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Abstract
Fluctuation theorems (FTs) are central in stochastic thermodynamics, as they allow for quantifying
the irreversibility of single trajectories. Although they have been experimentally checked in the
classical regime, a practical demonstration in the framework of quantumopen systems is still to come.
Herewe propose a realistic platform to probe FTs in the quantum regime. It is based on an effective
two-level system coupled to an engineered reservoir, that enables the detection of the photons emitted
and absorbed by the system.When the system is coherently driven, ameasurable quantum component
in the entropy production is evidenced.We quantify the error due to photon detection inefficiency,
and show that themissing information can be efficiently corrected, based solely on the detected events.
Ourfindings provide new insights into how the quantumcharacter of a physical system impacts its
thermodynamic evolution.

1. Introduction

The existence of some preferred direction of time is a fundamental concept of physics, captured by the second
Lawof thermodynamics [1]. The irreversibility of physical phenomena ismanifested by a strictly positive
entropy production, classically identifiedwith the change of entropy of the closed system considered. In the
textbook situation of a system  exchangingworkWwith some external operator and heat Qcl with a thermal
reservoir of temperatureT, entropy production equals the sumof the entropy change of the systemDSsys and
the reservoirD = -S Q Tres cl , and reads

D = - D( ) ( )S W F T . 1i

DF is the change of the system’s free energy, satisfyingD = + - D( )S W Q F Tsys cl .
Focusing on the transformations ofmicroscopic systems, stochastic thermodynamics has extended the

concepts of thermodynamics to single stochastic realizations or ‘trajectories’ of the system in its phase space
[2–4]. In this framework, heat andwork exchanges become stochastic quantities defined for single trajectories γ,
which can give rise to a negative entropy production gD <[ ]s 0i . Thefluctuations of gD [ ]si verify the central
fluctuation theorem (FT) [5] á ñ =g

g
-D [ ]e 1s kBi , where á ñg· denotes the average over the trajectories, while the

Second Law of thermodynamics remains valid on average. A famous example of such central FT is provided by
Jarzynski’s equality (JE) [4, 6] characterizing isothermal transformations of systems driven out of equilibrium.
Equation (1) remains valid at the trajectory level, such that entropy produced along a single trajectory γ verifies

g gD = - D[ ] ( [ ] )s W F Ti . g[ ]W is the stochastic work exchange for the trajectory γ, yielding JE:

á ñ =g
g

- -D ( )[ ]e e . 2W k T F k TB B

In the classical regime, the stochastic work exchanges g[ ]W are inferred from the knowledge of the trajectory,
which can be recordedwithout perturbing the system in principle with an arbitrary precision (figure 1(a)). Using
this protocol, JE has been experimentally probed in various setups, e.g. with Brownian particles [7, 8] or
electronic systems [9].
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The recent developments of quantumand nano-technologies have urged to explore the validity of FTs for
out-of-equilibriumquantum systems. In the particular case of Jarzynski’s protocol, the system coupled to a
thermal reservoir can nowbe coherently driven.However in the quantumworld,monitoring a systemperturbs
its evolution (figure 1(b)), posing severe difficulties tomeasure and even to definework exchanges. In a series of
pioneering papers [10–13] it was shown that JE is still valid and can be probed, provided that the system’s (resp.
reservoir’s) internal energy change gD [ ]U (resp. g- [ ]Qcl ) can be known fromprojective energymeasurements
performed at the beginning and at the end of the transformation. Thework is then inferred from the First Law:

g g gD = +[ ] [ ] [ ]U W Qcl . Known as the two-pointsmeasurement scheme, this seminal extension of JE in the
quantumworld has triggered numerous investigations,motivated by twomajor challenges. The first challenge is
practical: How tomeasure energy changes induced by amicroscopic systemon a large reservoir? One possible
strategy relies onfinite size reservoirs whose temperature is sensitive to heat exchanges with the system [14–16],
such that both emission and absorption events can be detected usingfine calorimetry. But such reservoirs are by
essence nonMarkovian, therefore affecting the dynamics of the system and the resultingwork distribution [17].

Another strategy involves the convenient platforms provided by superconducting circuits and semi-
conducting quantumphotonics. In both cases, the radiation produced by quantum emitters (superconducting
qubits or quantumdots) is efficiently funneled intowell-designedwaveguides, and is thus recordedwith high
efficiency. This recent experimental ability has lead to the development of bright single photon sources [18, 19]
and to themonitoring of quantum trajectories of superconducting quantumbits [20–22]. However, standard
schemes based on photo-counters do not allow for the recording of photons absorbed by the system, amajor
drawback for quantum thermodynamics purposes.

The second challenge is of fundamental nature, and consists in identifying quantum signatures in quantum
FTs. For instance, the coupling to a thermal bath erases quantum coherences during the system’s evolution. This
is an irreversible process, expected to induce some genuinely quantum entropy production [23, 24].
Furthermore, the incoherent energy exchange between the system and the bath (heat) is carried by quantized
excitations. Thus any information depending on the recording of these excitationsmay be significantly hindered
by the eventual inefficiency of the detection scheme. So far, an experimental observation of such genuinely
quantum effects has remained elusive.

Here we propose a strategy that addresses both the practical and fundamental issues raised above
(figures 1(c) and 2). Our proposal is based on an effective two-level system coupled to an engineered thermal
bath already introduced by some of us [25, 26] to perform incoherent quantum computing [27]. A great interest
of this scheme is that it allows for the detection of the emission and the absorption of photons in the reservoir,
while still keeping itsMarkovian character. Eventually, both the heat exchanges and the quantum trajectory
followed by the system can be fully reconstructed. Note that a quite similar strategy is proposed in [28] to access

Figure 1. (a)Classical setup to test FT on a system  exchanging heat with a thermal bath  andworkwith an external operator .
The stochastic amounts of heat g[ ]Qcl andwork g[ ]W are reconstructed by recording the classical trajectory γ of the system. (b)  is a
quantum systemdriven through aHamiltonian ( )H td and interactingwith a heat bath through the Lindbladian  r[ ].Monitoring 
can randomly perturb its evolution and corresponds to an additional dissipative channel. (c)Proposed strategy:monitoring a reservoir
engineered to simulate a thermal bath.
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quantum trajectories of a forcedHarmonic oscillator. In the present proposal, theworking agent is a qubit,
which allows to study the role of coherences between the two energy eigenstates.

Wefirst introduce and validate the platformby checking JE in the simple case where the external drive does
not create any coherences in the system, and heat exchanges are perfectly detected.We then turn to the case of a
coherence-inducing drive for whichwe provide a full thermodynamic analysis. Genuinely quantum signatures
in thermodynamic quantities are evidenced, as well as how tomeasure them. Finally, we investigate the influence
of the detectorsfinite efficiency on the expression of themeasured FTs. The non-detected heat results in a
modified expression of JE that includes an extra term in the entropy production.We show that this term is
related to themeasurement record and can be computed from the available data.

2. Engineered thermal bath

Weconsider a systemwhose three levels are denoted by ñ∣m , ñ∣e and ñ∣g of respective energy > >E E Em e g (see
figure 2(a)). This three-level system is coupled to an electro-magnetic reservoir at zero temperature, such that
ñ∣m decays to state ñ∣e (resp. ñ∣e decays to ñ∣g )with a spontaneous emission rateΓ (resp. G-).We assume that ñ∣m is

ametastable level, such that G G- .We denote w = -( )E Ee g1 and w = -( )E Em e2 . In addition, the
atom isweakly driven by a laser resonant with transition w w+1 2 and of Rabi frequencyΩ, satisfying W G .
Due to its short lifetime, level ñ∣m can be adiabatically eliminated, resulting in an effective incoherent transition
rate G = W G+ 4 2 from state ñ∣g to state ñ∣e [25]. The states ñ∣e and ñ∣g define our effective qubit of interest
(figure 2(b)).Without external drive, this qubit relaxes towards some effective thermal equilibrium

characterized by the temperatureTeff , satisfying  =w- G
G
+

-
e k TB1 eff .

Inwhat followswe drive the qubit transitionwith aHamiltonian ( )H td , such that w1may depend on time:
the rates G can be adjusted accordingly to keep the effective temperature constant. These adjustments are
discussed in [25] and theMethods section at the end of thismanuscript. The dynamics of the effective qubit
densitymatrix ρ is ruled by themaster equation:


 r r s r s r= - + + G + G+ -˙ [ ( ) ] [ ] [ ] ( )†H H t

i
, , 30 d

where w s= ( )H 2 z0 0 with s = ñá - ñá∣ ∣ ∣ ∣e e g gz . Note that w0 and w1 are linked through the relation
w w= + á ñ - á ñ( ) ( ∣ ( )∣ ∣ ( )∣ )t e H t e g H t g1 0 d d .We have introduced the dissipation super-operator

 r r r= -[ ] { }† †X X X X X ,1

2
, with s = ñá∣ ∣g e and = +{ }A B AB BA, . Assuming that a photo-counter 1

(resp. 2) detects the photons emitted at frequency w1 (resp. w2), one can formulate the evolution of the qubit

Figure 2. (a)Engineered environment based on a three-level atom. The state ñ∣m has a very short lifetime due to spontaneous emission
in vacuumcharacterized by the rateΓ. The transition ñ∣e to ñ∣g (resp. ñ∣m to ñ∣e ) is associatedwith emission of a photon of energy w1

(resp. w2) detected by 1 (resp. 2). The transition ñ - ñ∣ ∣e g is driven by theHamiltonian ( )H td . (b)Equivalent description in terms
of an effective thermal bath. In the presence of aweak classical drive of Rabi frequencyΩ resonantwith the transition ñ  ñ∣ ∣m e , level
ñ∣m can be adiabatically eliminated. This result in an effective incoherent rate G = W G+ 4 2 associatedwith transition ñ  ñ∣ ∣g e

(dotted arrow), simulating a qubit coupled to an effective thermal bath of temperature w= G G- +( )T k logBeff 1 .
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state conditioned to themeasurement records of the detectors in terms of quantum jumps [29]. Assuming an
initial known pure state Y ñ∣ 0 of the qubit, and discretizing the time between ti and tf such as = +t t n tdn i (with
Î  n N0, and =t tN f ), the evolution of the system features a stochastic trajectory γ of pure states y ñg∣ ( )tn . The

trajectory is generated by applying a sequence of operators ( )M tn
, where( )tn stands for the stochastic

measurement outcome at time tn.
Namely, detecting a photon on detector 1 (resp. 2) at time tn corresponds to applying the operator

s= G-M td1 (resp. s= G+ †M td2 ) on the qubit state y ñg∣ ( )tn : remarkably in this scheme, the absorption of a
photon from the effective heat bath (figure 2(b)) is detectable and actually corresponds to the emission of a
photon of frequency w2 (figure 2(a)). If no photon is detected, the no-jumpoperator

= - - -( ) † †M tH t M M M Mid0
1

2 1 1
1

2 2 2 is applied. Note that this operator induces a non-unitary evolution

which captures the update of knowledge ensuing froman absence of detection of photon at time t [30]. The qubit
state is then renormalized. Each of these possible evolutions occurs at time tnwith probabilities

  y y= á ñ Îg g( )∣ ∣ ( ) { } ( )( ) ( )
†

( )p t M M t , 0, 1, 2 . 4t n t t nn n n

3. Stochastic thermodynamic quantities

Wenowdefine the thermodynamic quantities associatedwith the system’s quantum trajectory y ñg∣ ( )tn .
Following [24], the internal energy of the qubit at time tn is defined as y y= á ñg g g( ) ( )∣ ( )∣ ( )U t t H t tn n n n , with

= +( ) ( )H t H H t0 d the totalHamiltonian of the system. The variation of this quantity along trajectory γ splits
into three terms: there is awork increment d g ( )W tn due to theHamiltonian time-dependence and given by:

d y y= á ñ =g g g( ) ( )∣ ( )∣ ( ) ( ) ( )W t t H t t td , 0. 5n n n n nd

There is also a classical heat g[ ]Qcl corresponding to the energy exchangedwith the effective thermal bath under
the formof emitted or absorbed excitations of energy w ( )tn1 , where w ( )tn1 is the qubit effective transition
frequency defined as w = á ñ - á ñ( ) ( ∣ ( )∣ ∣ ( )∣ )t e H t e g H t g1 . This increment reads







d
w

w
=

- =
=g

⎧⎨⎩( ) ( ) ( )
( ) ( )

( )Q t
t t

t t
, 1

, 2.
6n

n n

n n
cl,

1

1

Finally, a third contributionmust be introducedwhenever the system’s dynamics creates coherences in the
ñ ñ{∣ ∣ }e g; basis. Defined as quantumheat in [24], its increment when a jump takes place reads:








d

w y
w y

=
á ñ =

- á ñ =
g

g g

g g
⎪

⎧⎨
⎩( )

( )∣ ∣ ( ) ∣ ( )
( )∣ ∣ ( ) ∣ ( )

( )Q t
t g t t

t e t t

, 1

, 2,
7n

n n n

n n n
q,

1
2

1
2

while if no jump takes place, it reads



d y y

y y

=- á - ñ

- á - ñ =

g g g

g g g

( ) ( )∣{ ( ) ( )}∣ ( )

( )∣{ ( ) ( )}∣ ( ) ( ) ( )

†

†

Q t t M M p t H t t

t M M p t H t t t

1

2
,

1

2
, , 0. 8

n n n n n

n n n n n

q, 1 1 1

2 2 2

The First Law expressed for the trajectory γ is then given by

g g g gD = - = + +g g[ ] ( ) ( ) [ ] [ ] [ ] ( )U U t U t W Q Q , 9f i cl q

where g[ ]O denotes the integrated quantity over thewhole trajectory.

4. Jarzynski equality in the quantum regime

Jarzynski’s protocol generally consists in preparing the qubit in the thermal equilibrium state
r = - ( )Z eH t k T

i i
1 Bi eff , then performing a strongmeasurement of the qubit energy state to project it on an initial

pure state ñ∣i of internal energyUi. The qubit is driven out of equilibriumuntil time tf when afinal strong energy
measurement is performed, projecting the qubit onto the final state ñ∣ f of internal energyUf . Note that the final
densitymatrix is in general different from the final thermal equilibrium state - ( )Z eH t k T

f
1 Bf eff .We have

introduced the initial and final partition functions Zi and Zf . The two strongmeasurements allow inferring the
qubit internal energy change gD = -[ ]U U Uf i, while the bathmonitoring allow recording the classical heat
exchange Qcl. As stated in the introduction (the demonstration is provided in section 5), the entropy produced
in a single trajectory γ equals g g gD = D - - D[ ] ( [ ] [ ] )s U Q F Ti cl eff [24, 31]. Inserting equation (9), it
becomes

4
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g g
g

D = - D +[ ] ( [ ] )
[ ]

( )s
T

W F
Q

T

1
. 10i

eff

q

eff

While fully compatible with former expressions for entropy production, equation (10) reveals two components
respectively involving the amounts of work and quantumheat exchanged. The second component represents a
genuinely quantum contribution due to the presence of quantum coherences in the qubit bare energy basis, that
quantitatively relates entropy production and energeticfluctuations. In the following, we show that this
quantum contribution can bemeasured in our setup.

In order to test the platform, we performed numerical simulations using the quantum trajectoriesmethod
explained at the end of section 2 and implemented using theQuTiP package [32]. Thefirst case considered is the
onewith drivingHamiltonian  w s= -( ) ( ) ( )H t t t2 zd 1 i for  t t ti f . Thework and heat exchanged in
this case take particularly simple forms, thework being due to time-varying energy levels, and the heat to
stochastic population changes induced by the bath.More precisely, we have d s= á ñg ( ) ( )W t t tdn z n and

d s s w= á ñ - á ñg +( ) ( ( ) ( ) ) ( )Q t t t tn z n z n ncl, 1 1 , while the quantumheat increment and the quantum component
of entropy production are zero. Note that this transformation boils down to the famous Landauer’s protocol
[8, 33]. Infigures 3(a) and (b), we have plotted the quantity á ñg

g
-D [ ]e s kBi andmean entropy production

gáD ñg[ ]si for different values of the coupling constant ò and temperatures. First note that, as expected, JE is
verified for the thermodynamic quantities previously defined. Also note that the entropy production vanishes
for  G- . This is also expected since, in this limit of weak driving, the transformation is quasi-static and the
qubit is always in equilibriumwith the heat bath. This situation corresponds to a reversible transformation and,
in our example, amounts to a large exchange of photons between the system and the bath before the energy of the
system significantly changes. Finally, entropy production drastically increases when   G-. In this case, very
few photons are exchanged and the system is driven far from equilibrium.

Wenow turn to a case with no classical counterpart by considering a drive
=( ) ( )H t g 2d s s+w w-( )†e et ti i1 1 for < <t t ti f and = =( ) ( )H t H t 0d i d f . This can be implemented by

coupling the atomwith a classical lightfield resonant with the transition w1. It gives rise to Rabi oscillations, i.e.
to the reversible exchange of energy (work) between the qubit and the field under the formof the coherent and
periodic emission and absorption of photons at the Rabi frequency g. Note that this scenario deviates from the
previous one as, here, work exchanges induce coherences and population changes in the qubit bare energy basis.

Figure 3. (a), (c)Evolution of the parameter á ñg
g

-D [ ]e s kBi and (b), (d) of themean entropy production gáD ñg[ ]si .We have considered
the case of Landauer’s drive  w s= -( ) ( ) ( )H t t t2 zd 1 i for (a), (b) and of a coherent drive  s s= +w w-( ) ( )( )†H t g 2 e et t

d
i i1 1 for

(c), (d). Both quantities are studied as a function of the respective driving strengths  G- and G-g . Insets: evolution of
s y s yá ñ = á ñg g( )∣ ∣ ( )t tz z along a single trajectory γ, in twodifferent regimes of the studied transformation. In (b) two different
temperatures are used: w =k T 0.3B1 eff (red ‘+’) and w =k T 3B1 eff (blue ‘x’). In (d), w =k T 3B1 eff .Parameters: Number of
trajectories =N 10traj

5 for (a), (b), = ´N 2 10traj
6 for (c), (d).
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According to our definitions, the coupling of this coherently driven qubit to the bathwill now give rise to both
classical and quantumheat exchanges, as well as a quantum component in the entropy production.

Wefirst check that JE is recovered from the detection events in this quantum regime, as it appears in
figure 3(c). This shows that our generalized thermodynamic quantities are properly defined. Amore thorough
analysis can be drawn fromfigure 3(d), wherewe plot the average entropy production as a function of the ratio

G-g . There, one can identify three different situations, two ofwhich corresponding to reversible
transformations (áD ñ gs 0i ). For a veryweak drive G-g , the qubit is always in a thermal equilibrium state.
This regime corresponds to reversible quasi-static isothermal transformations. In the other extreme, i.e. when

G-g , the drive is strong enough to induce almost unperturbedRabi oscillations. In this case, the
transformation is too fast to allow for a stochastic event to take place and heat to be exchanged, i.e. it is adiabatic
in the thermodynamic sense and once again reversible.

The intermediate scenario where ~ G-g gives rise to amaximal average entropy production.Note that, in
this situation, the thermodynamic time arrowhas a completely different nature from the classical case studied
before.Here, entropy ismostly produced by the frequent interruptions of the qubit Rabi oscillations caused by
the stochastic exchanges of photonswith the bath (a.k.a. heat) (inset offigure 3(d)). During such quantum
jumps, the quantum coherences induced by the driving process are erased, giving rise to the exchange of
quantumheat, and to entropy production of quantumnature. The deep connection between quantumheat and
entropy production is captured in equation (10)where they are quantitatively related, and infigure 4, where
both histograms concentrate around zero in the reversible regime, and take finite values in the irreversible
regime. Such a connection between quantum irreversibility and energy fluctuations has already been evidenced
in [24] in a different context, where stochasticity is caused by quantummeasurement instead of a thermal bath.
In both cases, quantumheat exchanges and entropy production appear as two thermodynamic signatures of the
same phenomenon, i.e. coherence erasure.

5. Finite detection efficiency

Up to now,we have assumed that the detection of heat is 100% efficient, i.e. that all the photons emitted by the
three level atom can be detected. In practice, state-of-the art devices only allow for a fraction η of these photons
to be indeed detected [34, 35]. Amore realistic scenario is now investigated by considering that the photo-
detectors have afinite efficiency η. As a consequence, between two detected photons, there exist several different

Figure 4.Distributions of the quantumheat increment (a), (b) and of the entropy produced along a single trajectory γ (c), (d) in the
case of a coherent drive. Parameters: G =-g 0.01 (a), (c) and G =-g 1 (b), (d). Number of trajectories =N 10traj

3.
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possible (orfictitious) trajectories of pure states, which cannot be distinguished by themeasurement record:
Each of these trajectories corresponds to a particular sequence of undetected emissions and absorptions. This
effect induces a decrease of the purity of the qubit state which has to be described by a stochastic densitymatrix
rg , rather than awavevector. In the limit where h = 0 (no detector), the evolution of this densitymatrix is
captured by equation (3), such that r r=g ( ) ( )t t .

For h< <0 1, the evolution of rg ( )t is still conditioned on the stochasticmeasurement outcome of the

detector g( )tn , that now corresponds to applying a set of super-operators  rh
g{ [ ]}( ) ( Î { }0, 1, 2 ).

Detecting one photon in detector 1 (resp. 2) between time tn and +t tdn corresponds to applying the super-
operator  r h r=h

g g[ ]( ) †M M1 1 1 (resp.  r h r=h
g g[ ]( ) †M M2 2 2 ), which occurs with probability

h r=h
g( ) { ( )}( ) †p t M M tTr1 1 1 (resp. h r=h

g( ) { ( )}( ) †p t M M tTr2 2 2 ).When no photon is detected, which occurs

with probability = - -h h h( ) ( ) ( )p p p10 1 2
, a super-operator decreasing the state purity is applied:



 

r r
h

s s r ss r

h s s r

= - - G + G

+ - G + G

h
g g g g

g

- +

- +

[ ] [ ( ) ( )] ( { ( )} { ( )})

( )( [ ] [ ]) ( ) ( )

( ) † †

†

t H t t
t

t t

t t t

id ,
d

2
, ,

1 d d . 11

0

Note that  h( )
0 is a linear interpolation between  r r= g[ ]( ) †M M0

1
0 0 applied in the perfect efficiency quantum

jump formalism and  r[ ]( )
0
0 which is the Lindbladian (right-hand terms in equation (3)). After applying the

super-operator 
h( ), the densitymatrix has to be divided by 

h( )p in order to be renormalized.

Generalized Jarzynski equality
Wenow extend the definitions of thermodynamic quantities into the finite efficiency regime. For the sake of
simplicity, we restrict the study to a drivingHamiltonian of the form  w s= -( ) ( ) ( )H t t t2 zd 1 i , such that no
quantumheat is exchanged.With the definitions proposed above, the increment ofmeasured classical heat
reads:







d
w

w
=

- =
=

h ⎧⎨⎩( ) ( ) ( )
( ) ( )

( )Q t
t t

t t
, 1

, 2.
12n

n n

n n
cl

1

1

Despite its apparent similaritywith thedefinition in theperfect efficiency regime, this energyflowdoes not capture
the entire classical heatflowdissipated in theheat bath, as it does not take into account the energy carried by the
undetected photons.One candefine the ‘measured’ entropy production g gD = D - - Dh h[ ] ( [ ] )s U Q F Ti cl eff ,
i.e. the entropy production computed from thedetectedphotons only.However, this quantity does not check JE as
evidenced infigures 5(a) and (b). The violation of JE is all the larger as the efficiency η is smaller, and JE is recovered
in the limit h  1, showing that our definitions for thefinite-efficiency case still hold in the perfect efficiency limit.
Remarkably, however, it is possible to formulate another equality taking into account thefinite efficiency,
converging towards the standard JEwhen h  1:

Figure 5.Test of Jarzynski equality atfinite efficiency, for a drive  w s= -( ) ( )H t t t 2 zd 1 i . (a)Purple ‘x’: measured parameter
á ñg

g
-D h [ ]e s kBi . Themagnitude of the deviation (positive for this transformation) increasesmonotonically when η decreases. Blue ‘+’:

the plotted parameter included the correction term s g[ ].We have used =N 10traj
4 trajectories γ and 104ficitious trajectories gF for

each trajectory. The error bars stand for the standard deviation divided by Ntraj . (b) Jarzynski’s parameter without correction for
h = 0.1 as a function of the temperature. The error bars are smaller than themarker size.Parameters: for (a) w =k T 0.1B1 eff ,
G =-t 0.5f ,  G =- 600. For (b): G =-t 1f ,  G =- 9, =N 10traj
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á ñ =g s g
g

-D -h
h ( )[ ] [ ]e 1. 13s kBi

This equality is reminiscent of JE, but it includes a trajectory-dependent correction term s gh [ ].We now
show that s gh [ ]can be computed from themeasurement record only.

The entropy creation along one trajectory γ is usually defined as g g gD =[ ] ( [ ] [ ])s k P PlogBi d r
r , where

g[ ]Pd is the probability of a trajectory γ in the direct protocol defined by ( )H td :

g = ñá

¬¾

ñáh

=
g

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

[ ] ∣ ∣ [∣ ∣] ( )( )
( )P p f f i iTr . 14

n

N

td i
1

n

Wehave introduced = - -p Z e U k T
i i

1 Bi eff the probability of drawing the initial pure state ñá∣ ∣i i of internal energy
Ui in the initial thermal distribution. The arrow indicates the order inwhich the sequence of super-operators is
applied. g[ ]Pr

r is the probability of the time-reversed trajectory g r corresponding to γ. It is generated by the
time-reversed drive -( )H t td f and the reversed sequence of super-operators 

h
g( )

( )
t
r,

n
[24, 36, 37], such that:

g = ñá

¬¾

ñáh

=
g

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

[ ] ∣ ∣ [∣ ∣] ( )( )
( )P p i i f fTr , 15

n

N

tr
r

f
1

,r
n

where = - -p Z e U k T
f f

1 Bf eff the probability of drawing the final pure state ñá∣ ∣f f of internal energyUf in thefinal
thermal distribution.

When h = 1, the time-reversed operators at time tn reduce to

 r r=g
w

g
-[ ]( ) ( )( ) ( ) †t M Me , 16n

t k T
1
1 ,r

1 1
n B1 eff

 r r=g
w

g[ ]( ) ( )( ) ( ) †t M Me , 17n
t k T

2
1 ,r

2 2
n B1 eff

 r r=g g[ ]( ) ( )( ) †t M M . 18n0
1 ,r

0 0

By inserting these expressions in equation (15), we express the ratio g g[ ] [ ]P Pr
r

d = g- D -D( [ ] )e U F k TB eff g[ ]eQ k TBcl eff ,
which is JE.

When h < 1, the ratio g g[ ] [ ]P Pr
r

d ismodified. It is useful to decompose  h( )
0 into three super-operators

conserving purity:

   = + +h h h h ( )( ) ( ) ( ) ( ), 190 00 01 02

with

 

 

 

r h r

r h r

r r

= -

= -

=

h
g g

h
g g

h
g g

[ ] ( ) [ ]

[ ] ( ) [ ]

[ ] [ ] ( )

( ) ( )

( ) ( )

( ) ( )

1 ,

1 ,

. 20

01 1
1

02 2
1

00 0
1

From this decomposition, we generate a set  g[ ]offictitious trajectories gF of pure states, compatible with γ: a
trajectory g gÎ [ ]F is built by applying a sequence of super-operators g{ }( )t nF n

, with  =g g( ) ( )t tn nF
if

g( )tn belongs to { }1, 2 (i.e. when a photon has been detected), and  Îg ( ) { }t 00, 01, 02nF
when g( )tn is zero

(no photon detected).  g[ ] thus contains  g[ ]3 0 fictitious trajectories, where  g[ ]0 is the number of time-steps
duringwhich no photon is detected.

The perfect-efficiencyfictitious trajectories are interesting because they can be time-reversed using the rules
equations (16)–(18), while their probability distribution checks g g= åg gÎ[ ] [ ][ ]P P Fd d

F
. Eventually, the

following equality is derived:







å

å å

å å

å

å

g

g

g

g

g g

=

=

=

=

´

g

g g

g g

g g

g

g g

g

g g

- D -D -

- D -D -

- -

h

h

[ ]

[ ]

[ ]

[ ]

[ ∣ ] ( )

[ ]

[ ]

( [ ] [ ])

( [ ] [ ])

[ ]

( [ ] [ ])

P

P

P

P

P

1

e

e

e . 21

r

F
r

F
U F Q k T

U F Q k T

F
Q Q k T

r

r

d

d

d

F F B

B

F B

cl eff

cl eff

cl cl eff
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Wehave introduced the conditional probability g g g g=[ ∣ ] [ ] [ ]P P PF Fd d d of thefictitious trajectory g gÎ [ ]F ,
given the detected trajectory γ. In order tofind equation (13), we nowdefine:


ås g g g= -h
g

g g- h[ ] ( ∣ ) ( )
[ ]

( [ ] [ ])Plog e . 22F
Q Q k T

d F Bcl cl eff

s gh [ ]can be numerically computed, based solely on themeasurement outcomes. The computation involves the
simulation of a sample of the trajectories g gÎ [ ]F for each trajectory γ. The corrected expression
á ñg s g

g
-D - h[ ] [ ]e s kBi is plotted infigure 5(a): JE is verified, showing that the experimental demonstration of a FT in

a realistic setup is within reach.
Our results explicit a new quantum–classical border in the thermodynamic framework, which is illustrated

infigure 6where the deviation from JE is studied as a function of the reservoir temperature. In the quasi-static
limit characterized by  G- (high temperature case), many photons are exchanged and the system is allowed
to thermalize before any significantwork is done: the transformation is reversible.We see fromfigures 6(a) and
(b) that in this limit, the effect of detection inefficiency in the entropy production ismerely towiden the spread
of the distribution but conserving its Gaussian shape around zero. The statistical properties of the distribution
are not affected, even ifmany photons aremissed, and JE is verified (figure 5(b)). This corresponds to a semi-
classical situationwhere, even though the exchange of heat is quantized, the overall thermodynamic behavior of
the system is equivalent to a classical ensemble. In this limit, there is no significant information loss due to the
undetected photons.

On the other hand, as soon aswork and heat are exchanged at similar rates  ~ G-, the system is brought out
of equilibrium and the transformation is irreversible. In this limit, few photons are exchanged before a non
negligible amount of work is done on the system. Eachmissed photon represents, then, a significant information
loss, such that themeasured distribution of entropy production is severely affected (see figures 6(c) and (d)).
Such information loss is quantifiable by the violation of the non-corrected JE, and is a direct consequence of the
quantization of heat exchanges.

Finally, we emphasize that the derivation of the generalized Jarzynski equality (13) presented in this section is
also valid for a drive ( )H td which does not commutewithH0 like the second drive considered in section 4.

Figure 6.Distributions of the entropy production during the transformation for h = 1 in (a), (c) and h = 0.3 in (b), (d). (a) and (b)
Correspond to high temperature (w w = ´ -k T 7 10B1 eff 1

3) and therefore a largemean number of photons exchanged per
trajectory  g gá ñ = - á ñg g[ ] [ ]N 0 . The inserts show the same distributionwith rescaled axes to evidence the similarity of shape.
(c) and (d)Correspond to a lower temperature (w =k T 1B1 eff ) and a few photon exchanged. Parameters: G =-t 1f ,  G =- 9,

=N 10traj
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6. Conclusion

Wepresented a realistic setup based on a driven three-level atom allowing to simulate a qubit in equilibrium
with an engineered reservoir, giving full access to the distribution of the heat dissipated by the qubit.We
exploited this scheme to characterize irreversibility in the case of a coherently driven qubit, coupled to a thermal
bath: we evidenced genuinely quantum contributions to the entropy production, and showed these
contributions do have some energetic counterpart. In a second part, we took into account finite detection
efficiency and evidenced deviations from Jarzynski equality that can be tested and corrected.We derived a
modified equality, involving only quantities computed from the finite-efficiencymeasurement record. This
work opens avenues for the experimental verification of FTs in quantumopen systems.Owing to the versatility
of the scheme, various reservoirs could be simulated, including non-thermal ones. Furthermore, quantitative
relations between entropy production and energyfluctuations are the basis for energetic bounds for classical
computation [33, 38, 39]. In this workwe study situations where equivalent relations can be derived in the
quantum regime, providing new tools to explore energetic bounds for quantum information processing.
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Appendix

A.1. Simulating a heat bathwith an engineered environment
The rates G induce the same dynamics as a heat bath, if and only if

w
w

w
= -G + -

+

⎛
⎝⎜

⎞
⎠⎟˙ ( ¯ [ ( )] ) ( ) ¯ [ ( )]

¯ [ ( )]
P n t P t

n t

n t
2 1

2 1
.e e0 1

1

1

Wehave introduced the population of the excited qubit’s state r= ñá( [ ( )∣ ∣]P t e eTre , themean number of
thermal photons in the effective bath w = -w -¯ [ ] ( )n e 1k T 1B eff and G0 the spontaneous emission rate of the
qubit. The dynamics induced by the engineered environment is:

= - G + G -
G

G + G
+ -

+

+ -

⎛
⎝⎜

⎞
⎠⎟

˙ ( ) ( )P P t .e e

By identification, we find the conditions:

w wW = G +( ) ( ¯ [ ( )] ) ¯ [ ( )] ( )t n t n t1 , 230 1 1

wG = G +-( ) ( ¯ [ ( )] ) ( )t n t 1 . 240 1

Equation (23) can be fulfilled by tuning accordingly the intensity of the laser drive. Equation (24) requires to tune
the incoherent rate of transition from ñ∣e to ñ∣g . This task can be performed by embedding the three level atom in
a quasi-resonant optical cavity and tuning the frequency between state ñ∣e and ñ∣g e.g. with a non-resonant laser
(Stark effect) according to a protocol w¢( )t1 designed to fulfill equation (24). Note that the implemented protocol
w¢( )t1 is in general different from the target protocol w ( )t1 which defines the constraints equations (23) and (24)
on the qubit dynamics.

A.2. Expression of the quantumheat
For a general drivingHamiltonian *d s m s m s= + +( ) ( ) ( ) ( ) †H t t t tzd , the quantumheat d ( )Q tnq exchanged
when a jump takes place reads (for h = 1):








d

w m s
w m s

=
- á ñ =

- - á ñ =
g

g

⎧⎨⎩
( ) ( ) ( ( ) ( ) ( )
( ) ( ) ( ( ) ( ) ( )

Q
t P t t t t

t P t t t t

2 Re , 1

2 Re , 2.

g n

e n
q

1

1

Between two photon detections, the quantumheat increment reads:

* 

 

d s m m
w

=- G - G á ñ -
- G - G =g

- +

- +

( ) ( ) ( )( ( ) ( ) ( ) ( ))
( )( ) ( ) ( ) ( ) ( )

Q t t t P t t P t

t tP t P t t

d Re

d , 0. 25

n n g n n e n

n e n g n n

q

1
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Note that d ( )Q tnq is zerowhen the qubit state has no coherence in ñ - ñ∣ ∣e g basis, such that s sá ñ = á ñ =† 0,
=( ( ) ( )) ( )P t P t, 1, 0e n g n (resp. ( )0, 1 )when =g( )t 1n (resp.  =g( )t 2n ): the qubit has zero probability to

absorb a photon at time twhen =( )P t 1e n , and zero probability to emit a photonwhen =( )P t 1g n .
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