New jou r“al Of PhYSics Deutsche Physikalische Gesellschaft @ DPG I0P Institute of PhySiCS

The open access journal at the forefront of physics

PAPER « OPEN ACCESS You may a|so ||ke
. . . - Implementation of weak measuremen
Qubit state tomography in a superconducting —“—Lmdg'nﬁcanéé xmh_ihlewkeak coherent
. . . an optomec anical system
circuit via weak measurements Gang Li and Wen Yang

- Weak measurements of trajectories in
guantum systems: classical, Bohmian and

sum over paths
A Matzkin

To cite this article: Lupei Qin et a/ 2017 New J. Phys. 19 033036

- Sequential measurements of non-
commuting observables with quantum
controlled interactions
Holger F Hofmann

View the article online for updates and enhancements.

This content was downloaded from IP address 18.218.234.83 on 04/05/2024 at 00:51


https://doi.org/10.1088/1367-2630/aa646e
/article/10.1088/1361-6455/ac09c2
/article/10.1088/1361-6455/ac09c2
/article/10.1088/1361-6455/ac09c2
/article/10.1088/1751-8113/48/30/305301
/article/10.1088/1751-8113/48/30/305301
/article/10.1088/1751-8113/48/30/305301
/article/10.1088/1367-2630/16/6/063056
/article/10.1088/1367-2630/16/6/063056
/article/10.1088/1367-2630/16/6/063056

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
7 December 2016

REVISED
20 February 2017

ACCEPTED FOR PUBLICATION
3 March 2017

PUBLISHED
27 March 2017

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 19 (2017) 033036 https://doi.org/10.1088/1367-2630/aa646e

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Qubit state tomography in a superconducting circuit via weak
measurements

Lupei Qin', Luting Xu', Wei Feng” and Xin-Qi Li'

' Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, People’s Republic of
China
?  Department of Physics, Tianjin University, Tianjin 300072, People’s Republic of China

E-mail: lixingi@bnu.edu.cn

Keywords: quantum weak measurement, weak value, state tomography

Abstract

In this work we present a study on a new scheme for measuring the qubit state in a circuit quantum
electrodynamics (QED) system, based on weak measurement and the concept of weak value. To be
applicable under generic parameter conditions, our formulation and analysis are carried out for finite-
strength weak measurement, and in particular beyond the bad-cavity and weak-response limits. The
proposed study is accessible to present state-of-the-art circuit QED experiments.

1. Introduction

In quantum mechanics, the state of a single system (e.g., a single particle) is described by a wavefunction, which
differs drastically from its description in classical mechanics. For all practical applications, the wavefunction
works as tool for calculating the outcomes of experiments, while the underlying physics remains unclear. It is
well known that the wavefunction cannot be determined via a single shot measurement [1]. However, with the
advent of quantum information science and technology, experimental manipulation and determination of the
wavefunction have become extremely important.

In order to determine the wavefunction, the standard method is based on projective strong measurement
where the wavefunction is fully collapsed, and this has been termed quantum state tomography [2-9]. An
alternative, new scheme, proposed and implemented very recently [10—15], is based on a different idea of
sequentially measuring two complementary variables of the system [16—27]. The first measurement is weak and
the second one is strong (projective). The weak measurement (each single one) gets minor information, makes
little disturbance and does not collapse the state. The second, projective measurement plays a role of post-
selection.

The key point is that, in this new scheme, it is the superposed complex amplitudes in the wavefunction (but
not the probabilities) that are extracted directly from the single round average of the post-selected data of the first
weak measurements. Under this sort of joint measurement, the full (complex) information of the wavefunction
is encoded in the shift of the pointer in the measurement apparatus, in terms of the weak value (WV) introduced
by Aharonov, Albert and Vaidman (AAV) nearly 30 years ago, given by [16]

A, = L) o
(sl

where |¢;) and |1/5) are, respectively, in the context of state tomography, the state to be determined and the state
for post-selection. A is the weakly observed quantity. Recent experiments applying this method have been
carried out to measure the photon’s transverse wavefunction (a task not previously accomplished by any
method) [10], the photon’s polarization state [ 12, 13] and the high-dimensional orbital angular momentum
state of the photon [14, 15].

The weak measurement is at the heart of this scheme, while it has also been an extensive research topic in
recent years [28—37], particularly in the superconducting circuit quantum electrodynamics (cCQED) system. In
this work, we present an analysis of the weak-value-based scheme for qubit state tomography in the cQED
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system. In order to apply to generic parameter conditions, our study will focus on the finite strength of weak
measurement [38, 39]. This goes beyond the usual limit of vanishing strength, and thus results in a generalized
pre- and post-selection (PPS) average, rather than the original AAV WV, as the shift of the pointer in the
apparatus. Moreover, very recent research has shown that stronger finite-strength measurement can give a better
result in state tomography [40], while some efforts are devoted to developing new schemes of dispersive readout
[41-43], which go beyond the standard approach used in the state-of-the-art experiments [28—32, 35-37] and in
our present work. To extract the AAV WV from the PPS average (raw signal), we propose to apply the analytic
formula derived for the homodyne measurement in circuit QED [39]. By varying the phase of the local oscillator
(LO), one can easily extract the complex weak value and determine the complex wavefunction by applying a
simple iterative algorithm. For the first time, we also obtain an analytic result for the PPS average beyond the
bad-cavity and weak-response limits, and demonstrate how to reliably determine the qubit state in this regime.

2. Methods

2.1.Measurement current and rates

The cQED system was originally described by the well-known Jaynes—Cummings model [28]. In the dispersive
regime [28],i.e., with the detuning between the cavity frequency (w;) and qubit energy (w,) being much larger
than the coupling strength g, the cQED system can be described by the Hamiltonian [28]

iy o Pa T * T
Heye = Aya'a + 702 + xa'ao, + (6,4 + €a’), )

where A, = w, — wy, arises from the fact that this Hamiltonian is expressed in the rotating frame with the
microwave drive frequency (w,,). The transition frequency of the qubit reads &, = w; + X, which is modified
by a dispersive shift y = g>/A,with A = w, — w,.Inequation (2), a' (a) and o, are respectively the creation
(annihilation) operator of the cavity photon and the quasi-spin (Pauli matrix) of the qubit. ¢, is the microwave
drive amplitude applied to the cavity.

The dispersive coupling characterized by the third term in the above Hamiltonian allows for a homodyne
measurement with output current given by [44]

I(t) = —JLi(®) {oz) + &), 3

where & () is a Gaussian white noise originating from fundamental quantum jumps during the measurement.
This expression for the current was obtained in the absence of qubit rotation and by eliminating the cavity
degrees of freedom (the so-called polaron transformation) [44]. In a bit more detail, I';(¢) is the coherent
information gain rate of measurement given by [44]

Li(1) = KIB®) cos* (¢ — 63), (C))

where @ is the LO’s phase in the homodyne measurement, « is the leakage rate of the cavity photons, and
B(t) = ay(t) — ay(t) = |3(t)]e with ay () and a; (t) being the cavity fields associated with the qubit states
|1)and |2), respectively.

In addition to the information gain rate I';, there exists as well a no-information back-action rate, which
reads [44]

Lha(t) = &[B(O) sin® (¢ — Op). (©)

To understand the physical meaning, let us consider the stochastic evolution of qubit state ¢ (¢)|1) + o (¢)]2),
conditioned on measurement records in a single realization. The rate I; appearing in equation (3) is associated
with the attempt to distinguish the qubit basis states (information gain), which causes a change in probability
between |1) and |2) conditioned on the measurement record, together with a relative phase change between
them that conserves the quantum purity of the superposed state—this actually corresponds to the term ‘coherent
information gain’. Unlike the information gain rate, the rate I}, is only related to phase fluctuation between | 1)
and |2) (no change in probability). The sum of T; and T}, T;,, = T}; + T}, gives the total measurement rate.
Differing somehow from I}, the overall decoherence rate is given by [44]

L) = 4xIm[a (D5 (1)], (6)

as aresult of tracing the cavity degrees of freedom from the whole entangled qubit-cavity state. An interesting
pointis that I}, is not necessarily equal to I;;, owing to certain ‘information loss’. It is only for ideal (quantum
limited) measurement that I}, = ITj; and the single quantum trajectory is a quantum-mechanically pure state.

2.2. Quantum Bayesian rule
Conditioned on the output currents, equation (3), one can faithfully keep track of the stochastic evolution of the
qubit state. In order to get analytic expression for the PPS average, rather than the equation for the quantum
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trajectory, we apply alternatively the quantum Bayesian rule (BR) [45—48]. Using the output currents during
(0, t,,), we update first the diagonal elements P; (j=1,2) of the qubit state (density matrix) [47, 48]

P (1) = 0(0) Py (t) /Nt %

where N(t,,) = 3 =12 Pji (0) P;(t,). This result simply follows the standard Bayes formula, and the functional

distribution of current reads [48]
1 -
Pioy(tm) = FeXp{—ﬂI(t) — Loy®OP), /2V)}, (8)
I

where I 5)(t) = F+/Ti(¢) and (*),, = (£,,)"" fotm dt (+). V = 1/t,, is the distribution variance, and N is the
normalization factor of the distribution probability (to be canceled from the numerator and denominator of the
Bayes formula). Note that equation (8) differs from our usual knowledge. According to the central limit theorem,
corresponding to |1) and |2), the averaged stochastic current, I,, = (f,,,)™* j(; e I (t), should respectively be

centredat I o) = F(t,,) ! f; " dt JLi(t) and satisfy the standard Gaussian distribution
Pioy(tm) = V)V 2exp [~y — L))/ (2V)]. )

In [48], we have demonstrated that this ‘standard’ result is valid only for a time-independent rate [, in
equation (3).
Secondly, we update the off-diagonal elements as follows:

P12 (tm) = P12 OV [Py (t) Po(t) /N () 1D (1) exp { —i[P1(t) + Palti)]}. (10)

Compared to the original simple BR [45], a couple of correction factors appear in this result, specifically given by
[47,48]

D(ty) = exp { —fotm de[Iy() — 1ﬂm(l‘)]/z}, (11a)
Oy(t,) = fot'" dr &, (), (11b)

%moz—ﬁ“wﬁuwlm. (11c)

Here we have introduced ﬁq (t) = w, + x + B(t),i.e.,thebare qubit energy w; is renormalized by the
dispersive shift x and the shift induced by the ac Stark effect, B(t) = 2x Re[a (t) a’5(t)]. Briefly speaking, the
purity degradation factor D (t,,) is a result of non-ideality (information loss) in the measurement, while the two
phase factors e 1) and e~i%2() result, respectively, from the dynamic ac Stark effect and the no-information
back-action.

2.3.PPS average in the bad-cavity and weak-response limits

In experiments the cQED system is usually prepared in the bad-cavity and weak-response limits. In this case, the
cavity field evolves to a stationary state on a timescale much shorter than the measurement time. One can thus
carry out the ac Stark shift and all the rates using the stationary coherent-state fields of the cavity, &; and a,,
which read [47]

) = —ien/[—i(A, £ X) + K/2], (12)
where A, = w,, — w;, is the offset of the measurement and cavity frequencies. For instance, in the bad-cavity
and weak-response limits, we obtain the stationary B(f) as B =~ 2x7i, where 1 = |@|*and & = —ie,,/(x/2),

which recovers the standard ac Stark shift. Also, a resonant drive (w,, = w,) resultsin 3 = 0.

Now let us consider the weak value for finite-strength measurement. For simplicity, we denote the
measurement resultas x = I, = (t,,)" j;tm dt I(t),and x; = I; = (—1)/{/I;. In the same spirit as the AAV
WYV for an infinitesimal strength of measurement, we employ the following PPS average as a definition for the
WYV associated with finite-strength measurement [20, 38, 39]:

fdx Plﬁ),- (x)Px (wf)
Py, (x) is the distribution probability of the measurement outcomes associated with the pre-selected state |¢);),
before the post-selection using [¢)y) . P, (¢)y) is the post-selection probability given by P (1) = (t|p(x)|¢)), by

applying the quantum BR to update the state from p, to p(x), based on the measurement outcome x. After some
algebra, we obtain [39]

Fx)i (13)
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() = — e Re(0?) + e Im(0?)
e 1+ G(osf — 1)

where ¢, = \/FTl y6,= s e mand G = (1 — e ) /2. Inthis result, the AAV WYV is slightly modified as

oz = {rlodi) (15)

(wrld)
where |1);) differs from the initial state [¢;) = ¢|1) + ¢|2)bya phase factoras |¢);) = ¢ e*iﬁqtml 1) + of2).

We see that, by tuning the LO phase ¢ based on equation (14), one can conveniently obtain the real and
imaginary parts of &, from which an efficient technique of state tomography can be developed for finite-
strength measurement.

In experiments, the PPS average ¢ (x);, or the meter’s shift in other words, is the sub-ensemble average of
output currents, post-selected from the records of the first stage of weak (partial collapse) measurement. In
practice, one should keep and average only those ‘x’ data that are followed by successful post-selection of |¢));.
To generate this post-selection for each trajectory, one may rotate the qubit state (quite arbitrarily) at the
moment t,,, and determine [1)), as the rotated version of the former basis state |1). This procedure actually
defines a new basis for the subsequent post-selection, i.e., with | 1) corresponding to |1/);. We may mention that
this method of obtaining (x); is not affected by the measurement strength. After getting ¢ (x);, the AAV WYV can
be easily extracted from equation (14).

(14)

2.4. Beyond bad-cavity and weak-response limits
Following the same definition of the PPS average, equation (13), we have

" [ PUOITOIPLHION Puan@y)
f\X)i = = —,
[rumipidron Py M

(16)

where x[I (#)] = (t,,)"! fo "y (t)dt, and the two probability distribution functionals read

Pu‘;[( I} = pn(O)Pl(tm) + Pzz(O)Pz(tm)a
Pirayy () = PPt t PoaPran + PraPrar + PoPria

Here we have denoted the Bayesian updated stateby p = p(x) = p({I (¢)}). The probabilities P, ,(t,,) follow
equation (8), being functionals of the current record {I (¢) | t € [0, t,,] }. In equation (16), involved in both the
numerator and denominator is the functional (or ‘path’) integral, f DII(t)](---), which means summing all the
possible currents of the measurement. By means of the Gaussian path-integral method, calculation of

equation (16) is straightforward. We obtain

T . . th )
M =— (fo VL) dt)(Pquu — PnPr2) + (j(; JTa(Hdt e j; HO) z)
X2 Im(Pqulzeifg Q(’)dt), )
— fmF d i er d
M i Pt ¥ (e fo " t] X 2Re(pyppae fo ), (18)

Reorganizing this result further in terms of the AAV WV form, we find that the same expression as equation (14)
can be obtained, with only several parameters modified as

a= [ JE@d e = [T T 0t g = - e o (19

The AAV WV of equation (15) is now modified by replacing the initial state |¢/;) with [¢};) = ¢e %100 |1) 4 g|2).
® (t,,) is given by equation (11b).

Actually, the above weak-value formalism that results in (17) and (18) can be related to the past quantum
state (PQS) formalism proposed recently [33-37], if we replace the density matrix pj; = (il py| j) by the PQS
Effect Matrix Ej; = (i |E| j). The PQS formalism generalized the post-selection in the WV problem to successive
continuous measurements characterized by the positive-operator valued measure (POVM) operator E, which in
general does not collapse the superposed state of a qubit. However, for the purpose of state tomography, the
post-continuous measurement in PQS is harder to repeat than the post-selection in the weak value because of its
highly stochastic nature. Therefore the PQS should be hard to apply to the problem of state tomography.
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2.5.Numerical methods

From equation (14) we see that, in the weak limit of measurement (the linear response regime), we may
approximate the denominator by unity (neglecting the second term). In this case one can obtain Re(¢?,) and
Im(o?,) from the PPS average of currents by choosing, respectively, the LO’s phase ¢ = 0 and 7/2. In the more
general case (the nonlinear response regime), the full denominator of equation (14) should be taken into
account. In this case one can extract Re(0%) and Im(c?%) by applying an iterative algorithm. That is, first, set trial
values for the real and imaginary parts of the AAV WV through

Re(0}) <= —(s(x)i/eD)lp=0, Im(0}) < —((x)i /€ |o=r/2-

Then, iteratively evaluate equation (14) several times until convergence is reached. In our numerical example
illustrated in the next section, we found that this iterative approach is always efficient. The reason for applying
this procedure is that there isa ‘+ sign’ problem when solving the AAV WV from the quadratic equation (14).
An alternative method to overcome this problem is not solving for the AAV WV from equation (14), but solving
for the unknown density matrix elements Pi directly from the linear equations (16)—(18).

Regarding the accuracy of the AAV WV extracted, we find that, by simulating 10° trajectories, an accuracy of
0.5% can be achieved for ¢ = 0, which decreases to 3% for ¢ = 7/2. The reason is that, in the latter case, the
component related to information gain (the first term) in equation (3) vanishes, thus resulting in stronger
fluctuations of the output currents. In practice, one may choose ¢ = 7/4 rather than 7 /2. Using equation (14),
Re(0%) and Im(0?,) can be easily extracted as well. For this choice, the same accuracy as for ¢ = 0 canbe
achieved.

With the knowledge of Re (%) and Im(c?), based on equation (15), one can directly determine the
unknown state, |¢;) = ¢|1) + 6|2), as follows. Note that, owing to the dynamic ac Stark effect, the
wavefunction involved in the AAV WV is actually ‘modified’ as [¢);) = qe ®n 1) + ¢|2). Uptoa
normalization factor, we rewrite this unknown state as

[3) = 11) + &12), (20)
where ¢ = (/q)e'®. For a given post-selection state [1)y) = by|1) + b|2), the AAV WV can be expressed as
* %k~
R . L @1)
b + by¢
From this result, we obtain
z * ~
= Ll [ 11 = relf, (22)
1 + O'fv bz

which fully characterizes the unknown state |¢/;) by noting that ¢/ = rei@-%,

3. Results

In all the simulations, we consider measurement under resonant driving, which corresponds to
A, = w, — wy, = 0where w, and w,, are, respectively, the cavity frequency and the frequency of the measuring
microwave. Corresponding to the experiments [29—-32] and the associated theory [46], the results in figures 1—4
apply in the bad-cavity and weak-response regime. In an arbitrary system of units, we denote the strength of the
microwave driveas €, = 1.0, thenset x = 8 and x = 0.1 under the bad-cavity and weak-coupling conditions.
With this choice, one can estimate the average photon number in the cavity (in a steady state) as 7 =~ 0.006, from
1 = |agl*and oy = —ig,,/ (r/2). This weak field in the cavity, together with the weak dispersive coupling x,
defines also a regime of weak response (in the sense of the measurement signal to the qubit state). However, in
figure 5 we display results beyond the bad-cavity and weak-response limits by setting £ = 2 and keeping ¢, and
 unchanged, which results in the average cavity photon number 7i = 1.0 in a steady state.

In the following results, we denote the unknown (to be determined) state as |¢;) = cos %l 1) + sin %e*i@ [2),

and ‘secretly’ assign 6, = 7/3 and ¢, = 505q. For the post-selection state |1/), we only alter the polar angle 6 to
illustrate the quality of tomography. In all cases, we run the polaron-transformed effective quantum trajectory
equation [39, 44] to generate 10° PPS trajectories.

In figure 1 we display the extracted AAV WV against the post-selection state [¢)r). Our main interest here is
the correction effect of the second G term in the denominator of equation (14). We thus simulate two strengths
of measurement by choosing the measurement time t,, = 0.05I'; for figures 1(a) and (b), and t,, = 0.5"; " for
(c) and (d). We compare the AAV WVs (the red and blue dots) extracted from equation (14) with the ‘true’
results (solid lines) calculated using equation (15) with the ‘testing’ state |¢/;). The results shown by the red dots
are extracted from the full formula of equation (14), while the blue dots are obtained by neglecting the second G
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o/t o/m

Figure 1. Extracted AAV WVs versus the post-selection state (characterized by its polar angle 6). The correction effect of the second G
term in the denominator of equation (14) is illustrated through its inclusion (red dots) and omission (blue dots), in comparison with
the ‘true’ values (solid curves). Two strengths of measurement are considered: t,, = 0.05I';! in (a) and (b); t,,, = 0.5I"; ' in (c) and (d).
Parameters: A, = 0, ¢, = 1.0, y = 0.1and x = 8.0.

- .
©
T

=
N
—

(b

-
o
[T

0.5 0.6 0.7 o/m 0.8 0.9

Figure 2. AAV WVs extracted from the PPS averages for ideal (7 = 1) and non-ideal (y = 0.8) measurements, in comparison with
the ‘true’ values (solid curves). Parameters: A, = 0, ¢, = 1.0, x = 0.1, s = 8.0and t,,, = 0.5I';".

term in the denominator. We see that for vanishing strength of measurement, as shown in figures 1(a) and (b),
the effect of the G term is negligible. However, for a finite strength of measurement (figures 1(c) and (d)), one
must take the G term into account.

We now turn to investigate the possible influence of the quantum efficiency of the weak measurement on the
present tomography method. Actually, the conventional scheme is rather less severely impacted by the quantum
inefficiency, since many tomography experiments were successfully performed before the advent of efficient
amplification. At first sight, the present scheme based on continuous weak measurement will be influenced by
the quantum efficiency of the measurement, since quantum efficiency will affect state inference (e.g. the oft-
diagonal elements) conditioned on the measurement results, and thus affect the probability of success of post-
selection. However, in our previous study [39], the weak values (PPS averages) of similar qubit measurements
were found to be free from the quantum efficiency of the detector. Below, we illustrate numerically that, indeed,
the present tomographic scheme is free from the quantum efficiency of the homodyne detection.

For the set-up of the present investigation, there are two main sources affecting the quantum efficiency of the
measurement. One is the noise added in the signal amplification; the other is the photon loss during signal
collection. However, both sources can be commonly characterized in theory by the parameter 7 (the quantum
efficiency) [44, 46]. Within the Bayesian formalism, the inefficiency can be simply accounted for by inserting a

6
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Figure 3. Alternative plot of the result in figure 2, via the fidelity of the estimated state p with respect to the ‘true’ one, g; = |t;) (¢,
using F = Tr(g;p).

(a)m=0.8 (b)n=1.0
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
00 = 40 P

Figure 4. Tomographic plot of the estimated state from the result in figure 2 (an example using post-selection with § = 0.657).
Detailed numerics: the ‘true’ (unknown) state was setas g; 11 = 0.75and 9;1, = 0.34 + 0.265i; the state estimated from ideal

measurements () = 1)is p;; = 0.75095 and p;, = 0.33218 + 0.27691i, while the result for n = 0.8is p,; = 0.74891and
1y = 0.3356 + 0.27461.

0.8} ° ®

0.5 0.6 0.7 0.8 0.90.5 0.6 0.7 0.8 0.9
o/m o/

Figure 5. AAV WVs extracted from measurements beyond the bad-cavity and weak-response limits. Red dots: results extracted

correctly using equation (14) together with the factors in equation (19). Blue dots: results extracted improperly using equation (14) ina

steady state of the cavity fields, as done in the bad-cavity and weak-response limits. The ‘true’ results are shown by the solid curves.
Parameters: A, = 0,¢,, = 1.0, x = 0.1, k = 2.0and t,,, = O.SFd’l.
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Intn into the off-diagonal elements of the qubit state; when running the quantum

decoherence factor e (1=
trajectory equation [39, 44], one can simultaneously reduce the rates I; and I}, by a factor ‘1 — 7’.

In figure 2 we compare the AAV WV extracted from the ideal measurement (red triangles, with n = 1) with
the result for efficiency 17 = 0.8 (blue dots)’, while plotting both against the ‘true’ result (solid curve). Indeed, we
find all three results in perfect agreement. In figure 3 we further display the fidelity of the estimated state p with
respect to the ‘true’ one, g; = |¢;) (¥, using the fidelity definition F = Tr(g; p), while in figure 4 we
characterize, for a specific example, the full state (diagonal and off-diagonal elements of the density matrix) in
terms of the usual means of quantum state tomography. Through these results, we see that, indeed, the weak-
value-associated scheme of quantum state tomography is free from the efficiency of quantum measurement.

Actually, this efficiency-free statement is from averaging a sufficient number of trajectories, which was
implied in the analytic proofin [39] and in the above numerical demonstrations. For a limited measurement
resource (limited size of trajectory ensemble), the small number of photons detected (owing to poor efficiency)
will cause strong fluctuations and errors for state tomography. In practice, this problem can be partly overcome
by increasing the driving power of the measuring microwave and properly enhancing the time of weak
measurement (collecting more photons to yield the integrated current for the Bayesian inference). Our
formulation, equation (14) together with (19), being valid for finite-strength measurement under broad
parameter conditions, will be useful in solving this problem. This solving strategy is also supported by very
recent research [40], which showed that stronger finite-strength measurement can give a better result for the
weak-value-based tomographic scheme.

Finally, let us consider the situation beyond the bad-cavity and weak-response limits, and illustrate how to
reliably extract the AAV WV and determine the qubit state. Actually, the basic requirement of the bad-cavity and
weak-response limitsis x > x [47, 48]. Under this condition, the time-dependent factor in the cavity field
dynamics [47, 48], etixte—rt/2 would become less important so that we can neglect the transient dynamics of the
cavity field, and all the rates (I;, [}, and I};) can be treated as steady-state constants. Thus, we simply change
k = 8to k = 2 and keep all the other parameters the same as in figures 1—4. In this case, if we improperly use
equation (14) with all the rates and the ac Stark shift determined by the steady-state cavity fields, as indicated by
the blue dots in figure 5, the extracted AAV WV will suffer serious error from the ‘true’ result. However, if
instead we combine equation (14) with the factors given by equation (19), satisfactory results can be obtained, as
shown in figure 5 by the red dots. This ensures that the present scheme of state tomography can be applied
beyond the bad-cavity and weak-response limits, if one properly applies equations (14) and (19).

4. Summary and discussions

We have presented a scheme for qubit state tomography in the superconducting circuit QED system, based on
weak measurements and the associated quantum Bayesian approach. The Bayesian approach allows us to derive
acompact expression for the PPS average, which encodes the full information of the AAV WV and makes the
participation of its real and imaginary parts tunable by modulating the LO phase of the homodyne
measurement. For the first time, we also obtained an analytic expression for the PPS average beyond the bad-
cavity and weak-response limits, and demonstrated how to determine the qubit state in this regime.

It would be of interest in the circuit QED system to explore the direct scheme of state tomography for more
complicated states, e.g., an entangled state of multiple qubits and a nontrivial state of cavity fields. We propose to
leave these problems for future investigations.

We may conclude the present work with a few more remarks. (i) Compared with the conventional method of
tomography, which measures separately the averages of oy, 0, and o, and thus needs precise orthogonal basis
rotations, the weak-value-based scheme involves simpler (quite arbitrary) state rotation for the post-selection to
encode the full complex information of the unknown state into a single PPS average. (ii) While the post-selection
involves the discarding of data, this problem in state tomography is less severe than the amplifications based on a
singular weak value. For state tomography, if the measured state is not severely orthogonal to the post-selection
state, most data can survive in the post-selection. (iii) Comprehensive and quantitative assessment of the quality
and efficiency of the new scheme against the conventional one is an open question worth further analysis by
taking into account, for instance, the post-selection, the number of measurements, and the tolerance to
imperfections (e.g. improper rotations, unfaithful measurements, etc).

> The efficiency of quantum measurement in circuit QED experiments is currently around 0.4-0.5, while further improvement is expected
in the near future. In our simulation we assumed a modest efficiency 7 = 0.8. The important point is that the quantum efficiency does not
affect the task of state tomography, which is actually guaranteed by two essential proofs: (i) Applying the quantum Bayesian rule, in [39], we
analytically proved that the PPS average f(x); is free from . (ii) In [48], even beyond the bad-cavity and weak-response limits, we analytically
proved the equivalence between the Bayesian rule and the quantum trajectory equation for arbitrary 7).
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