su 2 algebra as the original Paulimatrices. Therefore, the carrier and the dipole force will interfere and
compromise the simple picture of the normalmodes being displaced in opposite directions depending on the
spin state. Tominimize this undesired effect, the residual carriermust be far off-resonant, which can be achieved
by limiting the laser intensity such that

b d wW ~a
a∣ ( ˜ )∣ ( )J , 72i i0

and »( )H t 0c in a rotating-wave approximation. For vanishingly smallmicromotion b ˜ 0i , this
constraint(72) reduces to the standard condition required towork in the resolved-sideband regime wWa

a∣ ∣i .
As a consequence, resolving the secular sidebands limits the intensity of the state-dependent force(68) that
becomes in this regime

M s= W
-

»a a
a( ) ˜ ˜ ( )F sk

1

1
, . 73i m i i m q i i

y
,

r
, L

2

As discussed in the following section, it puts a constraint on the speed of entangling gates based on sf-forces.
Hence, it would be desirable to come upwith schemes that yield similar state-dependent forces withmilder
constraints on their strengths.We now argue that this is possible by exploiting the highermicromotion
sidebands.

3.2.2.Micromotion state-dependent dipole forces
Let us nowdiscuss how to obtain a state-dependent force by addressing the firstmicromotion sideband,
d d= W + ˜

rf , where d w~ Wa ˜
rf , such that  =ℓ 1according to our previous notation(59). Following an

analogous derivation to the one above, we find the followingHamiltonianwith a state-dependent force

å d» +a
a

w a( ) ˜ ˜ ˜ ( )†F sH t x a te cos h.c., 74
i m

i m m i m
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wherewe have introduced a dipole-force strength

M
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and the following spin operator

b b
b s b s=

+
- + a

a

⎜ ⎟⎛
⎝

⎞
⎠˜

( ˜ ) ( ˜ )
( ˜ ) ˜ ( ˜ ) ˜ ( )s

J J

J
q

J
1

4
. 76i

i
q

i

i i
x

i i
y

1
2

16 0
2

1 0
2

In analogywith the secular forces(67), we can interpret equation (74) as a state-dependent force that pushes the
vibrationalmodes in opposite directions depending on the two eigenstates of the spin opera-
tor = + ñá+ - - ñá-˜ ∣ ∣ ∣ ∣˜ ˜ ˜ ˜s s s s si i i i i

.
The additional carrier term in equation (61) can be expressed in this case as

å b s b s d» W W - Wa a( ) ( ( ˜ ) ˜ ( ˜ ) ˜ ˜ ) ( )H t J t J tcos cos . 77
i

i i i
x

i i i
y

c 0 rf 1

In principle, this term can cause a similar interference with the state-dependent force(74), since it does not
commutewith the spin operator in general(76). However, if the excessmicromotion isminimized to the level

b a ˜ ( )q 1, 78i
1

4
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one gets b »( ˜ )J 1i0 and b b»( ˜ ) ˜Ji i i, such that the previous condition(72) to neglect the off-resonant carrier
becomes less stringent.Wefind that the laser intensity will be limited by

b d wW W W ~a a
a ∣ ∣ ∣ ∣ ˜ ˜ ( ), , 79i i irf

and can be thus tuned to larger values in comparison to the secular scheme(72), where wWa
a∣ ∣i . According to

this discussion, the advantage of themicromotion-enabled scheme inminimizing the undesired effects brought
up by the off-resonant carrier with respect to the standard secular schemewill be larger the smaller w Wa rf and
b̃i can bemade in the experiment. This will depend on the particular trap architecture, and the excess
micromotion compensation capabilities discussed below. Let usfinally note that the state-dependent force(75)
becomes in this regime

M s» W
-

»a a a
a

˜
( )

˜ ˜ ( )F sk
q

4 1
, . 80i m i i m q i i

y
,

r
, L

2

Comparing the strength of the secular(73) andmicromotion(80) forces, one can see that to obtain similar
strengths onewould need to increase the Rabi frequency in themicromotion-scheme, and thus the laser power,
by a factor of roughly aq4 . At this point, it is worth noting that we could have tuned the laser frequencies to a

highermicromotion sideband d d= W + ℓ ˜
rf with  >ℓ 1. By doing this, the effect of the off-resonant carrier

would be further suppressed W Wa  ℓ∣ ∣i rf . On the other hand, wewould need even higher laser powers,
increased by a factor of  - aℓ(( )!) ( )ℓ ℓq4 1 2 , to achieve forces of the same strength. Even if these laser
intensities can be achieved in the laboratory, in this regime the intensityfluctuations could become a limiting
factor for the gate performance. Accordingly, wewill focus on thefirstmicromotion sideband in the rest of
this work.

3.3. Entanglement via geometric phase gates
Wenowdiscuss how to exploit the longitudinal/transverse phonons tomediate a qubit–qubit interaction
capable of generating entanglement in the presence ofmicromotion. In order to have a simple description, we
make use of theMagnus expansion [57], which allows us to express the time-evolution operator in the
interaction picture as follows

T Aò= =- ¢ ¢⎧⎨⎩
⎫⎬⎭( ) ( )( ) ( )U t e e . 81t H t t

I
i d

t

0
I

Here, the anti-Hermitian operatorA A= -( ) ( )†t t can be expressed as a series of time integrals over nested
commutators

A ò ò ò= - - +( ) ( ) [ ( ) ( )] ( )t t H t t t H t H ti d
1

2
d d , , 82

t t t

0
1 I 1

0
1

0
2 I 1 I 2

1

which can be truncated to the desired order of approximation. This will allow us to discuss the generation of
entanglement through a genericHamiltonianwith a state-dependent force =( ) ( )H t H tI s , which encompasses
both equation (67) and equation (74), and allows for an additional pulse shaping on the forces  ( )F F ti m i m,

r
,

r .
In this ideal situation, theMagnus expansion(82) becomes exact already at second order, such that

A *å åg g= - +a a( ) ( ( ) ( ) ) ( ) ( )†s s st t a t a g t , 83
i m

i i m m i m m
i j

ij i j
,

, , , ,
,

wherewe have introduced the following parameters

òg d= - a w- a( ) ( ) ( ) ( )Ft t t x ti d cos e , 84i m
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1 1
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1

Hence, theMagnus expansion operator(83) amounts to a state-dependent displacement of the vibrational
modes, followed by an effective spin–spin interaction that is capable of generating the desired entanglement
between the trapped-ion qubits. On the contrary, the displacement will degrade the quality of the quantum logic
gate, as it leads to residual entanglement between the qubits and the phonons, contributingwith amotional
error thatmust beminimized. If g »( )t 0i m, g , the vibrationalmodes develop a closed trajectory in phase space,
returning to the initial state after a particular gate time tg. Along these closed trajectories, the qubits acquire a
state-dependent geometric phase that depends on the enclosed phase-space area, and can be exploited to
generatemaximally entangled states [26, 28].

For instance, consideringN=2 and an initial state r y y r= ñá Ä∣ ∣0 0 0 th, where y ñ =   ñ∣ ∣0 1 2 is the state of
two qubits after optical pumping, and rth is the state of the vibrationalmodes after laser cooling, the time-
evolved state under a secular state-dependent force(67) in the limit of b  1i becomes
r y y r= ñá Ä( ) ∣ ( ) ( )∣t t tg g g th, where
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y ñ =   ñ +  ñj j+∣ ( ) ∣ ∣ ( )( )t
1

2

i

2
e 86g 1 2

i
1 21 2

is locally equivalent to a Bell state, andwe have assumed that the laser intensities have values such
that p= -( )g t2 i 412 g .

In the following subsections, wewill consider different possibilities of achieving g »( )t 0i m, g , and
p= -( )g t i 8ij g for a crystal of two trapped ions.We start by reviewing the entangling gates that use continuous-

wave (CW) state-dependent forces in the secular regime(67).Wefirst describe gate schemes that exploit a single
vibrationalmode (i.e. busmode) tomediate the entanglement between the qubits [28, 29–32], and discuss the
limitations in gate speed arising from the necessity to resolve single vibrationalmodes.We then consider
schemes that address both vibrationalmodes using a CWsecular force, and discuss the limitations on the speed
imposed by theminimization of spin-motion entanglement of both busmodes. Finally, wemove onto a
discussion of pulsed schemes, which can overcome both limitations on the gate speed, but will be limited by the
restriction on the Rabi frequencies(72) to neglect the additional off-resonant carrier. This long discussionwill
allowus to embark upon the description of entangling gates using themicromotion state-dependent-forces of
section 3.2.2, assuming that equation (78) is fulfilled, and discussing the improvement on the gates that this
scheme can lead to.

3.3.1. Entangling gates with secular forces
Let us particularize theMagnus operator(83) to the secular state-dependent dipole force(67), whichwewill
assume to be composed of a sequence of Np square pulses

å q q t= - - - +
=

( ) ( ( ) ( ( ))) ( )F ft t t t t . 87i m
n

N

i m
n

n n n,
r

1
,

p

p
p

p p p

Here, fi m
n
,
p is the force of the npth pulse obtained from equation (68) by substituting the Rabi frequency Wa

i n, p
of

that particular pulse, and q ( )x is theHeaviside step function, such that this pulse acts within a timewindow
tÎ +[ )t t t,n n np p p

. In order to use the above genericMagnus expansion, the additional off-resonant carrier (77)
must be negligible, which requires the laser parameters to lie in the regime (72).Moreover, wewill focus on the
regimewhere the excessmicromotion is very-well compensated, such that equation (72) leads to wW a∣ ∣i , and
thus d w+∣ ∣ ( )f xi m

n
m m,

p follows from equation (68). This constraint over the forces allows us to simplify
considerably the particular expressions for the parameters (84) and (85) for single- andmulti-pulse gates.

(i) Single-pulse entangling gates: Let us consider equation (87) for a single pulse = =n N 1p p of strength fi m, ,
between =t 0np and t = tn gp

[28, 29–32]. By performing the corresponding integrals, one finds the state-
dependent displacements

g
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and the phonon-mediated spin–spin interactions

å
w d

w
w d w

d w
=

-
+

-

-

a a

a
a

a

a

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

( )
f f

g t
x x

t
t

i
2

sin
. 89

m

m m m m

m
m

m m

m
12 g

1, 2,

,
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(a) Addressing a single vibrational mode. Let us start by considering single-pulse gates that resolve a single bus
mode tomediate the interaction, such as the center-of-mass (CoM)mode d w» a1, of either longitudinal or
transverse vibrations. The condition to resolve a single vibrationalmode for aN= 2 ion crystal is

w w-a
a a∣ ∣ ∣ ∣ ( )f x , 90i m m, 1, 2,

such that g »( )t 0i,2 g for the remaining vibrationalmode, which only acts as a spectatormode.Hence, one only
needs to set the gate time tg such that g =( )t 0i,1 g in order tominimize the residual spin-motion entanglement
of the busmode. This is accomplished by setting the following relation between laser detuning and the gate time

p
d w

=
- a∣ ∣

( )t
r

2 , 91g
1

1,

where Î +r1 [28]. The phase-space trajectory defined by g =( )t 0i,1 g , and induced by the displacement
operator (83), corresponds to r1 closed circular loops, such that spin andmotional degrees of freedom get
disentangled at the end of the gate. Conversely, the two spins can getmaximally entangled. Using

» -( )g t t J2 i12 g g 12, onefinds that the time-evolution operator (81)–(83) can be expressed as

= -( ) ( )s sU t e , 92t J
I g

i g 12 1 2
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wherewe have introduced the spin–spin coupling strengths

M M
åw

b b
d w

= W W
- -

a a
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a a

a( )
( ) ( ) ( )J

J J

q1
, 93

m

m m
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12 R 1 2

0 1 0 2

1

2

2
1, 2,

2
,

2

where w = k M2R L
2 is the recoil energy. Considering a negligible excessmicromotion b  1i , the coupling

becomes h w d w h d w» W - » W -a a
a a

a a
a( ) ( ) ( ) ( )J 2 412 1

2
1,

2
1,
2

1
2

1, to leading order of the Lamb–Dicke
parameter. This coincides with the expression in [28] up to a different definition of their Lamb–Dicke parameter
that incorporates the normal-mode displacements.

The condition to generate amaximally entangled state using equation (92) is p=J t 412 g , which sets another
constraint between laser detuning and the gate time

h

d w
p

W

-
=

a a

a

( )
∣ ∣

( )t . 941
2

1,
g

Solving the systemof algebraic equations (91) and (94)fixes the detuning as a function of the number r1 of
closed loops in phase space, and the Rabi frequency of the transition Wa. Accordingly, the gate time can be
shown to be

p
h

=
Wa a ( )t r2 , 95g

1

1

such that the stronger the intensity of the laser is, the larger Wa becomes, and the faster the entangling gate is, e.g.
p h= Wa at 2g 1 for gates based on 1-loop trajectories.We note that this intensity increasemust be

accompanied by a corresponding increase in the detuning of the laser beams

d w h= + Wa
a a ( )r2 . 961 1

However, such an increase in gate speed cannot be prolonged indefinitely. Let us recall that the condition to
resolve a single vibrationalmode (90) puts a constraint on the laser intensity h w wW -a

a a ∣ ∣1 1, 2, , such that the
gate speed is limited by

p
w w-a a


∣ ∣

( )t . 97g
1, 2,

This gate-speed limitation is very different forMS gates that use longitudinal or transverse phonons as the
quantumbus tomediate the qubit–qubit entanglement.

(a.1) For longitudinal phonons, themodes fulfill w w w- ~∣ ∣z z z1, 2, , such that the gate speed is ultimately
limited by the trap period p wt 2 zg . Let us emphasize, however, that the gatefidelity would decrease for such
fast gates, which sets a lower speed limit in practice.Maximizing the gate speed by increasing the Rabi frequency
within the valid parameter regime (90), namely w w h w hW - ~ ∣ ∣z

z z
z

z
z

1, 2, 1 1 , can lead to situations where
the contribution of the off-resonant carrier (77) is not negligible anymore, i.e. wW z

z in equation (72) begins
to be violated. Accordingly, if the gate speed increases beyond a certain limit, the off-resonant carrier will
increase the gate error and dominate over other sources of noise.

To quantify this effect, we estimate the state infidelity F = -1g g for the generation of the desired Bell
state (86) as a function of the gate time.We consider three different sources of infidelity
   = + +g carr mot deph: the off-resonant carrier (77) leads to  d» W( )N z

carr
1

2
2 [28]5, the additional terms

neglected in the Lamb–Dicke expansion (57), including the effect of spectatormodes, lead to amotional error
 p d w w p h» - + + - +( )( ¯ ) ( ) ( )( ) ( ¯ ¯ )N n t N N n n N0.8 1 2 1 1.2 1.4 8z z z

z
z zmot

2
g

2
1

4 2 2 [28], wherewe have
assumed a thermal state for the longitudinal vibrationalmodes, such that n̄z is themean number of phonons in
the thermal CoMmode. Finally, we also consider dephasing during the gate, which can be caused byfluctuating
globalmagnetic fields, which lead to  » N t T2deph

2
g 2, whereT2 is the dephasing time of the qubits, as

measured by Ramsey interferometry. Infigure 1, we represent the full error as a function of the gate time for
different dephasing rates, choosing 40Ca+ qubits as a representative case [58]. Thisfigure demonstrates that for
cold crystals with =n̄ 0.1z , themotional error ofMS gates is negligible in comparison to the errors due to the
dephasing and the off-resonant carrier. This would occur also forwarmer crystals with the same parameters,
provided that n̄ 5z , after which themotional-error contribution cannot be neglected any longer.Whereas for
slow gates, the deph contribution is dominant, carr becomes the leading source of infidelity when the gate
becomes sufficiently fast. As predicted above, the gate is always slower than the trap period p w m= =T 2 1 szt if
one aims for reasonablyhigh fidelities  < -10g

2. In section 3.3.2, wewill discuss how it is possible to increase the
gate speed further, whilemaintaining high fidelities, provided that the intrinsic axialmicromotion of the ion
crystal can be exploited to shape themicromotion state-dependent forces (74) instead of the secular ones (67).

5
This particular expression for the contribution of the off-resonant carrier to the error budget is an upper bound derived in [28].We note

that even if the carrier error is smaller than this value, the general trend discussed in this workwill remain, i.e. it will become the leading error
for sufficiently fast gates.
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(a.2) For transverse phonons, the situation canfirst appear favorable, since the trap frequencies are larger, and
one can naively expect that d w~ x can be achievedwith larger detunings, and thus shorter gate times (91).
However, the condition to resolve a singlemode (90) ismore stringent, since w w w w w w- ~ ∣ ∣ ( )x x z x x z1, 2,

2

for the usual regime of linear Paul traps w wz x. Therefore, exploiting the available larger detunings to speed
up the gate leads inevitably to a decrease infidelity.We note that the condition to resolve a singlemode imposes

w w h w h w hW -  ∣ ∣x
x x

x
z

x
x x1, 2, 1 1 1, . Hence, even if the gate speed ismaximized, onewould not reach

the regimewhere the off-resonant carrier starts to be problematic since wW x
x is always warranted.Hence,

the error for fastMS gates will be dominated by the contribution to themotional error of the spectatormodes.
To quantify this discussion, we estimate again the state infidelity F = -1g g for generating the desired Bell

state (86) as a function of the gate time. The carrier and dephasing errors have the same expressions as above,
whereas themotional error changes due to the proximity of the spectatormodes in frequency space. ForN= 2,
we get  h d w d w» W + + -( ) ( ¯ )( ) ( )n2 1x x

x x xmot 2
2 2

2,
2 2

2,
2 2, wherewe have assumed a thermal state for the

transverse vibrationalmodeswithmean phonon number n̄x. Infigure 2, we represent the full error as a function
of the gate time for different dephasing rates, choosing 40Ca+ qubits to compare with the previous longitudinal
gate. As announced earlier, this figure shows that the error of slow (fast) gates is dominated by the the dephasing
(motional) error. One also observes, that the optimum transverse gates are always slower than the longitudinal
ones infigure 1 and,moreover, achieve smaller fidelities.

Let us also note that both of these longitudinal and transverse entangling gates can be generalized toN-
qubits, andwould lead tomulti-partitemaximal entangled states locally equivalent to

ñ =    ñ +    ñ ∣ (∣ ∣ )GHZ 2N N N1 2 1 2 , instead of the Bell state (86). The conditions to generate such
states usingMS gates based on the longitudinal CoMmode remain the same, since such a busmode is always
separated fromhigher-frequencymodes by the same frequency gap [53]. On the contrary, the conditions onMS
gates based on the transverse CoMmode lead to even slower gates, since the phonon branch becomes denser,
and the differentmodes approach theCoM frequency asN increases.

(b) Addressing both vibrational modes. Let us now address how to increase the gate speed by lifting the
constraint (90), such that the state-dependent force does not resolve a single vibrationalmode evenwhen
d w» a1, . ForN= 2 ions, two conditions are required tominimize the spin-motion entanglement, namely
g =( )t 0i,1 g , and g =( )t 0i,2 g . Thefirst one sets the relation in equation (91) between the gate time and the
detuning, whereas the yields a commensurability condition

d w d w- = -a a( ) ( )r , 982, 2 1,

Figure 1. Single-pulseMS gatewith the axial CoMmode: State infidelity g for aMS gatemediated by theCoM longitudinalmode of a
N = 2 crystal of 40Ca+ ions.We assume an axial trap frequency w p =2 0.975z MHz, such that the single-ion Lamb–Dicke
parameter is h = 0.098z

1 , resolved-sideband laser-cooling leading to =n̄ 0.1z for theCoMmode, and set the number of phase-space
loops of theMS gate to =r 11 . The blue solid lines correspond to the total state infidelity g for dephasing times

Î { }T s0.2, 0.4, 0.8, 1.62 , whereas the dotted lines represent the contributions of dephasing,motional, and carrier errors, as indicated
in the captions. The yellow stars represent the optimumgate timeswith respect to the highest-possible gatefidelity for each set of
parameters. To vary the gate speed, we consider increasing the Rabi frequencywithin pW Î [ ]2 0.02, 0.12z MHz, and setting the
corresponding detunings d w p- Î( ) [ ]2 2.9, 16.6z kHz according to the equations discussed in the text.
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where Îr2 , which already fixes the detuning to

d w w= - -a a( ) ( ) ( )r r 1 . 992 1, 2, 2

(b.1) For longitudinal modes, the condition (98) cannot bemet, as the frequency difference is an irrational
number w w w- = -( )3 1z z z2, 1, . In any case, the gate-speed could not be increased even if one could close
both trajectories perfectly, as the limitation on gate speed is given by the condition to neglect the off-resonant
carrier (see figure 1). Equivalently, this would not improve the gate fidelity of theMS gates toomuch, as the
motional error due to the spectator vibrationalmode is already very small for typical experimental values (see
figure 1).

(b.2) For transversemodes, in contrast, the condition (98) can bemet and the allowed gate times correspond
to trajectories with r1 loops for theCoMmode w x1, , and ∣ ∣r r1 2 for the zigzagmode w x2, with r 22 or  -r 12 .
These two conditions suffice tofix the gate time to

p
w w

=
-
-

∣ ∣
( )

( )t
r r

2
1

. 100
x x

g
1 2

1, 2,

The remaining task is tofind the required laser intensity such that the state-dependent geometric phase
proportional to the enclosed phase-space area fulfills the condition to generate amaximally entangled state

p=J t 412 g . In this case, one has to consider the contribution of bothmodes to the spin–spin coupling strength
(93), which becomes h d w d w» W - - -( ) ( ( ) ( ))J 1 4 1 4x x

x x12 1
2

1, 2, . Using the expression for thefixed
detuning (99), onefinds that the required laser Rabi frequency is
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As occurred for theMS gates that use a single vibrational busmode (95), the gate can become faster by increasing
the laser Rabi frequency, since the expression
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yields p h= Wt 2 x x
g 1 for the fastest gate with = =r r2 22 1 loops. Let us note that this gate time can also be

expressed as

p
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, 103
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Figure 2. Single-pulseMS gatewith the transverse CoMmode: state infidelity g for aMS gatemediated by the CoM transversemode
of aN=2 crystal of 40Ca+ ions.We assume an axial (radial) trap frequency w p =2 0.975z MHz, (w p =2 9.75x MHz) such that
the single-ion Lamb–Dicke parameter is h = 0.031x

1 , resolved-sideband laser-cooling leading to =n̄ 0.05x for theCoMmode, and
set the number of phase-space loops of theMS gate to =r 11 . The blue solid lines correspond to the total state infidelity g for
dephasing times Î { }T s0.2, 0.4, 0.8, 1.62 , whereas the dotted lines represent the contributions of dephasing,motional, and carrier
errors, as indicated in the captions. The yellow stars represent the optimumgate timeswith respect to the highest-possible gate fidelity
for each set of parameters. To vary the gate speed, we consider increasing the Rabi frequencywithin pW Î [ ]2 0.05, 1.29x MHz, and
setting the corresponding detunings d w p- Î( ) [ ]2 2.3, 56.6x kHz according to the equations discussed in the text.
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which shows that by exploiting both vibrationalmodes simultaneously, the speed can be increasedwith respect
to the limitation of the previous transverseMS gates (97).

We note that the procedure of increasing the gate speed is slightlymore involved than that of single-mode
MS gates (95), which only required increasing simultaneously the Rabi frequency and the detuning of the laser
beams (96). For two-modeMS gates, equation (101) shows that in addition one needs to increase the frequency
difference between both vibrationalmodes, which requiresmodifying the trap confinement. In particular, we
consider increasing the axial trap frequency wz , since w w w w w- ~( ) ( )x x z x x1, 2,

2 , and this will increase the gate
speed (103). The ultimate limit to such an increase in gate speed is caused by the structural instability of the ion
chain towards a zig-zag ladder, which occurs for w w»z x forN= 2 ions. According to equation (103), this limit
corresponds to a gate that could be as fast as the trap period p w=T 2 xt . However, note that the required Rabi
frequency in this ultimate limit would largely violate the condition to neglect the off-resonant carrier (72), as

w w h w w w h w h wW ~ - ~ ~ ( ) ( )x
x x

x
z x x

x
x

x
x1, 2, 1

2
1 1 . Accordingly, this fast gate would have poor

fidelities. Another effect that would decrease the gatefidelity even further is the increasing importance of
nonlinear quartic terms in the vibrationalHamiltonian as one approaches the structural instability, whichwould
modify the simple phase-space trajectories of theMS schemes.

Therefore, at a practical level, the limit on gate speed for high-fidelityMS gates based on two transverse bus
modeswould be to consider w w h~ 10z x

x
1 , such that p w w w p w p w»  ( )t 2 2 2z x x z xg

2 . Although

this gate is still considerably slower than the trap period, therewill be particular ratios w wz x , such that the
transverseMS gatemay surpass the speed of the longitudinal one. In this sense, by resolving the two vibrational
modes, the transverseMS gate can exploit the larger available detunings to achieve higher speeds, while
maintaining high fidelities.

To quantify this discussion, we estimate again the state infidelity F = -1g g for generating the desired Bell
state (86) as a function of the gate time. The carrier and dephasing errors have the same expressions as above,
whereas themotional error changes oncemore since bothmodes are active buses, and the leading order error
will only be caused by the higher-order terms in the Lamb–Dicke expansion (57). ForN= 2, we get
 p h» ´ - +( )( ) ( ¯ ¯ )N N n n N2 1 8x

x xmot
2

1
4 2 2, wherewe have assumed a thermal state for the transverse

vibrationalmodeswithmean phononnumber n̄x. Infigure 3, we represent the full error as a function of the gate
time for different dephasing rates, choosing 40Ca+ qubits to compare with the previous gates. As announced
earlier, this figure shows that the error of fast gates is dominated by the off-resonant carrier error.We note that
the optimum transverse gates shown in thisfigure are faster andmore accurate than the longitudinal and
transverse gates offigures 1 and 2. Regarding the comparison to the longitudinal-gate performance offigure 1,
we note that the set of axial trap frequencies used infigure 2 is always below the axial trap frequency offigure 1

Figure 3. Single-pulseMS gatewith both transversemodes: State infidelity g for aMS gatemediated by both transversemodes of a
N=2 crystal of 40Ca+ ions.We assume a radial trap frequency w p =2 9.75x MHz leading to the single-ion Lamb–Dicke parameter
is h = 0.031x

1 , resolved-sideband laser-cooling leading to =n̄ 0.05x for the CoMmode, and set the number of phase-space loops of
theMS gate to =r 11 , and =r 22 . The blue solid lines correspond to the total state infidelity g for dephasing times

Î { }T s0.2, 0.4, 0.8, 1.62 , whereas the dotted lines represent the contributions of dephasing,motional, and carrier errors, as indicated
in the captions. The yellow stars represent the optimumgate timeswith respect to the highestfidelity for each set of parameters. To
vary the gate speed, we consider increasing the axial trap frequencywithin w p Î [ ]2 0.2, 0.975z MHz, and setting the corresponding
Rabi frequencies pW Î [ ]2 0.07, 1.58x MHz and detunings d w p- Î( ) [ ]2 2.2, 48.9x kHz according to the equations discussed in
the text.
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(see the particular values in both captions). Accordingly, the performance and speed shown infigure 1 sets an
upper bound for the comparison of axial and transverse gates, and one concludes that the the transverseMS gate
can indeed achieve higher speeds andfidelities. In section 3.3.2, wewill discuss how to increase the gate speed
even further, while achieving also higher fidelities, in trapswhere the intrinsic radialmicromotion can be
exploited.

(ii)Multi-pulse entangling gates. In the previous section, we have shown how to increase the speed of single-
pulseMS gates by increasing the laser intensity. Let us now address an alternative strategy to speed up the
entangling gates by considering amulti-pulse schemewith Np pulses (87). In addition to increasing the laser
intensity, one can also explore how to distribute it among the different pulses in order to attain higher speeds
without compromising the gatefidelities.

To analyze thismulti-pulse scheme, we need tofind the particular expression for the time-evolution
operator in equations (81) and (83). By performing the corresponding integrals in equations (84) and (85), we
find the following state-dependent displacements and phonon-mediated interaction strengths
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and used the circle function, w= -w
t wt( )C 1 ei [38]. As a consistency check, note that for a single CWpulse

= =N t1, 0np p
, the terms w

t
f x Ci m

n
m,

np p with w w» a can be neglected by a rotating-wave approximation for

d w+a ∣ ∣ ( )f xi m
n

m m,
p , which follows from equation (72). Accordingly, one gets the simplified expressions in

equations (88) and (89), whichwere the starting point in the analysis of the previous section.
To illustrate how theCWschemes can bemodified to improve the gate speed, we focus on schemes of

equidistant laser pulses of identical widths [59, 60]. In this case, one has t t= ≔ t Nn g pp
, and t= -( )t n 1n pp

in equation (87). The conditions g =( )t 0i m, g yield a linear systemof equations
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p , p, andwe denote the Rabi frequencies for each of the

pulses as Wa
i n, p

. Therefore, forN ions and thusNnormalmodes along a particular trap axis, one has a systemof
N2 linear equations, and a non-trivial solution of equation (106) can be found if we allow for = +N N2 1p

different pulses. This solutionfixes the relative Rabi frequencies of the pulses W Wa a
={ }i n i n

N
, ,1 2p p

p . Sincewewant to
study the conditions that allow for a speed-upwith respect to the single-pulse gates in equations (95) or (103),
we shall fix the detuning to the corresponding optimal value, either equation (96) or equation (99) for single/
two-mode schemes.Hence, the only remaining equation comes from the condition to generate amaximally
entangled state p= -( )g t i 8ij g . This will suffice tofix Wa

i,1 for a particular gate time, such that we can target
pulse sequences that yield faster gates.

(a) Addressing a single vibrational mode. Let usfirst address how to increase the speed of the single-pulse gates
based on the longitudinal CoMmode (figure 1) by exploiting a train of equidistant pulses. For the longitudinal
modes, the large frequency gap of theCoMmodewith respect to other vibrationalmodes allows us to reduce the
number of required pulses to =N 3p .We follow the abovemethod tofind the optimal pulse sequence for afixed
detuning and a certain gate time. Starting from the gate time of the highest-fidelityMS gates (see the stars in
figure 1), we lower the target gate time, and search for pulse sequences that close theCoMphase-space trajectory
for afixed detuning (96) that does no longer fulfill equation (91).

In order to assess quantitatively if the performance of the pulsedMS gate is also optimal, i.e. highestfidelity,
we use again the errormodel underlying figure 1, as discussed in the previous section.However, for the error due
to the off-resonant carrier, we consider  d» W( )N z

carr
1

2
2 2 with W = å W( ) ( ) Nz

n n
z2 2

pp p
, which takes into

account the distribution of the Rabi frequencies within the pulse train. The results are presented infigure 4,
which shows that one can obtain an additional speed-up by using a pulse trainwith state-dependent forces that
alternate their direction.Moreover, the intermediate pulse is veryweak, which allows one to reduce the required
average Rabi frequencywith respect to the single-pulse gates, and leads to a lower gate infidelity. If themulti-
pulsed gate speed is increased above this optimumpoint, the infidelity rises quickly due to the contribution of
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the off-resonant carrier. This is themain difference with themore-demanding schemes [33–37] for arbitrary-
speed gates that are not based on the resolved-sideband regime (57).

(b) Addressing both vibrational modes.Wenow study how to increase the gate speed of the single-pulse gates
based on both transversemodes (see figure 3). In this case, the vibrational frequencies are closely spaced, andwe
need to close all phase-space trajectories using = +N N2 1p pulses.We follow the abovemethod tofind the
optimal pulse sequence for afixed detuning and a certain gate time. Starting from the gate time of the highest-
fidelityMS gates (see the stars infigure 3), we lower the target gate time, and search for pulse sequences that close
all phase-space trajectories for afixed detuning (99) that does no longer fulfill equation (103).

Infigure 5, we represent the estimated infidelity of a =N 5p -pulseMS gate forN= 2 ions, as a function of
the achieved gate time. In analogy to the axialMS gates infigure 4, we show that an additional speed-up can be
obtained by a pulse trainwith state-dependent forces that alternate their direction (see lower panels). As every-
other pulse becomes veryweak, we can reduce the required average Rabi frequency with respect to the single-
pulse gate, and thus obtain a higher fidelity. However, increasing the gate speed beyond an optimumpoint
(orange stars) leads to an increase of the infidelity due to the contribution of the off-resonant carrier.

Although these results show that the error reduction bymoving onto pulsedMS gates is not that large, the
improvement in gate speedwith respect to the optimal single-pulse gate can be substantial if one onlywants to
maintain the gate error to the same level. As discussed previously, increasing the speed even further in both of
these pulsed schemes leads to an increase in the infidelity due to the off-resonant carrier. In the following
section, we explore the advantage of exploiting the intrinsicmicromotion to improve the gate speed even
further, while simultaneouslymaintaining error rates below a given threshold.

3.3.2. Entangling gates withmicromotion forces
After this long exposition, we have all the required ingredients to understand how the differentMS gate schemes
presented above can be improved by exploiting the ion-crystal intrinsicmicromotion. Considering the regime
(78), one can use directly the previous equations for the secularMS gates discussed in section 3.3.1, but taking
into account the particular expressions for themicromotion off-resonant carrier (77) and themicromotion
state-dependent forces (80). This simply amounts to substituting in all equations of section 3.3.1: the laserMS
detunings by d d ˜ , the Rabi frequencies of the secular state-dependent forces by W  W = Wa a a

a
˜ q 4i i i , and

Figure 4.Multi-pulseMS gatewith the axial CoMmode: (middle panels) State infidelity g for a pulsedMS gatemediated by the
longitudinalmode of aN=2 crystal of 40Ca+ ions.We assume an axial trap frequency w p =2 0.975z MHz, such that the single-ion
Lamb–Dicke parameter is h = 0.098z

1 , resolved-sideband laser-cooling leading to =n̄ 0.1z for theCoMmode. The yellow solid lines
correspond to the total state infidelity g for a =N 3p -pulsedMS gate under dephasing times =T s0.22 (left), and =T s0.82 (right),
whereas the dotted lines represent the contributions of dephasing deph, motional mot, and carrier carr errors, and the gate infidelity
of a single-pulse (CW) gate CW , as indicated in the captions. The yellow stars represent the optimum single-pulse gate times
corresponding to =r 11 phase-space loops. TheRabi frequencies of the pulse train for this regime is given by the upper panels, and
coincides with the single-pulse limit. The orange stars represent the newoptimummulti-pulse gate times, obtained bymodifying the
Rabi frequencies as shown in the lower panels. This different configuration yields faster and higher-fidelity gates with respect to the
single-pulse cases.
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the error due to the off-resonant carrier by  d» W  = W Wa a
a( ) ˜ ( ˜ )N N q2 8carr

2 2
carr

2 2
rf
2 , wherewe have

further assumed thatmicromotion compensation fulfills

b
w
W
a a˜ ( )

q

4
, 107i

rf

which is consistent with the experimentally achieved values thatwill be discussed in section 4.1. This equation
gives a practical bound on how small the excessmicromotionmust be in order for our analysis to be correct.

From these substitutions, one observes that the strength of themicromotion state-dependent dipole forces is
reducedwith respect to the one of the state-dependent secular forces (68) by a factor of aq 4. Therefore,more
powerful lasers will be required to achieve the typical speed of secularMS gates infigures 1–5.However,
provided that such laser sources are available, themaximumRabi frequencywill not be limited by dWa ∣ ∣i as
occurred for the secularMS scheme (72), but instead by W Wa ∣ ∣i rf . Hence, exploiting the intrinsic
micromotion, one can eithermaintain the gate speedwhile increasing the gatefidelity achieved by the secular
MS schemes, or vice versa.

Qualitatively, for the same gate speed, the leading carrier error formicromotion-enabledMS gates ̃carr and
secularMS gates carr is related by   d= Wa˜ ( )q4carr carr rf

2. Hence, the carrier errorwill be reduced provided that

d < Wa ( )
q

4
, 108rf

where d w~ a. As announced below equation (79), the advantage of the schemewill be larger, the smaller the
ratio w Wa rf can bemade in the experiment. Themicroscopic trap parameter aq 4, which controls the relative
amplitude of the intrinsicmicromotion and the secular oscillations (14), sets how small is the ratio w Wa rf

required to be for the scheme to be advantageous. From a different perspective, this inequality shows that the
coupling to thefirstmicromotion sideband has to be sufficiently big for the scheme to become advantageous.

Conversely, if wewant to increase the gate speed butmaintain the fidelity of the secularMS gates, one can
show that the gate times tg of single-pulse secular schemes in equations (95) or equation (103) are related to the
micromotion-enabled gate times t̃g as follows d= Wa˜ ( )t t q4g g rf . Accordingly, provided that the parameter
regime (108) is achieved, therewill be a speed-up of the entangling gates. A similar speed-upwill also take place
for themulti-pulsedMS gates.

Figure 5.Multi-pulseMS gatewith both transversemodes: (middle panels) State infidelity g for a pulsedMS gatemediated by both
transversemodes of aN=2 crystal of 40Ca+ ions.We assume a radial trap frequency w p =2 9.75x MHz leading to the single-ion
Lamb–Dicke parameter is h = 0.031x

1 , resolved-sideband laser-cooling leading to =n̄ 0.05x for theCoMmode. The yellow solid
lines correspond to the total state infidelity g for a =N 5p -pulsedMS gate under dephasing times =T s0.22 (left), and =T s0.82

(right), whereas the dotted lines represent the contributions of dephasing deph, motional mot, and carrier carr errors, and the gate
infidelity of a single-pulse (CW) gate CW. The yellow stars represent the optimum single-pulse gate times corresponding to
= =r r1, 21 2 phase-space loops. The Rabi frequencies of the pulse train for this regime is given by the upper panels, and coincides

with the single-pulse limit. The orange stars represent the newoptimummulti-pulse gate times, obtained bymodifying the Rabi
frequencies as shown in the lower panels. This different configuration yields faster and higher-fidelity gates with respect to the single-
pulse cases.
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To bemore quantitative, we now study the total gate infidelity ̃g for themicromotion-enabled version of the
secularMS schemes of section 3.3.1. Therefore, in addition to the change in the carrier error already discussed,
we also consider the dephasing andmotional contributions to the gate infidelity.We extract the optimal gate
time t̃g thatminimizes the gate infidelity ̃g

min , and represent these two quantities as a function of the ratio
wW arf , which determines the regionwhere themicromotion scheme becomes advantageous (108).
Infigure 6, we study themicromotion version of the single-pulse secularMS gatesmediated by longitudinal

(figure 1) and transverse (figure 3) phononmodes. The circles correspond to rf frequencies that fulfill
dW = aq4rf , such that the performance of themicromotion-enabled gates coincides with that of the standard

secularMS gates. For larger rd frequencies (non-shaded regions), themicromotion scheme provides
simultaneously lower gate errors (main panel) and lower gate times (inset), both for theMS gatesmediated by
longitudinal (figure 6 (a)) and transverse (figure 6 (b)) vibrational busmodes. A similar improvement is found in
figure 7 for themicromotion version of themulti-pulse secularMS gatesmediated by longitudinal (figure 4) and
transverse (figure 5)phononmodes. Let us remark that thismicromotion-enabled improvement ofmulti-pulse
MS gates differs from the results presented in [42]. Here, Shen et al derive sequences for fast entangling gates to
mitigate the adversarial effect of the excessmicromotion of planar crystals. In our scheme, we exploit the
intrinsicmicromotion instead, and turn its effect into a feature thatmay allow one to improve on bothfidelity
and speed of phonon-mediated entangling quantum gates.

4. Experimental considerations

In this section, we discuss the experimental prospects of reaching the required parameter regime that would lead
to themicromotion-enabled improvement of the entangling gates described above.We start by discussing in
section 4.1 the state-of-the-art excessmicromotion compensation, and the possibility of reaching the desired
range in equation (107). In section 4.2, we discuss the difficulty of fulfilling equation (108)with current trap
designs, and the prospects of satisfying it with realistic trap designs thatmay become accessible in the future.

4.1. Compensation of excessmicromotion
Excessmicromotion can give rise to a series of undesired effects [47], such as (i) a parametric heating that can
increase the secularmotion of ion crystals, limiting the temperatures achieved by laser cooling or even inducing
crystal instabilities [61], (ii) a laser heating for parameters where laser coolingwould be expected in the absence
of excessmicromotion [61], which can also be caused by the intrinsicmicromotion [62], and (iii)motional shifts
of frequency standards (e.g. second-orderDoppler shifts) [47]. Therefore, a great deal of experimental effort has
been devoted over the years to developmethods for a precise estimation andminimization of the excess
micromotion. Thesemethods range from (a)monitoring the change of the ion equilibriumposition as the

Figure 6.Micromotion-enabled improvement of single-pulseMS gates: (a) (main panel) State infidelity ̃g for a single-pulse
micromotionMS gatemediated by the longitudinalmodes of aN=2 crystal of 40Ca+ ions with w p =2 0.975z MHz , h = 0.098z

1 ,
and =n̄ 0.1z for theCoMmode.We consider an axialmicromotion parameter qz=0.03, and vary the rf frequency Wrf . The dotted
line corresponds to dW = q4 zrf , and thus separates the regionwhere themicromotion-enabledMS gates are advantageous (right)
and disadvantageous (left shaded region).We represent the corresponding gate times t̃g in the inset. The circles in themain panel and
inset coincidewith the performance of the optimal secularMS gates shown infigure 1 as yellow stars. Hence, the right region describes
amicromotion-enabled improvement in both gate speed and fidelity. (b) Same as (a) but for a single-pulsemicromotion-enabledMS
gatemediated by both transversemodes of aN=2 crystal of 40Ca+ ions with w p =2 9.75x MHz , h = 0.031x

1 , and =n̄ 0.05x for
the CoMmode. In this case, we consider a radialmicromotion parameter qx=0.3. Two of the circles in themain panel and inset
coincide with the performance of the optimal secularMS gates shown infigure 3 as yellow stars. Themicromotion-enabled
improvement of these transverse CWgates is qualitatively similar to the longitudinal ones in (a).
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secular trap frequencies aremodified, to (b) comparing thefluorescence intensities of emitted photonswhen the
lasers are tuned either to the bare carrier d » 0 or to themicromotion carrier d » Wrf (i.e. resolved-sideband
regime), and (c)monitoring cross correlations of the time delay between the emitted photons and the rf signal (i.
e unresolved-sideband regime). The precision ofmethod (a) is limited by the resolution limit of the optics that
measures the ion position, whereas that of (b), (c) depends on limitations and noise on the laser and rf sources.

Provided that one of thesemethods yields an accuratemeasurement of excessmicromotion, one can either
apply additional electric fields to compensate the force of the spurious dc fields (5) due to patch potentials or
unevenly coated electrodes, or load the electrodes with reactances to compensate the spurious asymmetries
leading to the oscillating force of the acfields in equation (5) (see the discussion in [47]). A detailed account of the
achievedminimization of excessmicromotion fromdifferent experimental groups can be found in [50], which
shows that a careful compensationwith differentmethods typically achievesβ-parameters (64) on the order of
b ~ -10i

3. Using tightly focused dipole beams to probe the ion position can be exploited to achieve even better
micromotion compensation [63], so it is reasonable to consider that theβ-parameter can attain values in the
range b ~ -10i

4− 10−3.We note that a realistic value for the ideal Paul trap parameters in equation (4) yields
~aq 0.2–0.3 for the transverse directions a = { }x y, , such that the desired compensation regime in

equation (107) can be achievedwith state-of-the-art trapped-ion technology. For the axial direction, considering
short segmented linear traps, onemay achieve ratios of » -q q 10z x

3 [64]. Considering the performance of the
axialmicromotion-enabled entangling gates offigures 6(a) and 7(a) for qz=0.03, the smaller values of qz for
these segmented trapswould require amuch higher ratio of wW zrf , as well as amuch higher laser power to
achieve similar gate speeds. Accordingly, finding experimental trap designs thatmeet the requirements for a
micromotion-enabled improvement based on axialmodes seems very challenging, and thismotivates us to
consider the radialmicromotion gates below.

4.2.Discussion of current and future trap designs
The suggested scheme requires a large ratio of the drive frequency to the secularmotional frequency in the radial
direction wW xrf . Since the confinement properties of ion traps can be accurately described byMathieu
equations that are independent on the actual trap geometry [65], a study based on a geometry that is suitable for
usual trapping parameters will also suffice to explore the possibility of reaching the required parameters for a
micromotion-enabled improvement of the entangling gate. Current traps forQIP operate usually in the regime
of wW » –10 20xrf [66, 67]. Experimentally,multi-qubit gate operations with wW = 46xrf have already been
demonstrated using 40Ca+ [68, 69]. This ratio, together with the rest of the parameters used infigure 6(b), would
already yield a benefit from themicromotion-enabled entangling gates. To bemore precise, assuming a
decoherence time of =T 0.8 s2 and the errormodel described above, the single-pulseMS gate based on secular
radial forces would reach  = ´ -2 10g

3 in a time m=t 129 sg , whereas the one based onmicromotion radial
forces could attain  = ´ -8 10g

4 in a time m=t 57 sg . Let us note that to gain full advantage of the protocol,
onewould need even higher ratios of wW xrf , which have not been achieved yet in experiments.

Figure 7.Micromotion-enabled improvement ofmulti-pulseMS gates: (a) (main panel) State infidelity ̃g for amulti-pulse
micromotionMS gatemediated by the longitudinalmodes of aN=2 crystal of 40Ca+ ions with w p =2 0.975z MHz , h = 0.098z

1 ,
and =n̄ 0.1z for theCoMmode.We consider an axialmicromotion parameter qz=0.03, and vary the rf frequency Wrf . The dotted
line corresponds to dW = q4 zrf , and thus separates the regionwhere themicromotion-enabledMS gates are advantageous (right)
and disadvantageous (left).We represent the associated gate times t̃g in the inset. Two of the circles in themain panel and inset
coincide with the performance of the optimal secularMS gates shown infigure 4 as orange stars. (b) Same as (a) but for amulti-pulse
micromotion-enabledMS gatemediated by both transversemodes of aN=2 crystal of 40Ca+ ionswith w p =2 9.75x MHz ,
h = 0.031x

1 , and =n̄ 0.05x for theCoMmode. In this case, we consider a radialmicromotion parameter qx=0.3. The circles in the
main panel and inset coincide with the performance of the optimal secularMS gates shown infigure 5 as orange stars.
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While there is no fundamental reason thatwill prohibit reaching even higher drive frequencies, one needs to
take practical considerations into account. The dissipated power inside the trapwill increase since the amplitude
of the rf drive voltage needs to be increased, leading thus to a higher power dissipation in the trap itself, and also
in the electrical connections to the trap [67].Managing the increased heat loadwill require complex thermal
management techniques, especially in the context of cryogenic systems. In this context, a smaller trap and
connection capacitance is beneficial as it will facilitate the design of the required circuitry to generate the radio
frequency trapping fields [67].

4.3. Technical noise sources
Estimating the error budget accounting for additional technical limitations can, for the proposed gate scheme,
be performed analogously to other high-fidelity entangling gate operations, as detailed for instance in [31].
Regarding the differences for themicromotion-enabled gates, let us note that, in case that the experimentally
available laser power is limited, the gate durationwould be increased by a factor of aq1 , which follows from
the different scaling of the dipole forces in equations (73) and (80). In general, this wouldmake the gatemore
susceptible to dephasing noise. Accordingly, if laser power is the limiting factor, one should consider continuous
[24, 25] or pulsed [70] dynamical decoupling techniques to combat this noise.

Another technical aspect that would differ from entangling gates that do notmake explicit use of
micromotion is the generation of the bichromatic lightfields. In the presented gate, the frequency of the beat
notemust be on the order of pW »2 2 100rf MHz,whereas for the standard gate themodulation frequency is
on the order of w p »a 2 1–10 MHz. Themodulation is usually generated using acousto-opticalmodulators,
which are available with a bandwidth of 100 MHz, at the cost of a reduced diffraction efficiency. This larger
detuning from the carrier transition in our scheme brings the additional advantage that incoherent excitation of
the qubit due to residual laser intensity at the carrier transition is reduced considerably. This incoherent
excitation poses amajor problem for qubits driven by narrow linewidth diode laser systems [71].

5. Conclusions and outlook

In this work, we have developed a set of theoretical tools to analyze the effects of excess and intrinsic
micromotion in the schemes for high-fidelity quantum logic gates with trapped-ion qubits.We have shown that,
in situationswhere the excessmicromotion is compensated to a high degree, it is possible to exploit the intrinsic
micromotion to improve on both the speed and fidelity of current schemes for entangling gates.We have derived
a set of conditions that identify the parameter regimewhere such an improvement can occur, and discussed the
possible challenges of reaching this regime considering realistic experimental conditions.

Aside from the particular gate scheme, we have presented for the first time a detailed quantum-mechanical
treatment of intrinsic and excessmicromotion in arbitrarily large chains of trapped ions. This has allowed us to
develop a generic theory for the laser-ion interaction in the presence ofmicromotion, whichmight be useful for
future trapped-ion studies in completely different contexts.
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