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Abstract

The micromotion of ion crystals confined in Paul traps is usually considered an inconvenient
nuisance, and is thus typically minimized in high-precision experiments such as high-fidelity
quantum gates for quantum information processing (QIP). In this work, we introduce a particular
scheme where this behavior can be reversed, making micromotion beneficial for QIP. We show that
using laser-driven micromotion sidebands, it is possible to engineer state-dependent dipole forces
with a reduced effect of off-resonant couplings to the carrier transition. This allows one, in a certain
parameter regime, to devise entangling gate schemes based on geometric phase gates with both a
higher speed and alower error, which is attractive in light of current efforts towards fault-tolerant
QIP. We discuss the prospects of reaching the parameters required to observe this micromotion-
enabled improvement in experiments with current and future trap designs.

1. Introduction

The possibility of harnessing the distinctive behavior of quantum-mechanical systems to process information in
new ways has raised the interest of researchers for more than three decades now. This has given rise to the multi-
disciplinary field of quantum information processing (QIP) [ 1], which could, for instance, have an impact on
current cryptographic protocols [2], or revolutionize our approach to solve long-standing problems in quantum
many-body physics [3]. Motivated by such remarkable applications, QIP has now turned into a mature field
where experimentalists are using different technologies [4] to face the challenge of building registers of ever-
increasing sizes, while trying to preserve and manipulate their quantum features for ever-longer periods of time.

Among these so-called quantum technologies, crystals of trapped and laser-cooled atomic ions [5-7] have
played aleading role in the progress of QIP. Pioneering proposals to build a quantum-information processor
based on trapped ions [8], and successfully implemented in the laboratory [9], have opened an active avenue of
research with the ultimate goal of building a large-scale trapped-ion quantum computer [10]. As emphasized
earlyin the literature [11], success in such an enterprise would require (i) a careful assessment of the possible
imperfections of the quantum processor, which lead to errors in the computation, and (ii) a thorough study of
the unavoidable coupling to an external environment, which degrades the quantum coherence responsible for
the advantages of QIP. The former yields errors that can accumulate quickly since the information is not stored
in classical binary variables [11], whereas the latter yields an exponential decrease of quantum coherence with
the size of the register [12].

Despite such a daunting perspective, the subsequent development of quantum error correction showed that
these difficulties can be overcome if (i) one encodes the information redundantly in an enlarged quantum
mechanical system instead of using a bare quantum register, and (ii) errors are detected and corrected during the
storage and processing of encoded states [13]. Increasing levels of protection against noise can be achieved
e.g. by concatenating elementary quantum error correcting codes, or by storing logical states in global,
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topological properties of larger quantum many-body systems [14]. It has been shown that fault-tolerant QIP is
possible provided that errors, either due to imperfections of gates or to environmental decoherence, occur below
certain critical rates. The particular threshold values depend on the details of the implementation, the noise
model, and the chosen encoding. For circuit noise models, a common estimate for concatenated codes is around
10~ *[15], whereas topological codes typically offer higher error thresholds up to about 10~ *[14]. Essentially,
once below the threshold, quantum error correction allows for slowing down the occurrence of errors at the
level of the logical qubits, such that longer computations can tolerate noise on the physical qubits at a much
higher rate. Trapped ions have already demonstrated remarkable progress in experimental demonstrations of
quantum error correction [16—18].

In order to meet such a threshold, one must optimize the hardware (i.e. quantum technology) and the
software (i.e. schemes to manipulate the quantum information), which can be understood as a built-in error
suppression. At the software level, one can mitigate decoherence by encoding the information in a section of the
Hilbert space that is more robust to the typical environmental noise, as occurs for decoherence-free subspaces
[19, 20], and for the so-called clock-state qubits [21]. Regarding imperfections of gates, pulsed [22, 23] and
continuous [24, 25] dynamical decoupling have also been implemented in ion traps. Another possible source of
error arises in certain quantum technologies that exploit additional auxiliary (quasi)particles to mediate an
entangling gate between distant qubits, since quantum// classical fluctuations affecting these (quasi)particles can
introduce errors in the computation. Such is the situation with trapped ions, where phonons serve as a quantum
bus to generate entanglement, and thermal fluctuations lead to significant errors when the ion crystals are not
laser cooled to the groundstate [8]. In this respect, the development of gate schemes that minimize such thermal
sensitivity has been of paramount importance to the field. These schemes typically use a state-dependent dipole
forcein the resolved-sideband regime, which forces the ions along a closed trajectory in phase space depending
on the state of the qubits, either in the o [26, 27] or 0% [28, 29] eigenstate basis, where
0? = —cos(¢)o? — sin(¢)o*. This effectively leads to state-dependent multi-qubit geometric phases that can
be exploited to generate entanglement, which underlies the remarkably low errors that have been achieved in
experiments so far [30—32], with infidelities reaching values below 10>.

An increase of gate speed yields another clear route for further error suppression, as the environmental
decoherence affecting the qubits, or other external sources of noise affecting the phonon bus, would have a
smaller impact during a shorter computation. Schemes for ultra-fast entangling gates based on concatenated
resonant state-dependent kicks have been studied in detail [33], which abandon the resolved-sideband regime to
avoid the associated limitations on the gate speed. These schemes give a clear advantage provided that high laser
repetition rates [34], and small laser intensity fluctuations [35], can be achieved in the laboratory. Pulse splitting
techniques have been implemented in order to increase the number of pulses incident on the ion [36], increasing
thus the repetition rate towards a regime where ultra-fast gates are expected to have small errors [34]. To
overcome the stringent conditions on the laser intensity stability [35], dynamical decoupling approaches may
have to be applied in order to minimize the error of each resonant state-dependent kick [37].

In order to avoid these technical difficulties, but still get an increase on gate speed with respect to previous
realizations [27, 29], schemes based on state-dependent o*-forces with an increased laser intensity have also
been studied [38], which take into account the leading-order corrections as one abandons the resolved-sideband
regime. In this case, such corrections correspond to a time-dependent ac-Stark shift, which is usually neglected
in the resolved-sideband limit [27], but starts contributing as one increases the laser power, and thus the gate
speed [38]. The particular form of the o*-force allows one to take into account this term easily, finding robust
pulse sequences for faster quantum gates [38]. Unfortunately, the state-dependent laser forces of this scheme (i)
cannot be implemented with clock-state hyperfine qubits [39], and (ii) have some limitations for optical qubits
in comparison to the entangling gates generated by o®-forces [40]. It would be thus desirable to consider
schemes to speed up entangling gates based on o -forces valid for both hyperfine and optical qubits.
Unfortunately, the leading-order corrections to the resolved-sideband limit correspond to a time-dependent
carrier driving that interferes with the o®-force (see our discussion in section 3.2 below), and thus compromises
the geometric character of the gate and the achievable fidelities.

In this work, we show that a? 0’?- gates with higher speeds and lower errors can be achieved by exploiting the
micromotion of ion crystals, namely a periodic motion synchronous with the oscillations of the quadrupole
potential that confines the ions in a Paul trap. We consider two different types of micromotion: excess and
intrinsic micromotion. Excess micromotion can be described as a classical driven motion of the ions that lie off
the rf null, either due to imperfections of the trap or to crystal configurations with equilibrium positions where
the rf field does not vanish. The role of this excess micromotion on entangling-gate schemes has been considered
previously, showing that (i) purposely induced excess micromotion can be exploited to address different ions in
a crystal via differential Rabi frequencies of secular sidebands [41]; (ii) micromotion sidebands can be exploited
to increase the gate speed with respect to schemes based on secular sidebands, in situations where the excess
micromotion cannot be perfectly compensated [32]; and (iii) pulse sequences for entangling gates based on
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either standard normal modes [42, 43] or solitonic vibrational excitations [44], can be designed even in the
presence of the excess micromotion. With the exception of [42], the role of another type of micromotion in
schemes of entangling gates, namely the intrinsic micromotion, has remained largely unexplored. Intrinsic
micromotion corresponds to a quantum-mechanical driven motion synchronous with the rf frequency which
cannot be compensated. Being quantum-mechanical, the intrinsic micromotion has a different impact on the
gate schemes. In contrast to [42], where pulsed gate schemes are used to make the performance of the gate equal
to the ideal case where no micromotion is present, we explore in this work the possibility of actively exploiting
the intrinsic micromotion in order improve the gate performance, both in speed and fidelity, beyond the values
of the schemes where no micromotion is considered.

This article is organized as follows. In section 2, we introduce the formalism that allows us to describe excess
and intrinsic micromotion in generic ion crystals confined by Paul traps. This formalism is the starting point to
develop in section 3 a general theory of laser-ion interactions in the regime of resolved sidebands in presence of
both excess and intrinsic micromotion. The expressions obtained are then used to describe the main differences
of the schemes that generate state-dependent dipole forces using bi-chromatic laser beams, either tuned to the
secular or to the micromotion sidebands. We also describe how these forces can be used to implement
entangling gates, and discuss the speed and fidelity limitations of various gate schemes, identifying a parameter
regime where a gate improvement can be obtained by exploiting the intrinsic micromotion. In section 4, we
discuss the possible experimental challenges in reaching such parameter regime. Finally, we present our
conclusions and outlook in section 5.

2. Intrinsic and excess micromotion

In this section, we start by reviewing the classical treatment of micromotion for a single trapped ion in

section 2.1. This will allow us to set the notation, and to explicitly define the notions of intrinsic and excess
micromotion in ion traps. Additionally, it will provide some results that will be useful in the subsequent
quantum-mechanical treatment in section 2.2. The micromotion of a trapped-ion crystal is described in
section 2.3, which shall be the starting point for the scheme of micromotion-enabled improvement of quantum
gates in the following section.

2.1. Classical treatment of micromotion for a single trapped ion

For the ease of exposition, we focus in this section on the electric potential configuration and micromotion
effects of an ion confined in a standard linear Paul trap [6]. We note that a similar analysis would apply to
segmented linear traps [45], or to surface ion traps [46], which form a key central element in various scalable
architectures for QIP under development [10]. At the end of this section, we will comment on the analogies and
possible differences for the micromotion in these other traps.

We consider an ion of mass M and charge Q, inside a standard linear Paul trap formed by (i) a pair of end-
caps separated by a distance 2z, along the trap axis (i.e. zaxis), and connected to dc potentials Uy; (ii) four
electrodes separated from the axis by a distance ry, and parallel to it, which are connected in pairs to either a dc
potential Vo, or an ac potential V; cos €2,¢t, where €« is a fast rf frequency. Accordingly, the ion is subjected to an
oscillating quadrupole potential

R U()

z

\/q:

(222 — (x2 4 y)) + SoClnt) Cosz(Qf”)(

1+ %(ﬁ - y2)), 1)

0

where £ is a geometric factor that depends on the details of the electrodes. Here, we have assumed that the ions
positions fulfill |r| < 1), 2y, such that they lie close to the trap axis and trap center. In this way, we are neglecting
corrections to the quadrupole potential, such as as small component of the alternating rf field along the direction
of the trap axis.

In addition to the ideal quadrupole potential (1), there can be spurious potentials stemming from (a)
potential variations due to patch effects, or to unevenly coated (charged) electrodes with elements (electrons)
coming from the oven (ionization process), and (b) asymmetries in the electrode impedances [47]. The former
leads to spurious dc fields Eg that displace the ions from the nodal line of the ac potential, whereas the latter
induce small phase differences in the ac electrodes ¢, , which give rise to an additional ac field. This field can be
approximated by that of a pair of parallel plates connected to potentials + % Vo @, sin(§2st), and separated by
21y /& with & being another geometric factor that depends on the trap configuration. These spurious effects thus
lead to an additional potential
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Vo &
V. = —(Eé‘c + L0%ac sin(st) )x — Ej.y — Ef.z 2)
]
The classical equations of motion for the ion correspond to a set of inhomogeneous Mathieu equations
d*r,
2 + (aq — 29, cos27)1, = f (T), « € {x,,z}, (3
where we have introduced the dimensionless time 7 = %Qrft, and the following dimensionless parameters
a—a——&——4QHUO S—— =0 4)
S T V2 T A Vol
In addition, we get force terms in equation (3) due to the spurious potential (2), namely
4QEyg, 2QVpp, & .
(1) = ——% + o x———>—sin(27), (5)
fa MQ?{ o Mr() Qer

where we have used the Kronecker delta §,, 3 in front of the contribution that stems from the electron-
impedance asymmetries, which leads to the small phase difference between the electrodes along the x-axis. The
solution of these differential equations builds on the solution " (7) to the homogeneous Mathieu equation (i.e.
f,(7) = 0) [48] by applying the method of variation of constants [49]. Due to the periodicity of the equation, the
solution can be expressed using the Floquet theorem as follows

BT = 3 ConAn et 4 B emithianm), ©)
nez

where A, B, are constants that depend on the initial conditions, (3, are the so-called characteristic exponents,
and Cjy;, are the Floquet coefficients. By substitution, one finds that these coefficients fulfill a recursion relation

aq — (Ba + 2“)2

Contz = D3Con + Cop = 0, Dy = @)
4a
In typical experimental realizations, the parameters (4) fulfill
a» 4. < 1, ®)

and this allows one to solve the above recursion to the desired order of accuracy. To the lowest-possible order,

one finds
(—1)’q7Cf
1 2 « a
= 0+ 22, Clyp = —— 0 9
B 549, Cror £ _ D)) )

where we have introduced a positive integer £ to label the different harmonics. Note that C%,, = Cj, for general
parameters. However, this difference can be neglected to leading order in the small parameters (8). Imposing
that 7,(0) = 2, dr,(7)/d7],—o = 0,and C{* = 1, we find that the homogeneous solution describing the
motion of an ion inside an ideal Paul trap is

0 bo
h T (_ 1) zqa
1. (1) = == cos(wat)| 1 + —2 —cos(ZQst) |, (10)
£, [ le £(¢ — D?
where we have introduced the so-called secular frequencies
Qrf
Wa = s 11
5 B (11)
which are much smaller than the trap rf frequency w, < . We have also introduced the parameter
2q ‘
&G=1+) (1) ———. (12)
gl (¢ — DNH?

SO + rff‘ (t), such that the ion in an ideal Paul trap displays slow
oscillations at the secular frequency described by

We can rewrite equation (10) as (1) = 75

0
() = 2 cos(wat), (13)

«

accompanied by smaller and faster oscillations synchronous with the ac potential

. —1)%2g9°
i = o 3 S

#@ - ! . 14
Z @~y -,
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These smaller oscillations are referred to as micromotion, and occur roughly at multiples of the rf frequency £€,¢
(i.e. micromotion sidebands). To distinguish this behavior from the one stemming from the spurious
potential (2), these fast oscillations . (¢) are sometimes referred to as intrinsic micromotion [50], to highlight the
fact that such a motion is intrinsic to the oscillating quadrupole of an Paul trap, even for an ideal trap design
without any imperfection (2).

The solution to the forced Mathieu equation (3) can be found using the method of variation of constants
with the two independent solutions associated to equation (6), namely rg‘ (t) = Anta1(t) + Bara(t). The
complete solution is

() = 1) + riM) + 1), (15)
where the additional part due to the spurious potential is
() = f 4 (a2 (M) 10,1 (7)) — 10,1 (T T2 (T, (7)) ’
W, (")

and W(7") = ry 1 (7)) dr, 2 (7)) /A7’ — 1,2(7")dr,,1(77) /d 7! is the Wronskian of the two solutions, which can
be shown to be constant in this case W(7') = —2i/3,. When performing the integrals, we keep only the slowly
varying terms, which give rise to the leading-order solution

(16)

. —1)%2q°
() = r(‘fr“'(t)(l + Z (— 172, cos(Z¢t) |, (17)

S A - DYy

where we have introduced the following driven amplitude

QEgc
2

«

pdrv () = e g q’“‘)f““ sin(e ). (18)
We thus observe that the spurious potential (2) induces a driven motion (17) that is also synchronous with the rf
frequency, and is thus another type of micromotion. Since it is not linked to the secular motion, and can only be
reduced by compensating the spurious potential terms (2), this motion is usually referred to as excess
micromotion [47]. Along this text, we will use the wording micromotion compensation to refer to the
compensation of the stray fields that produce excess micromotion.

As a consistency check, we note that to linear order in q,,, the complete solution (15) built from
equations (13), (14) and (17) coincides with the solution presented in [47], which includes the secular motion
and the first micromotion sideband. The higher-order powers of q,, allow us to account for all higher
micromotion sidebands. Note also that the intrinsic (14) and excess (17) micromotion only occur in those trap
axes where g, = 0. According to equation (4), micromotion in an ideal linear Paul trap only occurs in the
transverse directions, as there is no rf field along the axial direction, such that g, = 0. However, for realistic
experimental conditions that depart from this ideal case, there might also be axial micromotion g, = 0, as
occurs for instance in segmented linear traps [50]. Accordingly, we will consider the most general case, and allow
for micromotion in all possible directions g, = 0, Vo € {x, y, z}. The particular microscopic expression of
these parameters will generally differ from equation (4), and depend on specific details of the trap. For the excess
micromotion (17), the driven amplitude r(‘friv (t) will differ from the ideal case (18), and also depend on specific
details of the trap. However, one can treat the micromotion generically using equations (13), (14) and (17), with
generic parameters rsriv (1), aq, g, onlyrestricted to fulfill equation (8).

2.2. Quantum-mechanical treatment of micromotion for a single trapped ion
Since the ultimate goal of this work is to exploit the micromotion to improve phonon-mediated quantum logic
gates between distant trapped-ion qubits, a full quantum-mechanical treatment of the secular vibrations and the
intrinsic/excess micromotion in a trapped-ion crystal will be required. A detailed quantum-mechanical
treatment of the secular vibrations and intrinsic micromotion for a single trapped ion has been described in [6]
using a formalism based on quantum-mechanical constants of motion [51]. We now use this formalism to
generalize the description to situations where excess micromotion of a single trapped ion is also present.

The quantum-mechanical Hamiltonian of the ion inside the Paul trap can be described as

1, 1 . .
H= Z(ﬁl’j + EKa(t)rj - MFa(t)ra), (19)

where we have promoted the position and momentum to quantum-mechanical operators fulfilling
[7a 135] = i6,,3. Here, we have introduced a time-dependent spring constant

K, () = %fo(an — 29, cos st), (20)
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and used the time-dependent forces (5) caused by the deviations (2) from an ideal Paul trap, transformed back
into real time

E(0) = {0%f, (3ut)- @1

The Heisenberg equations of motion for this Hamiltonian lead to a quantum-mechanical version of the classical
forced Mathieu equations (3) for the position operator, namely

(1) | Ka(®), .
i v T (t) = E,(1), a € {x, y, z}. (22)

We now construct an operator constant of motion by combining the position operator 7, (¢) fulfilling

equation (22), with a mode function u, (¢) that evolves according to the solution of the homogeneous classical
Mathieu equation (6), but with initial conditions u,(0) = 1, du,(¢) /dt|,.—¢ = iw,, and C§* = 1. This
generalizes the standard mode function u]' (t) = e'“~’ thatappears in the Heisenberg picture of a time-
independent harmonic oscillator of frequency w,, and can be expressed as follows

(-1)’2q"

3 1+ ;21 2@ D)) cos(Zst) |, (23)

where we used the secular frequencies (11) and the normalization (12). The operator constant of motion is built
from the Wronskian of the position operator and the mode function
Wo(t) = un(t)di (1)/dt — 7, (t)duy (£)/dt, namely

e iwo t

ua(t) =

_ t
aa(t) =1 M (Wa(t) - f dt/ua(t,)Fa(t/))) (24)
Wa 0
which fulfills a,, (¢) = a,, where
Muw, .
a, = N7+ 25
2 ( Mwapa) (23)

is the standard annihilation operator of a harmonic oscillator vibrating at the secular frequency. Using these
expressions, and keeping once more the slowly varying terms under the integral of equation (23), we find that the
quantum-mechanical position operator can be expressed as follows

fa(t) = 75°(t) + (1) + r& (01 (26)

Here, the secular-motion position operator is given by

1 . 4
—(alel“nt 4 g e iwat), 27)

1
V2Mw, &,

The intrinsic micromotion operator can be expressed as

: (—D2q]
Aln — ~sec (e} Q ) 2
T () = 73(1) ;21—4f((f O cos(£ s t) (28)

pec(t) =

and is thus again proportional to the secular motion, as occurred in the classical case (14). Since the secular
motion is expressed in terms of quantum-mechanical creation-annihilation operators, the intrinsic micromo-
tion can be argued to be a quantum-mechanical motion synchronous with the rf oscillating field, as we advanced
in the introduction of this work. As a consistency check, we note that to linear order in g,,, we recover the
expressions described in [6].

Finally, equation (26) also includes the effects of excess micromotion in the position operator, which are
proportional to the identity operator in the vibrational Hilbert space 1. As expected from the forces in
equation (19), the excess micromotion corresponds to a simple displacement over the position operator
() — 72°°() + rfri" ()1, the magnitude of which coincides exactly with the classical driven amplitude (18).
One thus finds that the deviations from an ideal Paul trap affect the quantum-mechanical position operator (26)
through the classical expression ;" (¢) of the excess micromotion (17). Accordingly, the excess micromotion
can be considered as a classical driven motion that can indeed be compensated by minimizing the spurious
terms (2), in contrast to the intrinsic micromotion.

2.3. Quantum-mechanical treatment of micromotion in a trapped-ion crystal

The standard treatment of phonons in solids considers small quantized displacements of the ions 67; ,, with
respect to an underlying Bravais lattice ri?a, namely 7, (t) = ., + 6f,,, wherei € {1, ..., N}labelsa particular
ion. The collective modes of vibration, whose quantum-mechanical excitations lead to the aforementioned
phonons, are usually obtained in the harmonic approximation by expanding the inter-ionic potential to second

6
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order in the displacements, and diagonalising the resulting quadratic Hamiltonian [52]. For a collection of N
ions inside a Paul trap, an analogous treatment exists in the so-called pseudo-potential approximation, which
assumes that the ions are effectively trapped by a time-independent quadratic potential with secular trap
frequencies (11). The main difference with respect to a solid is that the equilibrium positions r, do not
correspond to a Bravais lattice, but instead form an inhomogeneous array known as a Coulomb crystal [53]. This
approximation, however, does not include possible effects of micromotion in the ion crystal.

A careful classical treatment of the crystal micromotion [54] has recently shown that it can have non-trivial
effects, such as a renormalization of the normal-mode frequencies in planar crystals [55]. We now present a
detailed quantum-mechanical treatment of both the intrinsic and excess micromotion in ion crystals, which
combines the techniques presented in section 2.1 with the formalism in [54] to describe the effect of
micromotion on the classical crystal, and then generalizes section 2.2 to describe quantum-mechanically the
effect of micromotion on the phonons of the ion crystal.

To incorporate the different types of micromotion introduced above, we generalize the quantum-
mechanical Hamiltonian (19)toa system of Nions confined by an oscillating quadrupole

Q~2
= E — + _Ka(t) MFla(t)rla + Z—A’ (29)
i, |r' — |

where we have introduced vectorial operators defined in terms of the unit cartesian vectors #; = Y~ , f; ,€,,and
the position-momentum operators now fulfill [7; ,, ﬁ] 3] = 104, 30; ;. Here, Q* = Q?*/4re, eases notation, and
we have used the spring constants (20) and time-dependent forces (21) introduced above, allowing the spurious
dc fields in equation (5) to be inhomogeneous along the crystal. The Heisenberg equations of motion lead to a
system of equations

dzf‘,' a K. (t) ~2 ?ia - ?ja
—bt 4 -0 ——— =F (). (30)
dr? Mo § #—#p
Paralleling the standard treatment of phonons in solids, we substitute
oo = 1oL + 60, (3D)

where rl ., (t) are the equivalent of the equilibrium positions in solids, which become time-dependent quantities
in the presence of micromotion (i.e. breathing crystal), and 67; , are the small quantized vibrations around such a
breathing crystal. When these vibrations are sufficiently small, the equations (30) decouple into (i) a classical
system of differential equations for the coordinates of the breathing crystal, and (ii) a linear system of equations
for the quantum-mechanical displacements.

Let us focus on (i), and rescale the time 7 = %Qrf t, such that the time-periodic breathing crystal fulfills

+ (aq — 2q, cos27)r}, — 2 Z = 0. (32)
de ’ rf j=i 1"1 - r |3

These differential equations correspond to a system of coupled Mathieu equations (3) and, inspired by the
previous section, we thus propose a Floquet-type ansatz the form of equation (6), namely

Mia(7) = 3 Coni(Aae 207 + B, emir2nm), (33)
nez

where A,, B, are constants that depend on the initial conditions, [, is the so-called characteristic exponent,
and Cy, ; are the Floquet coefficients. The breathing crystal corresponds to a classical solution of the type (33)
synchronous with the rf potential, i.e. 3, = 0, and can also be considered as part of the excess micromotion due
to ion positions lying off the rf null. By substituting this expression (33) in equation (32), one observes that the
Coulomb repulsion can introduce higher harmonics of the rf frequency. For the linear ion crystals of interest to
our purposes, these effects are absent in the relevant parameter regime (8), where the Floquet coefficients fulfill a
system of coupled recursion relations

C(Chi — Con)p)
Conini — D5nCoi = > - - + Cong,i = 0. (34)

= [ - ot
Here, we have used the same notation as in the recursion relation for asingle ion (7), Dy}, = (a, — 4n%)/q,,,and
introduced the parameter ¢ = 4Q° / MQ}q,,. To the lowest possible order in (8), one finds that all the Floquet
coefficients
-1 14 fcai
_ (74, Coi. (35)
2 — 1))?

el
+24,i
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are expressed in terms of the time-independent one Cy';. This coefficient is in turn determined by the solutions
of the following system of algebraic equations

32/ o a
Q (Co;i — Coyp)

2 \i j
Muw;, Gy — Z e =
s L2 « « 2
Jj=i [ZQ(COJ — CO,j) ]
where we have made use of the secular trapping frequencies introduced in equation (11). Let us note that these
equations display a clear competition between the harmonic trapping and the Coulomb repulsion, and coincide

with those that determine the equilibrium positions of the ion crystal in the pseudo-potential approximation
[53]. Therefore, we shall denote the solutions as ;1 = Cy';, which can be found numerically.

(36)

i

Since we are interested in the linear-trap configuration w, < wy, wy, where rd = 2§, ., and the oscillating
quadrupole has no effect along the trap axis of an ideal Paul trap g, = 0; we find that C{,,; = 0, V£ > 1at this
leading order. In fact, only terms at a higher-power of the non-vanishing parameters q,, g, canlead to
corrections [54], but these are negligible in the regime of equation (8). Accordingly, the time-periodic breathing
crystal (33) in an ideal Paul trap corresponds to a static Coulomb crystal

rio(t) = Zioez. (37)

Ina segmented linear trap, where residual axial micromotion may exist 0 < g, < 4,, ¢, one would still obtain
astatic crystal to leading order. Conversely, for crystalline solutions where ions lie off the trap axis, the higher-
order harmonics introduced by the Coulomb interaction in equation (32) for a breathing crystal with g, q,>0
must be considered in detail for an accurate description [54, 55].

Given this solution (37), we can now turn our attention onto (ii), namely the quantum-mechanical
displacements about the crystal. After linearization, one can show that the corresponding operators evolve
according to a system of forced Mathieu equations, similar to the single-ion case (22), but now coupled via the
linearized Coulomb interaction

dz
dr?

K1)

() + D 6fj,a(t) = Fia (1), (33)
j

where we have now time-dependent spring constants that couple distant ions
K5(t) = 6;,jKa(t) + Vi(1). (39)

Here, we have used the single-ion spring constants (20), and introduced the matrix of Coulomb-mediated
couplings

1-6)Q° 8;,Q°
E—J?)Q3(6a,x + 6@,)/ - 26@,2) - Z Olv]—(2()3(6&,x + 5a,y - 26&,2)- (40)
v (t) — rj (1)] =i i (1) — 17 (1)

For the linear crystals (37) that concern us in this work, this coupling matrix becomes time-independent
Vii(t) = Vjj,and the system of differential equations can be decoupled by a single orthogonal transformation,
in analogy to the standard theory of phonons in solids [52]. We thus introduce the following normal-mode
operators

Vi) =

ﬁm,a’(t) - Z =ﬂgm6ffi,u(t)) pm,a (t) - Z =ﬂgmﬁ,"a(t)a (41)

where the orthogonal matrix is determined by diagonalizing the matrix of Coulomb-mediated couplings
Y AMENGMS = Sy s (42)
ij

where we have introduced the eigenvalues 7, . Using the orthogonality of the transformation, we find a set of
decoupled forced Mathieu equations for the normal-mode operators

d? 4 (0 5
FRm,a(t) + ‘%m( )Rm,a(t) - Sm,a(t)- (43)
Here, the eigenvalues of the spring-coupling matrix
Fom(£) = Ka(8) + 773, (44)

inherit the time-dependence via the single-ion spring constants (20), and we have introduced forces that tend to
displace the ions along the normal-mode directions

Bnal) = 32 M Fia ). (45)

Hence, we have reduced the dynamics of the small quantum displacements about the crystalline solution into
3N instances of the single-ion problem (22). We must thus find 3N operators that are constants of motion,

8
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which requires finding a set of normal mode functions u,, ., () that are solutions of the homogeneous Mathieu
equations (43), namely

st Qe
U (1) = Z C2nm(Am, elnat2m = 1 B, e 1Gnat2m— ). (46)

nez

This is the generalization of equation (6) with constants A, ., By, o that depend on the initial conditions,
characteristic exponents for each normal mode £3,,, o, and Floquet coefficients C,, ,,. We impose the initial
conditions i, o (0) = 1, duty, o (t) /dtli—g = Wy q,and Cg',, = 1, such that the mode functions to leading
orderin (8) can be expressed as

eiwmat —1)¢ 29, ‘

fry 1+ KZN m cos(ZQst) |, 47)

with the normalization constant defined in equation (12), and the normal-mode secular frequencies

Wina = WA + 779, (48)

where we have used the secular frequency in equation (11).

Given these normal-mode functions, one can obtain the Wronskian and the constants of motion through a
straightforward generalization of equation (24) by introducing the annihilation operators for each collective
vibrational mode

Um, o (t) -

Mw A i A
Am,o = Zm,a (Rm,a + Pm,a)- (49)

Therefore, the analog of equation (26) for the quantum-mechanical treatment of micromotion in a trapped-ion
crystal can be expressed as

Pa () = rla (O + 675 (1) + 6i5(0) + (. (50)
Here, the secular-motion position operator is given by

1

(S?is,ec(t) = _(ama iwp,at + am, elwmﬂt) (51)

Zm

and the intrinsic micromotion operator can be expressed as

(—1)"2q
’\ll'l ~secC Q‘»
T (1) = 0fig (1) ;21 —4f((f D cos(Zst) |. (52)

The excess micromotion in equation (50) is expressed in terms of the identity operator in the vibrational Hilbert
space I, and
(—1)2q7
) =iVl 1+ Y ——2— cos(?st) |, (53)
;1 &€ — D)?

where we have introduced the generic site-dependent amplitude rf;iv (t). For the standard Paul trap, this can be
obtained from equation (18) by considering inhomogeneous spurious fields
der(t) —

1(!

+ bayx

Q dCl q 1’()4,03(:56 .
= sin(Qyt). 54
v . (1) (54)

«
For other situations, such as those arising for segmented traps, this amplitude will depend on the specific trap
details.

In this way, we have presented a detailed quantum-mechanical description of the effects of intrinsic and
excess micromotion in a linear crystal of trapped ions. The results in equations (50)—(54) will be the starting
point for the scheme of micromotion-enabled entangling gates in the following section. Our formalism can be
extended to planar crystals, although one has to consider the breathing of the crystal instead of equation (37),
and how this can lead to micromotion-induced corrections of the secular vibrations of the planar crystal.

3. Entangling gates based on micromotion sidebands

In this section, we start in section 3.1 by discussing the effects of micromotion in the theory of light—matter
interactions for a set of laser beams addressed to a particular electronic transition of the ions. We then describe
how to implement state-dependent forces by combining pairs of laser beams in section 3.2, and discuss the role
of intrinsic/excess micromotion, paying special attention to the contribution of the often-neglected carrier

9
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excitations. In section 3.3, we start by reviewing the schemes for entangling gates based on secular state-
dependent o?-forces [28,29-32], and discussing the gate speed limitations that arise due to the off-resonant
carrier. Building on this discussion, we then introduce a scheme of micromotion-enabled state-dependent
o?-forces, which can overcome the limitations on the gate speed due to the off-resonant carrier, provided that
the excess micromotion is accurately compensated.

3.1. Micromotion effects in the laser-ion interaction

Let us consider a collection of N trapped ions subjected to laser beams tuned close to the resonance of a
particular transition of frequency wy between two electroniclevels| ; ), | |; ). The dynamics of the internal
and motional degrees of freedom of this ion crystal is described by the following Hamiltonian

A2

Dp; ,
Hy(t) =) ﬂaf + 3=+ lKa(t)(Sﬁza — MF, ()6, + ZVE}%,MS?J‘,Q ) (55)
~ 2 ~lam " 2 ’ -
where we have introduced o7 = | 1, )( 1 | — | i ){ li |, applied the harmonic-crystal approximation

described in the previous section (31), and neglected an irrelevant c-number stemming from the classical energy
of the breathing crystal. The interaction between the laser beams and the ions is described by

Hi(t) = Z 7131@1 Ulﬂ'el(krﬁ(t)-&-(wo—wz)t) + h.c., (56)
il
where we have introduced the spin raising i = | 1; }( |; |andlowering o; = | |; )( 1; |operators. Here, |
labels the different laser beams that are described as classical traveling waves with k;, w;, ¢, being the laser
wavevector, frequency, and phase, respectively, and (), is the Rabi frequency of the particular transition.
Typically, one either considers a quadrupole-allowed transition between a groundstate level | | ) and a metastable
excited level | 1), or uses a two-photon Raman scheme to couple a pair of groundstate levels | | ), | 1) via a excited
level through a far-off-resonant dipole transition. In any case, the quadrupole or Raman Rabi frequencies are
constrained to |[{| < wy + wjin order to neglect additional counter-rotating terms in equation (56).
We note that this expression is obtained in the interaction picture of the bare Hamiltonian (55), namely

Hi(t) = Uj (t)H; Uy(t), where Uy (1) = f{exp(—ifot d#’'Hy(¢")) }. Thus, after substituting the position
operator in equations (50)—(54) corresponding to such an interaction picture, we find

Q. ) .

Hi(t) = Z ﬁgj (l +1i Z %gmnﬁm (afjun, Uma(t) + am,au;nk,a(l’)) + - .]el¢1,i(t)el(w0wz)t + h.c, (57)
i m

where we have performed a Taylor series in the Lamb—Dicke parameters 77?"1 =k -e, / J2Mwy, , < 1,and

introduced the renormalised Rabi frequencies {f'; = Qexp{—3_, (A ﬁ‘mnfm )? / 2}, together with laser phases

that get modulated by the time-dependence of the breathing crystal and the excess micromotion

OLi(t) = ¢+ ki - (r(1) + 17X (1)). (58)

Note that for a linear chain, the breathing crystal becomes static r”(t) = z e, (37), such that the phase
modulation is only caused by the excess micromotion. Additionally, the effect of the intrinsic micromotion on
the laser-ion interaction is encoded in the particular time-dependence of the mode functions u,, ., (¢) (47), which
yield additional periodic modulations in processes involving the creation and annihilation of phonons.

Let us note that the mode functions are written in equation (47) as u,, () = ei“’m»n‘fi‘; (1), were f(t)isa
function with period 27 /€2, already written as a Fourier series. The excess micromotion leads to
felX (t) = &%), which is also a periodic function with period 27 /€2,¢, and could as well be expressed as a Fourier
series with all the possible harmonics at the different frequencies #€2,¢. In this sense, the micromotion
introduces a comb of equidistant sidebands in the laser-ion interaction (57), the so-called micromotion
sidebands. These can be exploited by choosing an appropriate detuning of the lasers with respect to the atomic
transition

W) — Wy = f*Qrb (59)

where 7, € Zisa certain integer. In most trapped-ion experiments, one sets £, = 0 [5], and compensates the
excess micromotion in order to minimize its effects [47]. The main result of this work is to point out that
addressing the first micromotion sideband 7, = 1, while maintaining the compensation of excess micromotion,
can be advantageous for QIP. In this way, one can exploit the effects of intrinsic micromotion in the laser-ion
interaction, and find faster and more accurate schemes for entangling quantum logic gates.

3.2. State-dependent dipole forces and off-resonant carriers
We now discuss how to induce a state-dependent o?-force [28] on the ions starting from equation (57), and thus
taking into account the new effects brought forth by micromotion. We consider a pair of laser beams [ € {1, 2}
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with equal wavevectors k; = k; := ki . By selecting the direction of these beams along a certain trap axis ki ||e,,
the laser-ion interaction will only couple the qubits to a particular phonon branch.

We also consider equal laser phases ¢, = ¢, =: ¢, and equal intensities and polarizations leading to
O = Q, =: Q. Conversely, the lasers will have opposite detunings with respect to the atomic transition
6= w; — wy = —(wy — wyp). Dueto these choices, we can simplify the laser-ion interaction (57) considerably
by defining common Lamb-Dicke parameters 7', = 75, = 7, dressed Rabi frequencies Qf; = Q3 ; = Qf,
and modulated phases ¢, ;(t) = ¢, ;(t) =: ¢;(t), where

. (—1)72q7 cos(£hst)
() =¢ + kerly + krf |1+ 2
(1) = ¢ + ko) Ltia (1) 2T -y

By keeping contributions to first order in the Lamb—Dicke parameter, H;(t) = H.(t) + H;(t), we identify the
terms driving the carrier transitions

Hc(t) =Y Qf o/ el%Mcos 6t + h.c, (61)
i

(60)

and the spin-phonon couplings
Hy(t) = Y i X (@) atima(t) + Hc) ol el®®cos 6t + h.c, (62)
i,m
where the dipole forces are 3, = Q.4 ki, and the nth mode groundstate widths are x,,, = 1 / 2Mwy, 4.
We now consider the effects of the excess micromotion (60) to leading order in the regime (8), namely
¢;(t) = @ + Bicos(Qust), (63)

where we have introduced the parameters

. ~ . q
6= &+ ke + 15O, Bi= —hurf O (64)
Using the Jacobi—Anger expansion [56], one finds
eitD,-(t) — ei#’z Z ]{(Bi)ei(fg‘Jer,ft)’ (65)
CeEL

where J(x) are the #th order Bessel functions of the first class. This is the explicit expression for the Fourier
series that was mentioned above equation (59), and leads to a clear picture for the appearance of the
micromotion sidebands at frequencies £€2,¢. Depending on the particular value of the laser detuning 6 ~ £, ¢,
itis possible to address a particular micromotion sideband (59). Moreover, around each of these micromotion
sidebands, there is an additional comb of frequencies representing the secular sidebands that occur at multiples
of the secular normal-mode frequencies (48). By combining a pair of first secular sidebands, the spin-phonon
couplings of equation (62) yield the desired state-dependent force.

3.2.1. Secular state-dependent dipole forces

The usual approach to obtain a state-dependent force relies on addressing the secular sidebands, 6 ~ w, < Q¢
[28,29-32], such that £, = 0 according to our previous notation (59). By imposing the condition to resolve the
micromotion sidebands

190 < Quf, (66)

and using the expression in equation (65) for the effects of excess micromotion, and equation (47) for the effects
of the intrinsic micromotion, we find that the secular sidebands (62) can be expressed as a Hamiltonian with a
state-dependent force

Hy(t) = Y &} xisia), e“net cos 6t + h.c, (67)
where we have introduced a dipole-force strength
. Mk |, 95\
Sim=—F——1[J0(B) + | =——h(BD | » (68)
(1 — L) 4
2
and the following spin operator
1 N\~ a 2\ =X
5 = (]0(5;‘)# + qz 1(8); ) (69)

BB + LR
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Here, we have defined the Pauli matrices in a rotated basis with respect to the z-axis
5F = e20(ah 4 07)e 179, 57 = el20i(io; — iof)e 200, (70)
Accordingly, the spin operator (69) shares certain algebraic properties with the rotated Pauli matrices in
equation (70), namely s; = 517, s7 = I,and [s;, 5j] = 0, which allow us to interpret equation (67) as a state-
dependent force that pushes the vibrational modes in opposite directions depending on the two eigenstates of
the spin operator §; = |45,) (45| — |—s,) (—s, |- In the limit of vanishing excess micromotion 3; = 0 (64), the
phase ¢, = ¢ + ky 2?6, ., and equation (67) yields the aforementioned o?-force of the Mglmer—Serensen (MS)
scheme [28] used in several experiments [29-32], where 0¢ = iel?ot — ie 95,
Let us note that, in addition to the desired state-dependent force (67), one has to consider the carrier
terms (61), which in this regime (66) can be expressed as
He(t) = 37 Q7 Jo(B) 57" cos bt. (71)

1

This residual carrier does not commute with the dipole force (67), since the rotated Pauli matrices share the
same su(2) algebra as the original Pauli matrices. Therefore, the carrier and the dipole force will interfere and
compromise the simple picture of the normal modes being displaced in opposite directions depending on the
spin state. To minimize this undesired effect, the residual carrier must be far off-resonant, which can be achieved
by limiting the laser intensity such that

1 To(B)| < 6 ~ wa, (72)

and H.(t) = 0inarotating-wave approximation. For vanishingly small micromotion B; — 0, this

constraint (72) reduces to the standard condition required to work in the resolved-sideband regime || < w,.
As a consequence, resolving the secular sidebands limits the intensity of the state-dependent force (68) that
becomes in this regime

As discussed in the following section, it puts a constraint on the speed of entangling gates based on o®-forces.
Hence, it would be desirable to come up with schemes that yield similar state-dependent forces with milder
constraints on their strengths. We now argue that this is possible by exploiting the higher micromotion
sidebands.

agi ~ 57 (73)

HE

r_ fe «
i,m —_— Ql '%i,ka

3.2.2. Micromotion state-dependent dipole forces
Let us now discuss how to obtain a state-dependent force by addressing the first micromotion sideband,
6 = Qy + 0, where 6 ~ w, < Q,suchthat £, = 1accordingto our previous notation (59). Following an
analogous derivation to the one above, we find the following Hamiltonian with a state-dependent force
Hy(t) = ) SimXasia)  e“na cosdt + h.c., (74)
i,m

where we have introduced a dipole-force strength

~ O M3 - 4, =Y

Sim = $\/Jf<ﬂi> + (ffo(ﬂo) , (75)

(=9

and the following spin operator

5 = ! (—h(&)a—f + Loy af). (76)

JRB) + 23

In analogy with the secular forces (67), we can interpret equation (74) as a state-dependent force that pushes the
vibrational modes in opposite directions depending on the two eigenstates of the spin opera-
tor & = |+3) (+5| — |—5) (==

The additional carrier term in equation (61) can be expressed in this case as

Ho(t) &~ Y (8 Jo(B1) 57 cos gt — QF [i(Bi) 5] cos bt). (77)

In principle, this term can cause a similar interference with the state-dependent force (74), since it does not
commute with the spin operator in general (76). However, if the excess micromotion is minimized to the level

Bi < 4, < 1, (78)
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one gets Jy (B;) =~ 1and J;(3;) ~ (;,such that the previous condition (72) to neglect the off-resonant carrier
becomes less stringent. We find that the laser intensity will be limited by

197 < ur, 19718: < 6 ~ was (79)

and can be thus tuned to larger values in comparison to the secular scheme (72), where |Q{'| < w,.Accordingto
this discussion, the advantage of the micromotion-enabled scheme in minimizing the undesired effects brought
up by the off-resonant carrier with respect to the standard secular scheme will be larger the smaller w, /€2, and
(3; can be made in the experiment. This will depend on the particular trap architecture, and the excess
micromotion compensation capabilities discussed below. Let us finally note that the state-dependent force (75)
becomes in this regime

X q ~ ~
%;,m ~ Q?%:kaL < > §i = Y (80)

9a i
4(1 — 7)

Comparing the strength of the secular (73) and micromotion (80) forces, one can see that to obtain similar
strengths one would need to increase the Rabi frequency in the micromotion-scheme, and thus the laser power,
by afactor of roughly 4/q,. At this point, it is worth noting that we could have tuned the laser frequencies to a
higher micromotion sideband § = Q. + 7,6 with Z, > 1. By doing this, the effect of the off-resonant carrier
would be further suppressed |Q2'| < 7, €2,¢. On the other hand, we would need even higher laser powers,
increased by a factor of 4%((£, — 1)!)? / (qa)f*, to achieve forces of the same strength. Even if these laser
intensities can be achieved in the laboratory, in this regime the intensity fluctuations could become a limiting
factor for the gate performance. Accordingly, we will focus on the first micromotion sideband in the rest of

this work.

3.3. Entanglement via geometric phase gates

We now discuss how to exploit the longitudinal /transverse phonons to mediate a qubit—qubit interaction
capable of generating entanglement in the presence of micromotion. In order to have a simple description, we
make use of the Magnus expansion [57], which allows us to express the time-evolution operator in the
interaction picture as follows

Ui(t) = y{e—ifo dt’HI(t')} — D), (81)
Here, the anti-Hermitian operator .7 (t) = —.o/7(t) can be expressed as a series of time integrals over nested
commutators
ot 1 prt f
@) =i [ ) — o [Cdn [ dnlH), H) + - (82)

which can be truncated to the desired order of approximation. This will allow us to discuss the generation of
entanglement through a generic Hamiltonian with a state-dependent force H;(t) = H;(t), which encompasses
both equation (67) and equation (74), and allows for an additional pulse shaping on the forces 3} ,, — 7 ,.(t).
In this ideal situation, the Magnus expansion (82) becomes exact already at second order, such that
A (1) = 3 5iim O ama — VD ana) + D g;()sis), (83)
i,m i,j

where we have introduced the following parameters

t
Yim(®) = —if du i (0%, cos(6t) e Wmaht (84)
0
. t 5] .
g;(t) = 11; dtlj; dr, Z ()X 85, m(£2) X,y c08(61) cO8(612) Sin (Wi, (B — 12))- (85)

Hence, the Magnus expansion operator (83) amounts to a state-dependent displacement of the vibrational
modes, followed by an effective spin—spin interaction that is capable of generating the desired entanglement
between the trapped-ion qubits. On the contrary, the displacement will degrade the quality of the quantum logic
gate, as it leads to residual entanglement between the qubits and the phonons, contributing with a motional
error that must be minimized. If 5, , (t;) ~ 0, the vibrational modes develop a closed trajectory in phase space,
returning to the initial state after a particular gate time ¢,. Along these closed trajectories, the qubits acquire a
state-dependent geometric phase that depends on the enclosed phase-space area, and can be exploited to
generate maximally entangled states [26, 28].

For instance, considering N = 2 and an initial state p, = |¢o) (19| @ py,» where [1)9) = |];],) is the state of
two qubits after optical pumping, and p,, is the state of the vibrational modes after laser cooling, the time-
evolved state under a secular state-dependent force (67) in the limit of 3; < 1becomes

pty) = [P(ty) (Yt ® py,» where
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1
V2
islocally equivalent to a Bell state, and we have assumed that the laser intensities have values such
that 2¢,(t,) = —im /4.

In the following subsections, we will consider different possibilities of achieving Yim (ty) =0, and
8;i(ty) = —im /8 for a crystal of two trapped ions. We start by reviewing the entangling gates that use continuous-

[ (t) = —=ILila) + %eimwﬂlmﬁ (86)

wave (CW) state-dependent forces in the secular regime (67). We first describe gate schemes that exploit a single
vibrational mode (i.e. bus mode) to mediate the entanglement between the qubits [28, 29-32], and discuss the
limitations in gate speed arising from the necessity to resolve single vibrational modes. We then consider
schemes that address both vibrational modes using a CW secular force, and discuss the limitations on the speed
imposed by the minimization of spin-motion entanglement of both bus modes. Finally, we move onto a
discussion of pulsed schemes, which can overcome both limitations on the gate speed, but will be limited by the
restriction on the Rabi frequencies (72) to neglect the additional off-resonant carrier. This long discussion will
allow us to embark upon the description of entangling gates using the micromotion state-dependent-forces of
section 3.2.2, assuming that equation (78) is fulfilled, and discussing the improvement on the gates that this
scheme can lead to.

3.3.1. Entangling gates with secular forces
Let us particularize the Magnus operator (83) to the secular state-dependent dipole force (67), which we will
assume to be composed of a sequence of N, square pulses

NP
(D) = D2 Fin0(t — ta) — 0(t = (tu, + 7)) (87)
np=1

Here, fZ‘,’ﬂ is the force of the n1,th pulse obtained from equation (68) by substituting the Rabi frequency anp of
that particular pulse, and 6 (x) is the Heaviside step function, such that this pulse acts within a time window
t € [ty ty, + Tu,). In order to use the above generic Magnus expansion, the additional off-resonant carrier (77)
must be negligible, which requires the laser parameters to lie in the regime (72). Moreover, we will focus on the
regime where the excess micromotion is very-well compensated, such that equation (72) leads to |€2;] < w,,and
thus | foﬁxml < (6 + wy) follows from equation (68). This constraint over the forces allows us to simplify
considerably the particular expressions for the parameters (84)and (85) for single- and multi-pulse gates.

(i) Single-pulse entangling gates: Let us consider equation (87) for a single pulse n, = N, = 1 of strength f

i,m’
betweent, = Oand 7, = t, [28,29-32]. By performing the corresponding integrals, one finds the state-
P P g YP g P g g
dependent displacements
X x"; 1 — ei(éfw,,,,,y)tg
Yim(tg) A = , (88)
pme 2 0 — Wma
and the phonon-mediated spin—spin interactions
xXOf  x& Wia SINO — wy)t
glz(l‘g) _ lz fl,mzm fz,m t: w ,(ytg m,a ( m) g ) (89)
o 2(Wy o — 6%) 0 — Wma

(a) Addressing a single vibrational mode. Let us start by considering single-pulse gates that resolve a single bus
mode to mediate the interaction, such as the center-of-mass (CoM) mode § =~ w , of either longitudinal or
transverse vibrations. The condition to resolve a single vibrational mode for a N = 2 ion crystal is

Hi,mxr?:I < |wi,a — waal, (90)

such that ~; , (t;) ~ 0 for the remaining vibrational mode, which only acts as a spectator mode. Hence, one only
needs to set the gate time ¢, such that , , (t;) = 0 in order to minimize the residual spin-motion entanglement
of the bus mode. This is accomplished by setting the following relation between laser detuning and the gate time

n

|(S - o~}1,01| ’

where r; € Z* [28]. The phase-space trajectory defined by 7; | (t;) = 0,and induced by the displacement
operator (83), corresponds to r; closed circular loops, such that spin and motional degrees of freedom get
disentangled at the end of the gate. Conversely, the two spins can get maximally entangled. Using

2g,(ty) ~= —itg]i5, one finds that the time-evolution operator (81)—(83) can be expressed as

Uity = e ithio, ©2)
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where we have introduced the spin—spin coupling strengths

Ji» = wp Q0 QS 10(51){0(522) 621,m- zz,m’ ©3)
(1 — Eq&') m — Wia

where wyp = ki /2M is the recoil energy. Considering a negligible excess micromotion 3; < 1, the coupling
becomes Ji, &~ (Y wy,q/2(8% — wiy) & (92 /4(8 — w,4) toleading order of the Lamb-Dicke
parameter. This coincides with the expression in [28] up to a different definition of their Lamb—Dicke parameter
that incorporates the normal-mode displacements.

The condition to generate a maximally entangled state using equation (92) is Ji,t; = /4, which sets another
constraint between laser detuning and the gate time

Qans 2
LA/ DA o)
|(5 - o~)1,01|

Solving the system of algebraic equations (91) and (94) fixes the detuning as a function of the number r, of
closed loops in phase space, and the Rabi frequency of the transition 2¢. Accordingly, the gate time can be
shown to be

V2, (95)

f T

g QO{ 77;1
such that the stronger the intensity of the laser is, the larger 2 becomes, and the faster the entangling gate is, e.g.
ty = /2 /Q°n? for gates based on 1-loop trajectories. We note that this intensity increase must be
accompanied by a corresponding increase in the detuning of the laser beams

6= w, + \/Z_rlﬂani‘. (96)

However, such an increase in gate speed cannot be prolonged indefinitely. Let us recall that the condition to
resolve a single vibrational mode (90) puts a constraint on the laser intensity Qnf" < |wi,o — wy,ql, such that the
gate speed is limited by

™

tg > (97)

|wi,a — wa,al '
This gate-speed limitation is very different for MS gates that use longitudinal or transverse phonons as the
quantum bus to mediate the qubit—qubit entanglement.

(a.1) For longitudinal phonons, the modes fulfill |w; , — w, ,| ~ w;, such that the gate speed is ultimately
limited by the trap period t, >> 27 /w,. Let us emphasize, however, that the gate fidelity would decrease for such
fast gates, which sets alower speed limit in practice. Maximizing the gate speed by increasing the Rabi frequency
within the valid parameter regime (90), namely (0* < |w; ; — w, |/n] ~ w, /1], canlead to situations where
the contribution of the off-resonant carrier (77)is not negligible anymore, i.e. {2* < w, in equation (72) begins
to be violated. Accordingly, if the gate speed increases beyond a certain limit, the off-resonant carrier will
increase the gate error and dominate over other sources of noise.

To quantify this effect, we estimate the state infidelity ¢, = 1 — %, for the generation of the desired Bell
state (86)asafunction of the gate time. We consider three different sources of infidelity
€g = €carr T €mot T+ €deph: the off-resonant carrier (77)leads to €qyr ~ %N (Q7/6)? [28]°, the additional terms
neglected in the Lamb-Dicke expansion (57), including the effect of spectator modes, lead to a motional error
€mot ~ 0.8TN (6 — w,) (A1, + 1)/(2w§ ty) + TN (N — 1)(17f)4(1.2ﬁz2 + 1.4ﬁz)/SN2 [28], where we have
assumed a thermal state for the longitudinal vibrational modes, such that 7i, is the mean number of phonons in
the thermal CoM mode. Finally, we also consider dephasing during the gate, which can be caused by fluctuating
global magnetic fields, which lead to egepn = 2N 21,‘g / T,, where T, is the dephasing time of the qubits, as
measured by Ramsey interferometry. In figure 1, we represent the full error as a function of the gate time for
different dephasing rates, choosing **Ca™ qubits as a representative case [58]. This figure demonstrates that for
cold crystals with 7, = 0.1, the motional error of MS gates is negligible in comparison to the errors due to the
dephasing and the off-resonant carrier. This would occur also for warmer crystals with the same parameters,
provided that 7i, < 5, after which the motional-error contribution cannot be neglected any longer. Whereas for
slow gates, the €4cph contribution is dominant, €c,rr becomes the leading source of infidelity when the gate
becomes sufficiently fast. As predicted above, the gate is always slower than the trap period T; = 27/w, = 1usif
one aims for reasonablyhigh fidelities ¢, < 1072, In section 3.3.2, we will discuss how it is possible to increase the
gate speed further, while maintaining high fidelities, provided that the intrinsic axial micromotion of the ion
crystal can be exploited to shape the micromotion state-dependent forces (74) instead of the secular ones (67).

This particular expression for the contribution of the off-resonant carrier to the error budget is an upper bound derived in [28]. We note
that even if the carrier error is smaller than this value, the general trend discussed in this work will remain, i.e. it will become the leading error
for sufficiently fast gates.
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Figure 1. Single-pulse MS gate with the axial CoM mode: State infidelity ¢, for a MS gate mediated by the CoM longitudinal mode of a
N = 2 crystal of **Ca™ ions. We assume an axial trap frequency w, /27 = 0.975 MHz, such that the single-ion Lamb—Dicke
parameter is 177 = 0.098, resolved-sideband laser-cooling leading to i, = 0.1 for the CoM mode, and set the number of phase-space
loops of the MS gate to r; = 1. The blue solid lines correspond to the total state infidelity ¢, for dephasing times

T, € {0.2, 0.4, 0.8, 1.6} s, whereas the dotted lines represent the contributions of dephasing, motional, and carrier errors, as indicated
in the captions. The yellow stars represent the optimum gate times with respect to the highest-possible gate fidelity for each set of
parameters. To vary the gate speed, we consider increasing the Rabi frequency within % /27 € [0.02, 0.12] MHz, and setting the
corresponding detunings (6 — w,) /27 € [2.9, 16.6] kHz according to the equations discussed in the text.

(a.2) For transverse phonons, the situation can first appear favorable, since the trap frequencies are larger, and
one can naively expect that § ~ w, can be achieved with larger detunings, and thus shorter gate times (91).
However, the condition to resolve a single mode (90) is more stringent, since |w x — Wy | ~ (W, /W) w, K w,
for the usual regime of linear Paul traps w, < w,. Therefore, exploiting the available larger detunings to speed
up the gate leads inevitably to a decrease in fidelity. We note that the condition to resolve a single mode imposes
O < wi e — waal /) < w, /) < wy /0y, Hence, even if the gate speed is maximized, one would not reach
the regime where the off-resonant carrier starts to be problematic since Q* < w, is always warranted. Hence,
the error for fast MS gates will be dominated by the contribution to the motional error of the spectator modes.

To quantify this discussion, we estimate again the state infidelity ¢, = 1 — %, for generating the desired Bell
state (86)asafunction of the gate time. The carrier and dephasing errors have the same expressions as above,
whereas the motional error changes due to the proximity of the spectator modes in frequency space. For N = 2,
we get €mor = (075)*(27, + 1) (6% + w3 ,)/(6* — w3 )% where we have assumed a thermal state for the
transverse vibrational modes with mean phonon number 7i,.. In figure 2, we represent the full error as a function
of the gate time for different dephasing rates, choosing *°Ca™ qubits to compare with the previous longitudinal
gate. As announced earlier, this figure shows that the error of slow (fast) gates is dominated by the the dephasing
(motional) error. One also observes, that the optimum transverse gates are always slower than the longitudinal
ones in figure 1 and, moreover, achieve smaller fidelities.

Let us also note that both of these longitudinal and transverse entangling gates can be generalized to N-
qubits, and would lead to multi-partite maximal entangled states locally equivalent to
IGHZ)y = (I 12 - In) + 1T T2 -+ Tn))/~/2, instead of the Bell state (86). The conditions to generate such
states using MS gates based on the longitudinal CoM mode remain the same, since such a bus mode is always
separated from higher-frequency modes by the same frequency gap [53]. On the contrary, the conditions on MS
gates based on the transverse CoM mode lead to even slower gates, since the phonon branch becomes denser,
and the different modes approach the CoM frequency as N increases.

(b) Addressing both vibrational modes. Let us now address how to increase the gate speed by lifting the
constraint (90), such that the state-dependent force does not resolve a single vibrational mode even when
6 & wy,q. For N =2 ions, two conditions are required to minimize the spin-motion entanglement, namely
Y. (tg) = 0,and 7, (#;) = 0. The first one sets the relation in equation (91) between the gate time and the
detuning, whereas the yields a commensurability condition

o — Wa,a = n(d — wl,a)) (98)
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Figure 2. Single-pulse MS gate with the transverse CoM mode: state infidelity ¢, for a MS gate mediated by the CoM transverse mode
ofaN = 2 crystal of *°Ca™ ions. We assume an axial (radial) trap frequency w, /2w = 0.975 MHz, (w, /27 = 9.75MHz) such that
the single-ion Lamb-Dicke parameter is 7y = 0.031, resolved-sideband laser-cooling leading to 7, = 0.05 for the CoM mode, and
set the number of phase-space loops of the MS gate to r; = 1. The blue solid lines correspond to the total state infidelity ¢, for
dephasing times T, € {0.2, 0.4, 0.8, 1.6} s, whereas the dotted lines represent the contributions of dephasing, motional, and carrier
errors, as indicated in the captions. The yellow stars represent the optimum gate times with respect to the highest-possible gate fidelity
for each set of parameters. To vary the gate speed, we consider increasing the Rabi frequency within Q* /27 € [0.05, 1.29] MHz, and
setting the corresponding detunings (6 — wy) /27 € [2.3, 56.6] kHz according to the equations discussed in the text.

where 1, € Z, which already fixes the detuning to
6= (nwia — w2,a)/(n— D). (99)

(b.1) For longitudinal modes, the condition (98) cannot be met, as the frequency difference is an irrational
number w, , — w;, = (+/3 — 1)w,.Inany case, the gate-speed could not be increased even if one could close
both trajectories perfectly, as the limitation on gate speed is given by the condition to neglect the off-resonant
carrier (see figure 1). Equivalently, this would not improve the gate fidelity of the MS gates too much, as the
motional error due to the spectator vibrational mode is already very small for typical experimental values (see
figure 1).

(b.2) For transverse modes, in contrast, the condition (98) can be met and the allowed gate times correspond
to trajectories with r; loops for the CoM mode wy , and || for the zigzag mode w, , with , > 2orn, < —1.
These two conditions suffice to fix the gate time to

fijn, — 1]

tg = 27 .
(wl,x - w2,x)

(100)
The remaining task is to find the required laser intensity such that the state-dependent geometric phase
proportional to the enclosed phase-space area fulfills the condition to generate a maximally entangled state

Ji2tg = /4. Inthis case, one has to consider the contribution of both modes to the spin—spin coupling strength
(93), which becomes Ji, &~ (*n1)*(1/4(6 — wix) — 1/4(6 — w;,x)). Using the expression for the fixed
detuning (99), one finds that the required laser Rabi frequency is

anx _ (Wix — Wax) 7] (101)
! I, — 1]\ 2nln — 1]

As occurred for the MS gates that use a single vibrational bus mode (95), the gate can become faster by increasing
the laser Rabi frequency, since the expression

2
y = 7T . |7l = (102)
Wi\ nln — 1]

yields t; = 2 /Q*n; for the fastest gate with r, = 2, = 2loops. Let us note that this gate time can also be
expressed as

2
= i (103)
Wl,x — Wax

>
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Figure 3. Single-pulse MS gate with both transverse modes: State infidelity ¢, for a MS gate mediated by both transverse modes of a

N = 2crystal of *°Ca™ ions. We assume a radial trap frequency w, /27 = 9.75 MHzleading to the single-ion Lamb-Dicke parameter
is 7 = 0.031, resolved-sideband laser-cooling leading to 7i, = 0.05 for the CoM mode, and set the number of phase-space loops of
the MS gateto r; = 1,and r, = 2. Theblue solid lines correspond to the total state infidelity ¢, for dephasing times

T, € {0.2, 0.4, 0.8, 1.6} s, whereas the dotted lines represent the contributions of dephasing, motional, and carrier errors, as indicated
in the captions. The yellow stars represent the optimum gate times with respect to the highest fidelity for each set of parameters. To
vary the gate speed, we consider increasing the axial trap frequency within w, /27 € [0.2, 0.975] MHz, and setting the corresponding
Rabi frequencies Q* /27 € [0.07, 1.58] MHz and detunings (6 — w,) /27 € [2.2, 48.9] kHz according to the equations discussed in
the text.

which shows that by exploiting both vibrational modes simultaneously, the speed can be increased with respect
to the limitation of the previous transverse MS gates (97).

We note that the procedure of increasing the gate speed is slightly more involved than that of single-mode
MS gates (95), which only required increasing simultaneously the Rabi frequency and the detuning of the laser
beams (96). For two-mode MS gates, equation (101) shows that in addition one needs to increase the frequency
difference between both vibrational modes, which requires modifying the trap confinement. In particular, we
consider increasing the axial trap frequency w;, since (W), — ws ) ~ (W, /wy)*wy, and this will increase the gate
speed (103). The ultimate limit to such an increase in gate speed is caused by the structural instability of the ion
chain towards a zig-zag ladder, which occurs for w, ~ w, for N = 2 ions. According to equation (103), this limit
corresponds to a gate that could be as fast as the trap period T; = 27/ w,. However, note that the required Rabi
frequency in this ultimate limit would largely violate the condition to neglect the off-resonant carrier (72), as
O ~ (Wix — W) /1] ~ Wz fwe) wi /1) ~ wi /17 > wy. Accordingly, this fast gate would have poor
fidelities. Another effect that would decrease the gate fidelity even further is the increasing importance of
nonlinear quartic terms in the vibrational Hamiltonian as one approaches the structural instability, which would
modify the simple phase-space trajectories of the MS schemes.

Therefore, at a practical level, the limit on gate speed for high-fidelity MS gates based on two transverse bus
modes would be to consider w, / wy ~ (0} /10, such that t; ~ 27 /(w, /we) wy > 27 /w, > 27 /w,. Although
this gate is still considerably slower than the trap period, there will be particular ratios w, /wy, such that the
transverse MS gate may surpass the speed of the longitudinal one. In this sense, by resolving the two vibrational
modes, the transverse MS gate can exploit the larger available detunings to achieve higher speeds, while
maintaining high fidelities.

To quantify this discussion, we estimate again the state infidelity ¢, = 1 — 7, for generating the desired Bell
state (86)asa function of the gate time. The carrier and dephasing errors have the same expressions as above,
whereas the motional error changes once more since both modes are active buses, and the leading order error
will only be caused by the higher-order terms in the Lamb-Dicke expansion (57). For N = 2, we get
mot & 2 X MN(N — D)(nf 47+ fiy) / 8N?2, where we have assumed a thermal state for the transverse
vibrational modes with mean phonon number 7,. In figure 3, we represent the full error as a function of the gate
time for different dephasing rates, choosing *°Ca™ qubits to compare with the previous gates. As announced
earlier, this figure shows that the error of fast gates is dominated by the off-resonant carrier error. We note that
the optimum transverse gates shown in this figure are faster and more accurate than the longitudinal and
transverse gates of figures 1 and 2. Regarding the comparison to the longitudinal-gate performance of figure 1,
we note that the set of axial trap frequencies used in figure 2 is always below the axial trap frequency of figure 1
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(see the particular values in both captions). Accordingly, the performance and speed shown in figure 1 sets an
upper bound for the comparison of axial and transverse gates, and one concludes that the the transverse MS gate
can indeed achieve higher speeds and fidelities. In section 3.3.2, we will discuss how to increase the gate speed
even further, while achieving also higher fidelities, in traps where the intrinsic radial micromotion can be
exploited.

(if) Multi-pulse entangling gates. In the previous section, we have shown how to increase the speed of single-
pulse MS gates by increasing the laser intensity. Let us now address an alternative strategy to speed up the
entangling gates by considering a multi-pulse scheme with N, pulses (87). In addition to increasing the laser
intensity, one can also explore how to distribute it among the different pulses in order to attain higher speeds
without compromising the gate fidelities.

To analyze this multi-pulse scheme, we need to find the particular expression for the time-evolution
operator in equations (81) and (83). By performing the corresponding integrals in equations (84) and (85), we
find the following state-dependent displacements and phonon-mediated interaction strengths

ny

]
Yim(tg) = Ayit, Ayt = E v,m, g,(t) = =121, + 6g, + > Z Ay e —hee. (104)

n'p=1 m np=1
Here, we have introduced the following constants

P

, X0 o xSw
n, 1mm Tn 15 Uma) Tn — (64 wWia) tn n, lm 2,m m, Qo
Vigm = 2 = (G, €0t - CTp | e O emalti), JEE = 82—k,
m
Tnp Tp _ Ty Li26t Tnp T"p _ —i26t,
P 0 fz X | C—br,, T (Gl — e G+ (CE,  — C3s)e ™
8, = ZZ + »
—0 + Wma 0+ Wma

(105)

and used the circle function, C| = (1 — e“7) /w [38]. Asa consistency check, note that for a single CW pulse
Ny =1,1, =0, the terms fz;’nxm C:,"" with w & w, can be neglected by a rotating-wave approximation for
| fzg,x:,fl < (6 + wy), which follows from equation (72). Accordingly, one gets the simplified expressions in
equations (88) and (89), which were the starting point in the analysis of the previous section.

To illustrate how the CW schemes can be modified to improve the gate speed, we focus on schemes of
equidistant laser pulses of identical widths [59, 60]. In this case, one has Ta, = T = tg /[Np,and t,, = 7(n, — 1)
in equation (87). The conditions v, (t,) = 0 yield alinear system of equations

Y Re {2, )0, =0, Im{z,, 10, =0, (106)
p p
el wna)ty |- ng
pulses as anp . Therefore, for Nions and thus N normal modes along a particular trap axis, one has a system of
2N linear equations, and a non-trivial solution of equation (106) can be found if we allow for N,=2N+1

where z,,,,, = C; " e 10+wma)ty and we denote the Rabi frequencies for each of the

—Wm,a —Wm,a

different pulses. This solution fixes the relative Rabi frequencies of the pulses {2 / QY np—2- Since we want to
study the conditions that allow for a speed-up with respect to the single-pulse gates in equatlons (95) or (103),
we shall fix the detuning to the corresponding optimal value, either equation (96) or equation (99) for single/
two-mode schemes. Hence, the only remaining equation comes from the condition to generate a maximally
entangled state g;;(tg) = —im /8. This will suffice to fix 027, for a particular gate time, such that we can target
pulse sequences that yield faster gates.

(a) Addressing a single vibrational mode. Let us first address how to increase the speed of the single-pulse gates
based on the longitudinal CoM mode (figure 1) by exploiting a train of equidistant pulses. For the longitudinal
modes, the large frequency gap of the CoM mode with respect to other vibrational modes allows us to reduce the
number of required pulses to N, = 3. We follow the above method to find the optimal pulse sequence for a fixed
detuning and a certain gate time. Starting from the gate time of the highest-fidelity MS gates (see the stars in
figure 1), we lower the target gate time, and search for pulse sequences that close the CoM phase-space trajectory
for a fixed detuning (96) that does no longer fulfill equation (91).

In order to assess quantitatively if the performance of the pulsed MS gate is also optimal, i.e. highest fidelity,
we use again the error model underlying figure 1, as discussed in the previous section. However, for the error due
to the off-resonant carrier, we consider e ~ —N (Q)? / 82 with (%) = > (QZ )? / N,, which takes into
account the distribution of the Rabi frequenc1es within the pulse train. The results are presented in figure 4,
which shows that one can obtain an additional speed-up by using a pulse train with state-dependent forces that
alternate their direction. Moreover, the intermediate pulse is very weak, which allows one to reduce the required
average Rabi frequency with respect to the single-pulse gates, and leads to a lower gate infidelity. If the multi-
pulsed gate speed is increased above this optimum point, the infidelity rises quickly due to the contribution of
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Figure 4. Multi-pulse MS gate with the axial CoM mode: (middle panels) State infidelity ¢, for a pulsed MS gate mediated by the
longitudinal mode ofa N = 2 crystal of °Ca™ ions. We assume an axial trap frequency w, /27 = 0.975 MHz, such that the single-ion
Lamb-Dicke parameter is 77; = 0.098, resolved-sideband laser-coolingleading to i, = 0.1 for the CoM mode. The yellow solid lines
correspond to the total state infidelity ¢, fora N, = 3-pulsed MS gate under dephasing times T, = 0.2s (left),and T, = 0.8s (right),
whereas the dotted lines represent the contributions of dephasing égeph, motional ey, and carrier e, errors, and the gate infidelity
of asingle-pulse (CW) gate ecw, as indicated in the captions. The yellow stars represent the optimum single-pulse gate times
corresponding to 1 = 1 phase-space loops. The Rabi frequencies of the pulse train for this regime is given by the upper panels, and
coincides with the single-pulse limit. The orange stars represent the new optimum multi-pulse gate times, obtained by modifying the

Rabi frequencies as shown in the lower panels. This different configuration yields faster and higher-fidelity gates with respect to the
single-pulse cases.

the off-resonant carrier. This is the main difference with the more-demanding schemes [33—37] for arbitrary-
speed gates that are not based on the resolved-sideband regime (57).

(b) Addressing both vibrational modes. We now study how to increase the gate speed of the single-pulse gates
based on both transverse modes (see figure 3). In this case, the vibrational frequencies are closely spaced, and we
need to close all phase-space trajectories using N, = 2N + 1 pulses. We follow the above method to find the
optimal pulse sequence for a fixed detuning and a certain gate time. Starting from the gate time of the highest-
fidelity MS gates (see the stars in figure 3), we lower the target gate time, and search for pulse sequences that close
all phase-space trajectories for a fixed detuning (99) that does no longer fulfill equation (103).

In figure 5, we represent the estimated infidelity ofa N, = 5-pulse MS gate for N = 2 ions, as a function of
the achieved gate time. In analogy to the axial MS gates in figure 4, we show that an additional speed-up can be
obtained by a pulse train with state-dependent forces that alternate their direction (see lower panels). As every-
other pulse becomes very weak, we can reduce the required average Rabi frequency with respect to the single-
pulse gate, and thus obtain a higher fidelity. However, increasing the gate speed beyond an optimum point
(orange stars) leads to an increase of the infidelity due to the contribution of the off-resonant carrier.

Although these results show that the error reduction by moving onto pulsed MS gates is not that large, the
improvement in gate speed with respect to the optimal single-pulse gate can be substantial if one only wants to
maintain the gate error to the same level. As discussed previously, increasing the speed even further in both of
these pulsed schemes leads to an increase in the infidelity due to the off-resonant carrier. In the following
section, we explore the advantage of exploiting the intrinsic micromotion to improve the gate speed even
further, while simultaneously maintaining error rates below a given threshold.

3.3.2. Entangling gates with micromotion forces

After this long exposition, we have all the required ingredients to understand how the different MS gate schemes
presented above can be improved by exploiting the ion-crystal intrinsic micromotion. Considering the regime
(78), one can use directly the previous equations for the secular MS gates discussed in section 3.3.1, but taking
into account the particular expressions for the micromotion off-resonant carrier (77) and the micromotion
state-dependent forces (80). This simply amounts to substituting in all equations of section 3.3.1: the laser MS
detunings by & — &, the Rabi frequencies of the secular state-dependent forces by Qf — QF = Qg A /4,and
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Figure 5. Multi-pulse MS gate with both transverse modes: (middle panels) State infidelity ¢, for a pulsed MS gate mediated by both
transverse modes ofa N = 2 crystal of **Ca™ ions. We assume a radial trap frequency wy /27 = 9.75 MHz leading to the single-ion
Lamb-Dicke parameter is 77; = 0.031, resolved-sideband laser-coolingleading to 71, = 0.05 for the CoM mode. The yellow solid
lines correspond to the total state infidelity ¢, fora N, = 5-pulsed MS gate under dephasing times T, = 0.2s (left), and T, = 0.8s
(right), whereas the dotted lines represent the contributions of dephasing €geph, motional €mqr, and carrier €q errors, and the gate
infidelity of a single-pulse (CW) gate ecw. The yellow stars represent the optimum single-pulse gate times corresponding to

n = 1, , = 2 phase-space loops. The Rabi frequencies of the pulse train for this regime is given by the upper panels, and coincides

with the single-pulse limit. The orange stars represent the new optimum multi-pulse gate times, obtained by modifying the Rabi
pulse cases.

frequencies as shown in the lower panels. This different configuration yields faster and higher-fidelity gates with respect to the single-

the error due to the off-resonant carrier by e,y =~ N (%)? / 262 — &4y = 8N (QY)? / qj %, where we have
further assumed that micromotion compensation fulfills

qdo%a
40,¢ ’

Bi<<

(107)
which is consistent with the experimentally achieved values that will be discussed in section 4.1. This equation

gives a practical bound on how small the excess micromotion must be in order for our analysis to be correct.
From these substitutions, one observes that the strength of the micromotion state-dependent dipole forces is

reduced with respect to the one of the state-dependent secular forces (68) by a factor of q,, /4. Therefore, more
powerful lasers will be required to achieve the typical speed of secular MS gates in figures 1-5. However,

provided that such laser sources are available, the maximum Rabi frequency will not be limited by |2§| < ¢ as
occurred for the secular MS scheme (72), but instead by [2]| < §2,¢. Hence, exploiting the intrinsic

micromotion, one can either maintain the gate speed while increasing the gate fidelity achieved by the secular
MS schemes, or vice versa.

Qualitatively, for the same gate speed, the leading carrier error for micromotion-enabled MS gates €., and
secular MS gates e, is related by Zare = €carr (46/q,, Chie)*. Hence, the carrier error will be reduced provided that
§<dag, (108)
4
where § ~ w,. Asannounced below equation (79), the advantage of the scheme will be larger, the smaller the
ratio w, /{2, can be made in the experiment. The microscopic trap parameter g, /4, which controls the relative
amplitude of the intrinsic micromotion and the secular oscillations (14), sets how small is the ratio w, /€2;¢
required to be for the scheme to be advantageous. From a different perspective, this inequality shows that the
coupling to the first micromotion sideband has to be sufficiently big for the scheme to become advantageous.
Conversely, if we want to increase the gate speed but maintain the fidelity of the secular MS gates, one can
show that the gate times ¢, of single-pulse secular schemes in equations (95) or equation (103) are related to the
micromotion-enabled gate times 7, as follows , = t,(46/q,, €f). Accordingly, provided that the parameter
regime (108)is achieved, there will be a speed-up of the entangling gates. A similar speed-up will also take place
for the multi-pulsed MS gates.
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Figure 6. Micromotion-enabled improvement of single-pulse MS gates: (a) (main panel) State infidelity &, for a single-pulse
micromotion MS gate mediated by the longitudinal modes ofa N = 2 crystal of “*Ca™ ions with w, /27 = 0.975 MHz, n? = 0.098,
and 71, = 0.1 for the CoM mode. We consider an axial micromotion parameter 4,=0.03, and vary the rf frequency €2,¢. The dotted
line corresponds to {2, = 40/q,, and thus separates the region where the micromotion-enabled MS gates are advantageous (right)
and disadvantageous (left shaded region). We represent the corresponding gate times 7, in the inset. The circles in the main panel and
inset coincide with the performance of the optimal secular MS gates shown in figure 1 as yellow stars. Hence, the right region describes
amicromotion-enabled improvement in both gate speed and fidelity. (b) Same as (a) but for a single-pulse micromotion-enabled MS
gate mediated by both transverse modes ofa N = 2 crystal of **Ca™ ions with w, /27 = 9.75 MHz, 7y = 0.031,and 71, = 0.05 for
the CoM mode. In this case, we consider a radial micromotion parameter g, = 0.3. Two of the circles in the main panel and inset
coincide with the performance of the optimal secular MS gates shown in figure 3 as yellow stars. The micromotion-enabled
improvement of these transverse CW gates is qualitatively similar to the longitudinal ones in (a).

To be more quantitative, we now study the total gate infidelity &, for the micromotion-enabled version of the
secular MS schemes of section 3.3.1. Therefore, in addition to the change in the carrier error already discussed,
we also consider the dephasing and motional contributions to the gate infidelity. We extract the optimal gate
time , that minimizes the gate infidelity Egmm ,and represent these two quantities as a function of the ratio
Q¢ /w,, which determines the region where the micromotion scheme becomes advantageous (108).

In figure 6, we study the micromotion version of the single-pulse secular MS gates mediated by longitudinal
(figure 1) and transverse (figure 3) phonon modes. The circles correspond to rf frequencies that fulfill
Q¢ = 46/q,,such that the performance of the micromotion-enabled gates coincides with that of the standard
secular MS gates. For larger rd frequencies (non-shaded regions), the micromotion scheme provides
simultaneously lower gate errors (main panel) and lower gate times (inset), both for the MS gates mediated by
longitudinal (figure 6 (2)) and transverse (figure 6 (b)) vibrational bus modes. A similar improvement is found in
figure 7 for the micromotion version of the multi-pulse secular MS gates mediated by longitudinal (figure 4) and
transverse (figure 5) phonon modes. Let us remark that this micromotion-enabled improvement of multi-pulse
MS gates differs from the results presented in [42]. Here, Shen et al derive sequences for fast entangling gates to
mitigate the adversarial effect of the excess micromotion of planar crystals. In our scheme, we exploit the
intrinsic micromotion instead, and turn its effect into a feature that may allow one to improve on both fidelity
and speed of phonon-mediated entangling quantum gates.

4. Experimental considerations

In this section, we discuss the experimental prospects of reaching the required parameter regime that would lead
to the micromotion-enabled improvement of the entangling gates described above. We start by discussing in
section 4.1 the state-of-the-art excess micromotion compensation, and the possibility of reaching the desired
range in equation (107). In section 4.2, we discuss the difficulty of fulfilling equation (108) with current trap
designs, and the prospects of satisfying it with realistic trap designs that may become accessible in the future.

4.1. Compensation of excess micromotion

Excess micromotion can give rise to a series of undesired effects [47], such as (i) a parametric heating that can
increase the secular motion of ion crystals, limiting the temperatures achieved by laser cooling or even inducing
crystal instabilities [61], (ii) a laser heating for parameters where laser cooling would be expected in the absence
of excess micromotion [61], which can also be caused by the intrinsic micromotion [62], and (iii) motional shifts
of frequency standards (e.g. second-order Doppler shifts) [47]. Therefore, a great deal of experimental effort has
been devoted over the years to develop methods for a precise estimation and minimization of the excess
micromotion. These methods range from (a) monitoring the change of the ion equilibrium position as the
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Figure 7. Micromotion-enabled improvement of multi-pulse MS gates: (a) (main panel) State infidelity ¢, for a multi-pulse
micromotion MS gate mediated by the longitudinal modes ofa N = 2 crystal of **Ca™ ions with w, /27 = 0.975 MHz, n? = 0.098,
and 71, = 0.1 for the CoM mode. We consider an axial micromotion parameter 4,=0.03, and vary the rf frequency €2,¢. The dotted
line corresponds to {2, = 40/q,, and thus separates the region where the micromotion-enabled MS gates are advantageous (right)
and disadvantageous (left). We represent the associated gate times 7, in the inset. Two of the circles in the main panel and inset
coincide with the performance of the optimal secular MS gates shown in figure 4 as orange stars. (b) Same as (a) but for a multi-pulse
micromotion-enabled MS gate mediated by both transverse modes ofa N = 2 crystal of **Ca™ ions with w, /27 = 9.75 MHz,

7y = 0.031,and 7, = 0.05 for the CoM mode. In this case, we consider a radial micromotion parameter g, = 0.3. The circles in the
main panel and inset coincide with the performance of the optimal secular MS gates shown in figure 5 as orange stars.

secular trap frequencies are modified, to (b) comparing the fluorescence intensities of emitted photons when the
lasers are tuned either to the bare carrier 6 ~ 0 or to the micromotion carrier § ~ )¢ (i.e. resolved-sideband
regime), and (c) monitoring cross correlations of the time delay between the emitted photons and the rf signal (i.
e unresolved-sideband regime). The precision of method (a) is limited by the resolution limit of the optics that
measures the ion position, whereas that of (b), (c) depends on limitations and noise on the laser and rf sources.
Provided that one of these methods yields an accurate measurement of excess micromotion, one can either
apply additional electric fields to compensate the force of the spurious dc fields (5) due to patch potentials or
unevenly coated electrodes, or load the electrodes with reactances to compensate the spurious asymmetries
leading to the oscillating force of the ac fields in equation (5) (see the discussion in [47]). A detailed account of the
achieved minimization of excess micromotion from different experimental groups can be found in [50], which
shows that a careful compensation with different methods typically achieves 3-parameters (64) on the order of
B; ~ 1073, Using tightly focused dipole beams to probe the ion position can be exploited to achieve even better
micromotion compensation [63], so it is reasonable to consider that the -parameter can attain values in the
range 3; ~ 10~*— 10°. We note that a realistic value for the ideal Paul trap parameters in equation (4) yields
q,, ~ 0.2-0.3 for the transverse directions o = {x, y}, such that the desired compensation regime in
equation (107) can be achieved with state-of-the-art trapped-ion technology. For the axial direction, considering
short segmented linear traps, one may achieve ratios of g, /q, =~ 1073 [64]. Considering the performance of the
axial micromotion-enabled entangling gates of figures 6(a) and 7(a) for g, = 0.03, the smaller values of g, for
these segmented traps would require a much higher ratio of ;¢ /w,, as well as a much higher laser power to
achieve similar gate speeds. Accordingly, finding experimental trap designs that meet the requirements for a
micromotion-enabled improvement based on axial modes seems very challenging, and this motivates us to
consider the radial micromotion gates below.

4.2. Discussion of current and future trap designs

The suggested scheme requires a large ratio of the drive frequency to the secular motional frequency in the radial
direction €2,¢ /wy. Since the confinement properties of ion traps can be accurately described by Mathieu
equations that are independent on the actual trap geometry [65], a study based on a geometry that is suitable for
usual trapping parameters will also suffice to explore the possibility of reaching the required parameters for a
micromotion-enabled improvement of the entangling gate. Current traps for QIP operate usually in the regime
of Q¢ /w, & 10-20 [66, 67]. Experimentally, multi-qubit gate operations with ¢ /w, = 46 have already been
demonstrated using **Ca* [68, 69]. This ratio, together with the rest of the parameters used in figure 6(b), would
already yield a benefit from the micromotion-enabled entangling gates. To be more precise, assuming a
decoherence time of T, = 0.8 s and the error model described above, the single-pulse MS gate based on secular
radial forces would reach ¢; = 2 X 10 3inatime ty = 129us, whereas the one based on micromotion radial
forces could attain ¢, = 8 x 10~*inatime t; = 57us. Let us note that to gain full advantage of the protocol,
one would need even higher ratios of 2,¢ /w,, which have not been achieved yet in experiments.
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While there is no fundamental reason that will prohibit reaching even higher drive frequencies, one needs to
take practical considerations into account. The dissipated power inside the trap will increase since the amplitude
of the rf drive voltage needs to be increased, leading thus to a higher power dissipation in the trap itself, and also
in the electrical connections to the trap [67]. Managing the increased heat load will require complex thermal
management techniques, especially in the context of cryogenic systems. In this context, a smaller trap and
connection capacitance is beneficial as it will facilitate the design of the required circuitry to generate the radio
frequency trapping fields [67].

4.3. Technical noise sources

Estimating the error budget accounting for additional technical limitations can, for the proposed gate scheme,
be performed analogously to other high-fidelity entangling gate operations, as detailed for instance in [31].
Regarding the differences for the micromotion-enabled gates, let us note that, in case that the experimentally
available laser power is limited, the gate duration would be increased by a factor of 1 / \/% , which follows from
the different scaling of the dipole forces in equations (73) and (80). In general, this would make the gate more
susceptible to dephasing noise. Accordingly, if laser power is the limiting factor, one should consider continuous
[24,25] or pulsed [70] dynamical decoupling techniques to combat this noise.

Another technical aspect that would differ from entangling gates that do not make explicit use of
micromotion is the generation of the bichromatic light fields. In the presented gate, the frequency of the beat
note must be on the order of 22+ ~ 27 100 MHz, whereas for the standard gate the modulation frequency is
on the order of w, /27 ~ 1-10 MHz. The modulation is usually generated using acousto-optical modulators,
which are available with a bandwidth of 100 MHz, at the cost of a reduced diffraction efficiency. This larger
detuning from the carrier transition in our scheme brings the additional advantage that incoherent excitation of
the qubit due to residual laser intensity at the carrier transition is reduced considerably. This incoherent
excitation poses a major problem for qubits driven by narrow linewidth diode laser systems [71].

5. Conclusions and outlook

In this work, we have developed a set of theoretical tools to analyze the effects of excess and intrinsic
micromotion in the schemes for high-fidelity quantum logic gates with trapped-ion qubits. We have shown that,
in situations where the excess micromotion is compensated to a high degree, it is possible to exploit the intrinsic
micromotion to improve on both the speed and fidelity of current schemes for entangling gates. We have derived
aset of conditions that identify the parameter regime where such an improvement can occur, and discussed the
possible challenges of reaching this regime considering realistic experimental conditions.

Aside from the particular gate scheme, we have presented for the first time a detailed quantum-mechanical
treatment of intrinsic and excess micromotion in arbitrarily large chains of trapped ions. This has allowed us to
develop a generic theory for the laser-ion interaction in the presence of micromotion, which might be useful for
future trapped-ion studies in completely different contexts.
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