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Abstract

We study (2+1)-dimensional single step model for crystal growth including both deposition and
evaporation processes parametrized by a single control parameter p. Using extensive numerical
simulations with a relatively high statistics, we estimate various interface exponents such as roughness,
growth and dynamic exponents as well as various geometric and distribution exponents of height
clusters and their boundaries (or iso-height lines) as function of p. We find that, in contrary to the
general belief, there exists a critical value p. ~ 0.25 at which the model undergoes a roughening
transition from a rough phase with p < p in the Kardar—Parisi-Zhang universality to a smooth phase
with p > p, asymptotically in the Edwards—Wilkinson class. We validate our conclusion by
estimating the effective roughness exponents and their extrapolation to the infinite-size limit.

1. Introduction

Roughening transition from a smooth phase with finite width to a rough one with diverging width is one of the
most interesting properties of nonequilibrium models for interfacial growth [1, 2]. A class of nonequilibrium
growth processes described by the Kardar—Parisi—Zhang (KPZ) equation [3], is known to be always rough in
dimensions d < 2 while exhibits a roughening transition for d > 2 [4]. The KPZ equation is given by

ah(ai’—t) — V% % IVhE + n(x, 0), m

where the relaxation term is caused by a surface tension v, and the nonlinear term is due to the lateral growth
with strength A. The noise 7is uncorrelated Gaussian white noise in both space and time with zero average i.e.,
(n(x, t)) = 0and (n(x, )N/, t')) = 2D&4(x — x')6(t — t'). The model produces a self-affine interface f (x)
whose probability distribution function remains invariant under scale transformation h(x) =~ b~*h(bx) (=
means statistically the same) with roughness exponent o > 0. A possible way to classify various surface growth
models is based on scaling behavior of surface width, w(t, L) = \/ ([h(x, t) — (h)]*) where (--) denotes spacial
averaging. For a nonequilibrium growth surface, the width is expected [5] to show the scaling form

w2(t, L) ~ L*%f (t/L?), in which the scaling function fusually has the asymptotic form f (x — oco)= constant
and f (x — 0) ~ x27. The time t, when the width first saturates has the scaling ansatz t; ~ L? with the dynamic
exponent z = «/f3. The universality class of a growing interface can then be given by two independent
roughness avand growth (3 exponents. For KPZ equation, due to additional scaling relation o + z = 2, there
remains only one independent exponent, say & whose exact value is only known in 1d [3] with « = 1/2.1n 2d,
the exponent is available only by various simulations and theoretical approximations ranging from o = 0.37 to
0.4 [6-8]. Some authors [9—12] have also argued that it is possible to apply Schramm-Loewner evolution [13]
based on statistics and fractal properties of iso-height lines of saturated 2d surfaces to classify surface growth
processes as well.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Ind > 2, there exists a critical value A, for the nonlinearity coefficient in equation (1) which separates flat
and rough surface phases [14, 15]. In the weak coupling (flat) regime (A < A.) the nonlinear term is irrelevant
and the behavior is governed by the A = 0 fixed pointi.e., the linear Edwards—Wilkinson (EW) equation [16]
whose exact solution is known: « = (2 — d) /2 and z= 2. In the more challenging strong-coupling (rough)
regime (A > \.), where the nonlinear term is relevant, the behavior of the KPZ equation is quite controversial
and characterized by anomalous exponents. There is, however, a longstanding controversy (see e.g., [4, 17] and
references therein) concerning the existence and the value of an upper critical dimension d. above which,
regardless of the strength of the nonlinearity, the surface remains flat. The aim of this paper is to investigate the
possibility of roughening transition and universality of 2d single step discrete growth model (SSM) which, to our
best knowledge, has not been addressed before. A coarse-graining derivation of the SSM surface dynamics in (1
+1)-dimensions has revealed [18] that it belongs to the KPZ universality class. Although there is no rigor
theoretical support for this claim in higher dimensions, it is believed to be true in any spatial dimension d > 1as
well. However, our study can shed light on the controversial relation between SSM and KPZ model as well as the
roughening transition of the KPZ equation in (2+1)-dimensions.

Various discrete models have been suggested in the past to describe surface growth processes (see e.g.,
[19,20]). Among them, here we study the class of 2d single step models (SSMs) [21-24], akind of solid on solid
models [25] which is defined as follows: the growth starts from an initial condition
h(i, j; t=0) = [1 + (= 1)*]/2withl < i< Lyand1 <j < L,, onasquarelattice of size L, X L,.Ateach
step onesite (i, j) is randomly chosen, if h(i, j) is alocal minimum then it is increased by 2 with probability p,
(deposition process), and if it is a local maximum then its height is decreased by 2 with probability p (desorption
or evaporation process). Such definition guarantees that at each step, the height difference between two
neighboring sites would be exactly 1. Overhanging is not allowed in this model and the interface will not develop
large slopes. Without loss of generality, we consider p, + p = 1 thatleaves only one control parameter
p=p, < 0.5(up-downsymmetryswitches p, < 1 — p )whichisbelieved to play the same role as the
nonlinearity coefficient in the KPZ equation (1)as A < (p — 0.5).

This model has been investigated in the past, claiming that for p = 0.5and p = 0.5, it belongs to the EW
and KPZ universality classes, respectively [22—24]. Plischke et al [22] have shown that for p = 0.5in 1d, this
model is reversible and can be exactly solved by mapping to the kinetic Ising model. They have found o = 1/2
and z= 2. Furthermore, for p = 0.5 they have mapped the interface model onto the driven hard-core lattice gas,
and focused on the average slope of the interface. In an approximate way, they have then shown that the equation
of the average slope is in agreement with the Burgers’s equation [22], thus claiming that the universality class is
that of KPZ equation for p = 0.5. They have also simulated this model for p = 0.25, and claimed that in the
limit of large system sizes L, the exponent z converges to zX"? = 3 /2 in 1d. Simulations by the same authors on
SSMin 2d [23], have provided the scaling exponents o & 0, z = 2 for p = 0.5,and o = 0.375, z ~ 1.64 for
p=0.Kondev et al [24], have also simulated SSM on a square lattice of size L = 128, and confirmed that the
model for p = 0.5and p = 0.1are consistent with the EW and KPZ classes, respectively. However, they found
that p = 0.3 consistently resembles p = 0.5, contrary to the claims in [22], and they attributed their finding to a
slow crossover from initially Gaussian to asymptotic KPZ behavior. A generalized SSM has also been
investigated in [26—28] which exhibits a dynamical crossover characterized by a shift in the early-time scaling
exponent from its KPZ value to the EW value. This has been first explained in [29, 30] by showing that this
behavior is due to a change in the sign of the nonlinear parameter A. It is also known that the (2+1)-dimensional
anisotropic KPZ equation with lambdas of opposite sign does generate EW, rather than KPZ scaling
behavior [31, 32].

In this paper we are going to revisit the model in (2+1)-dimensions and present the results of extensive
simulations with relatively large system sizes and higher precision. We will estimate various geometrical
exponents as function of the control parameter p in the two following sections 2 and 3. We will estimate the
roughness exponent by extrapolating the results to the infinite-size limit in section 4 and come to the conclusion
in section 5 that there exists a critical value p. at which SSM exhibits a roughening transition from a rough phase
with p < 0.25 toasmooth phase with p > 0.25.

2. Interface exponents

In this section we present the first part of our results obtained from extensive simulations on a square lattice of
size 50 < L < 700, in which the averages for w (¢, L) are taken over more than 200 independent runs. We
estimate the roughness « and dynamic z exponents by examining the scaling laws i.e., w; ~ L (where w;is the
saturated width) and ¢, ~ L7, respectively. We use the system size L = 4000 to estimate the growth exponent by
using the scaling ansatz w (t) ~ t7 for t < t,. To compute various geometric exponents of iso-height lines and
height clusters in the next sections, the averages are taken over 10* height configurations on a square lattice of
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Figure 1. The rescaled exponent /g as a function of the control parameter p for different values of g = 1, 2, 3. For self-affine
surfaces «; /q has to be independent of g which is the case here, within the error bars, for the SSM grown interfaces.

size L= 1000. To further justify our conclusion, we perform simulations on a rectangular geometry of size

Ly = 3L,and L, = Lwith100 < L < 1000 to measure the winding angle statistics of the iso-height lines and

their fractal dimensions. One time step is defined as L* number of trials for particle deposition or evaporation.
To check the efficacy of our simulations, let us first estimate the roughness exponent « from scale-dependent

curvaturein the saturation regime t > t,. The curvature C,(x) at position X on scale b is defined as follows [24]

M

G = ) [h(x + be,) — h()], ©))

m=1

where the offset directions {e,,}*_, are a fixed set of vectors summing up to zero. In our case on a square lattice,

{e,,} are pointing along the { 10} type directions. For a self-affine surface, the curvature is expected to satisfy the
following scaling relation [24]:

(Cp(x)1) ~ b* with a; = qa, 3)

where (--) denotes spatial averaging. To check this relation, simulations are carried out on square lattice of size

L = 10° with more than 10* number of height configurations for different values of p. We apply periodic
boundary conditions in both directions. The estimated rescaled exponents o, /g for three different values of g
are plotted in figure 1 as a function of the control parameter p. We find that the three curves for g = 2,3 and 4 are
independent of g (within the error bars), confirming the self-affinity of the height profiles. Since the curvature
vanishes at p = 0.5 for ¢ = 3, the point is excluded in the plot. The other important feature observed in figure 1 is
the crossover between two KPZ and EW universality classes with o ~ 0.38 and v & 0, respectively. This is the
main goal of the present study to clarify if there is a roughening transition at a critical control parameter p. = 0
in the sufficiently large system size limit in 2d.

The interface exponents «, 3 and zas function of p are shown in figure 2 (each exponent is measured
independently). For the two limiting cases at p = 0 and p = 0.5, the exponents are again in good agreement with
those for KPZ and EW universality classes, respectively [6—-8]. However, we find that except for the intermediate
values around p = 0.25, the plots suggest that the exponents are approximately equal within the two disjoint
intervals p < p.and p > p. This observation can be a benchmark of roughening transition at p ~ 0.25 which
calls for a more delicate analysis. In the following sections we present various observations of different geometric
exponents as function of p which confirm our observation. We will then justify our finding by estimating
effective exponents and extrapolations to the infinite system size.

3. Statistics of the height clusters and iso-height lines

In this section we present the results of our further analysis on the fractal properties of the height clusters and
iso-height lines as well as the scaling properties of the distribution of the cluster size and their perimeter. We find
that the corresponding exponents show characteristic behavior below and above p, ~ 0.25, unraveling further
information about the self-affinity of the interfaces [24, 33].

Consider an ensemble of height configurations in the saturated regime. For each configuration, a cut is made
ataspecificheight hs = (h) + 6/ ([h(x) — (h)]?) := 0, where §is a small real number indicating the level of
the cut. Each island (or cluster height) is defined as a set of nearest neighbor sites with positive height identified
by the Hoshen—Kopelman algorithm [34]. Let us first consider § = 0, i.e., the cut is made at the average height
level. The iso-height lines (or loops) can be uniquely determined by the algorithm explained in [35]. In order to
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Figure 2. Interface exponents including roughness o, growth Fand dynamic z exponents as function of p. The dynamic exponent is
computed directly from the scaling relation ¢, ~ L? (up-triangles) and by using the relation z = a,/3 (right-triangles). The rather
high error bars for the latter are caused by the fact that both the roughness avand growth 3 exponents vanish for p > 0.25.

p=20.3

p=04

Figure 3. Snapshots of positive height clusters for different values of p on a square lattice of size L = 200. The cut is made at the average
height.

illustrate how islands behave as function of p, the snapshots of the positive height clusters are shown in figure 3
for p =0, 0.1, 0.2, 0.3, 0.4 and 0.5. As it is evident in the figure, the islands are more compact for lower p, and
become more porous and scattered for larger p. This picture is also in agreement with the cluster geometries
previously observed [10] for KPZ and EW models.

3.1. Fractal dimensions

Self-similarity of the clusters offers a scaling relation between the average mass M of a cluster and its radius of
gyration R, i.e., M ~ R, with D, being the fractal dimension of clusters. The average length / of a cluster
boundary also scales with it is radius of gyration ras | ~ rf [24, 33]. Moreover, the relation between the average
areaa ofaloop and it is perimeter is given by [ ~ a% where d, = dr /2 (for compact clusters). To estimate these
fractal dimensions, we generate more than 10* samples of height configurations on a square lattice of size
L=1000. As an example, we present the data for the scaling of () in figure 4 for various values of p, whose slope
in the log—log scale gives the corresponding fractal dimension. The estimated exponents are reported in figure 5.
We find that all these fractal dimensions cross over between two limiting KPZ and EW classes [10, 12, 36]. We
have also checked that the exponents do not depend on the level § of the cut, although the range of scaling slightly
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Figure 4. The average length of a cluster boundary versus the average radius of gyration on square lattice of size L = 1000. Averages are
taken over more than 10* height configurations.
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Figure 5. Fractal dimensions of the height clusters and their boundaries as function of p.

does [37]. In order to see the finite-size effects, we have also measured the exponents by going to the larger sizes
up to L = 3000 with a number of 2500 independent samples, and found similar results within the error bars.

3.2. Distribution exponents

We now look at the distribution functions of different statistical observables of the height clusters and contours,
such as the contour length distribution n (1), cluster size distribution (M) and distributions for the radius of
gyration of the contours n(r) and clusters n(R). We confirm that all these distributions follow the scaling forms
e, n(l) ~ 7", n(M) ~ M™™,n(r) ~ r~"and n(R) ~ R™®[24,33] (see figure 6 for an example). All
distribution exponents are summarized in figure 7 for § = 0 as function of p which again confirm the crossover
behavior. The exponents 7z and 7; coincide within the error bars. In the following, we investigate dependence of
the distribution exponents on the level ¢ of the cut as previously noted by Olami et al [38].

3.3. Dependence of the exponents on §

All previous results were obtained at the mean heightleveli.e.,at 6 = 0. Let us now examine their dependence
on the level of the cut. Our analysis reveal that the fractal exponents such as fractal dimension of contours drand
clusters D,, do not depend on 4. Nevertheless, our results show that the distribution exponents do change with é.
As shown in figures 8 and 9, the exponents show a bowl-like functionality to 6 for p > 0.25 while for p < 0.25,
they monotonically decrease with 6.

3.4. Winding angle statistics

Here we present the results of independent extensive simulations of SSM on a strip geometry of size L, x L,
with L, = 3L, and L, = L. For each height configuration, we find all spanning clusters atlevel 6 = 0iny
direction, and assign corresponding coastlines that connect the lower boundary to the upper one. We consider
L = 100, 200, 300, 400, 500 and 1000, and examine the scaling relation / ~ L%, to compute the fractal




I0OP Publishing NewJ. Phys. 19 (2017) 063035 H Dashti-Naserabadi et al
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Figure 6. Distribution function of log r versus r (the average radius of gyration) on square lattice of size L = 1000, for various values of
p- The slope gives the exponent 7, — 1shown in figure 7. For more clarity, the plots are suitably shifted.
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Figure 7. Various distribution exponents (see the text) as function of p.
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Figure 8. The island-size distribution exponent as a function of the level cut ¢ for various p.

dimension dyof the spanning curves (figure 10). We could gather a number of 10* spanning curves from an
approximately 7500 independent saturated height profiles.

We compute the winding angle 6 of the curves as defined by Wieland and Wilson [39]. For each curve we
attribute an arbitrary winding angle to the first edge (that is set to be zero). The winding angle for the next edge is
then defined as the sum of the winding angle of the present edge and the turning angle to the new edge measured
in radians. The variance of the winding angle is believed to behave like (§?) ~ a + b In L [39], where for
conformal curves b = 2(dy — 1). We have computed the variance of the winding angle for an ensemble of
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Figure 9. The distribution exponent for the length of the height cluster boundaries as a function of the level cut 6 for various p.

L

Figure 10. The average length [ of a spanning curve on a strip geometry versus the width L, = L ofthe strip. The slopes give the fractal
dimension of the corresponding iso-height line for various p.

InL

Figure 11. The variance of winding angle versus logarithm of the lattice width for various p.

spanning iso-height curves for different p as function of lattice size L, and confirmed that is linearly proportional
to its logarithm with a universal coefficient b which depends on p (see figure 11). The two computed fractal
dimensions from direct measurement (! ~ L%)and df = b/2 + 1,are plotted in figure 12 for a comparison.
They almost coincide for p > 0.25 but slightly deviate for p < 0.25. They both however present a crossover
behavior around p. = 0.25.
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Figure 12. The fractal dimensions obtained from the scaling relation | ~ L}i (squares) compared with the one derived from the slopes
of the linear plots in figure 11 (circles).
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Figure 13. The effective roughness exponent cg as function of 1/L for several values of p. The error bars are less than 10>, For
p < 0.25and p > 0.25, q.f converges to aXP? ~ 0.38 and oW ~ 0, respectively.

4. Effective exponents

In the previous section we have shown that various geometric exponents have a crossover behavior between two
limiting KPZ and EW classes which seems to approach a sharp step-like roughening transition around p. ~ 0.25
in the thermodynamic limit. Although we have used relatively large system sizes with adequate statistics in our
computations, there may however exist systematic deviations from the true thermodynamic values. In order to
eliminate the systematic errors, we compute size-dependent effective roughness exponent [40] for various values
of p.

The effective roughness exponent g (L), is defined by the successive slopes of the line segments
connecting two neighboring points of (Ly_ 1, w;(Lx_1)) and (L, w; (L)) in which w; (L) stands for the saturated
width for an SSM grown interface on a square lattice of size L; averaged over more than 2 x 10% independent
runs,

In[w,(Ly) /Ws (Lr-1)] )

eft (Lx) =
et (L) In[L/Lk—1]

(C))

Itis plotted against 1 /L in figure 13 to extrapolate the roughness exponent in the infinite-size limit. We find that
the roughness exponents for p < 0.25 converge to the known KPZ roughness exponent ~0.38 and for
p > 0.25 asymptotically converge to the EW value ~0 in the limit L — oo.

In order to further strengthen our conclusion on existence of a roughening transition around p ~ 0.25, let
us now focus our attention on two boundary valuesi.e., p = 0.3 and p = 0.2 around p.. We follow the analysis
presented in [41] in which a careful finite-size scaling analysis of the critical exponents, and an accurate estimate
of the first three moments of the height fluctuations, are used to estimate the roughness exponent of the
restricted solid on solid model in d = 2 with a rather high accuracy. To this aim, we run independent extensive
simulations of the SSM on square lattices of various linear size L = 60, 80, 120, 160, 240, 320, 480, 640, 960, 1280,
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Figure 14. The effective roughness exponent a.g as defined in equation (5) as a function of 1 /L for two boundary values p = 0.2 (main
top) and p = 0.3 (main bottom) around the critical value p. ~ 0.25. The error bars are less than 1072, In the insets the cumulant of
kurtosis R, is presented as a function of the skewness R; for various sizes. The statistics of the corresponding grown surfaces for
p < 0.25and p > 0.25 converges to the KPZ and EW universality classes, respectively.

1920, 3840 for p = 0.3 (which is a more challenging case), and also all sizes except L = 3840, for p = 0.2. For each
Land p we generate more than 10* samples for averaging. Statistical ssampling is adopted at steady state regime
(t > t,). Foragiven sample at time ¢ > t,, we measure the first three connected moments
w,(L, t) = (I/LZ)ZiL;(hi(t) — h)"where h = (I/LZ)ZZ1 hi(t)and n = 2, 3, 4. Then we define the
asymptotic (in time) estimate as w, (L) = - l - ;;’ tST w, (L, t)for T > t,.

To appreciate more clearly the finite-size effects on «, we evaluate the effective roughness exponent c.g with
aslight modification of equation (4) [41] as

log (w(L) /w2 (L")

el = = oL/ L)

)

where L/L' = 2. Wealso compute the cumulants of skewness R; = w3/ w23/ % and kurtosis R, = wy /w3 For
the Gaussian (EW) surfaces these quantities are known tobe R; = 0 and Ry = 3.

Figure 14 summarizes the results of our computations for p = 0.2 (top) and p = 0.3 (bottom). For p =0.2,
Qg clearly approaches to that of the KPZ universality class. The ratio of the cuamulants R, versus R; is also
plotted in the insets of figure 14. For p = 0.2 a significant departure from a normal distributed fluctuation of the
surface is observed.

In contrast to the observed behavior for p = 0.2, our data for p = 0.3 strongly supports our previous
conclusion that the SSM for p > 0.25 belongs to the EW universality class, as displayed in figure 14 (bottom).
The effective roughness exponent asymptotically converges to that of the EW class in the limit L — oo. As
shown in the inset, the ratio of the cumulants R, versus R; are more consistent with a normal distribution where
we find Ry = 3.00(3). Although R; increases for small system sizes but it starts decreasing for larger L (note the
direction of arrows for the increasing system size).

In the context of surface kinetic roughening, a very important quantity is the two-dimensional height
structure factor i.e., S(q) = <|f1(q) ), where h(q)is the space Fourier transform of h(x) — . This function has
many advantages over real-space correlation functions, specially in the presence of crossover behavior and
anomalous scaling [42] where is frequently shown to be less affected by crossover effects. As a final and
independent cross-check, we have carried out simulations for p = 0.3 (which is more controversial) of sizes
L =640 and 960 to compute S(q) and estimate the corresponding roughness exponent from its scaling behavior
Le., S(q) ~ |q72 ) [24].

As displayed in figure 15, we find the roughness exponent o = 0.03(3) for p = 0.3 which is, to a good extent,
in agreement with the EW universality class.

Therefore, all our computations indicate that there is an unexpected roughening transition for single step
growth models in (2+1)-dimensions around p. ~ 0.25.

Itis worth mentioning that in the context of the related problem of directed polymers in random media,
member of the KPZ universality class, Imbrie and Spencer [14] have provided a rigorous mathematical proof
that the model in (2+1)-dimensions, as in (1+1)-dimensions, is strictly strong-coupling and super-diffusive
(z < 2), exceptat the isolated point of infinite temperature, where the wandering is simply entropic (i.e.,z= 2),
analog of the EW stochastic growth behavior. For higher dimensions i.e., transverse substrate dimensions of
d = 2 + ¢, afinite-temperature roughening transition does exist, but for € = 0, there is a complicated multi-
critical behavior involving very long, exponentially divergent time scales. This has been studied in an impressive
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Figure 15. Height structure factor S(q) as a function of q for p = 0.3. The comparison between the scaling ansatz S(q) ~ |q|72(!+)
and the best fit to our data (dashed line) gives o = 0.03(3), in a good agreement with the EW universality class.
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Figure 16. Surface width data versus time for various values of p around p = 0.25, compared with the KPZ (longer-dashed line) and the
EW scaling (shorter-dashed line). The data are shifted appropriately upwards for clarity.

series of works [15,43,44] on (d + 1)-dimensional hypercubic-stacking (HCS) models withd =1, 2 and 3, in
which the authors show that a nonequilibrium surface-roughening transition occurs in d = 3, butin d = 2 they
have only observed a smooth crossover behavior rather than a true roughening transition. The reason for this
discrepancy may be as follows. HCS model and SSM are identical onlyin d = 1, and for d > 1 the microscopic
growth rules are different since the height difference of neighboring columns in HCS model becomes 1 and —d.
This imposes additional up/down asymmetry in favor of the KPZ fixed point which delays the asymptotic
convergence and thus the observation of a true roughening transition in the parameter space. It is intriguing that
amore careful look at the presented data in figure 11 of [44] for (2+1)-dimensional HCS simulations shows a
real compression of the effective exponents for p > 0.25 which may be the signature of a roughening transition
in the asymptotic limit. In order to verify this postulated asymptotic convergence in 2d SSM, we carried out new
simulations to produce the same data as in the figure 11 of [44] for 2d SSM of rather large sizes up to L = 2! for
p=0.35and L = 2 for other values of p. As shown in figure 16, our data confirms again the existence of a
roughening transition around p ~ 0.25.

However, the discrepancy with [14] which establishes the marginality of d = 2 case, could arise from some
peculiarity of the microscopic growth rules of these discrete growth models in (2+1)-dimensions whose delicate
understanding will be the line of our future research.

There also exist some known results that can additionally be tested, which will be the purpose of our future
work. Most notably, it is known that (2+1)-dimensional KPZ interfaces display one-point height fluctuations
described by a (generalized) Tracy—Widom probability distribution function [45—47], which should hold for
p < 0.25and be falsified for p > 0.25.
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5. Conclusion

We have studied the SSM for crystal growth in (2+1)-dimensions which admits both deposition and
evaporation processes parametrized by a single control parameter 0 < p < 0.5. There is a general consensus
that the model belongs to the KPZ universality class for p = 0 and EW class for p = 0.5. However, various studies
in the past have considered the control parameter (p — 0.5) proportional to the nonlinearity coefficient A in the
KPZ equation (1) and concluded that the model asymptotically belongs to the KPZ universality class for

all p = 0.

In this paper we have presented the results of extensive simulations and obtained satisfactory evidence which
rule out the previous claims. Extrapolations to the infinite-size limit reveal that there exists a critical value
p. ~ 0.25 around which the model exhibits a roughening transition from a rough phase with p < 0.25in the
KPZ universality to the asymptotically smooth phase with p > 0.25 in the EW universality class.

Our study opens a new stimulating challenge in the field and calls for further theoretical investigations of the
model. An interesting question arises concerning the upper critical dimension d,, of the model and its relation to
the same controversial problem in the KPZ model which is the main subject of our future work. However,
according to the previous studies [43, 44, 48] on HCS model, the upper critical dimension should be d,, > 3.
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