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Abstract
In this workwe present a study on a new scheme formeasuring the qubit state in a circuit quantum
electrodynamics (QED) system, based onweakmeasurement and the concept of weak value. To be
applicable under generic parameter conditions, our formulation and analysis are carried out forfinite-
strengthweakmeasurement, and in particular beyond the bad-cavity andweak-response limits. The
proposed study is accessible to present state-of-the-art circuit QED experiments.

1. Introduction

In quantummechanics, the state of a single system (e.g., a single particle) is described by awavefunction, which
differs drastically from its description in classicalmechanics. For all practical applications, thewavefunction
works as tool for calculating the outcomes of experiments, while the underlying physics remains unclear. It is
well known that thewavefunction cannot be determined via a single shotmeasurement [1]. However, with the
advent of quantum information science and technology, experimentalmanipulation and determination of the
wavefunction have become extremely important.

In order to determine thewavefunction, the standardmethod is based on projective strongmeasurement
where thewavefunction is fully collapsed, and this has been termed quantum state tomography [2–9]. An
alternative, new scheme, proposed and implemented very recently [10–15], is based on a different idea of
sequentiallymeasuring two complementary variables of the system [16–27]. Thefirstmeasurement is weak and
the second one is strong (projective). Theweakmeasurement (each single one) getsminor information,makes
little disturbance and does not collapse the state. The second, projectivemeasurement plays a role of post-
selection.

The key point is that, in this new scheme, it is the superposed complex amplitudes in thewavefunction (but
not the probabilities) that are extracted directly from the single round average of the post-selected data of the first
weakmeasurements. Under this sort of jointmeasurement, the full (complex) information of thewavefunction
is encoded in the shift of the pointer in themeasurement apparatus, in terms of theweak value (WV) introduced
byAharonov, Albert andVaidman (AAV)nearly 30 years ago, given by [16]
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where iy ñ∣ and fy ñ∣ are, respectively, in the context of state tomography, the state to be determined and the state

for post-selection. Â is theweakly observed quantity. Recent experiments applying thismethod have been
carried out tomeasure the photon’s transverse wavefunction (a task not previously accomplished by any
method) [10], the photon’s polarization state [12, 13] and the high-dimensional orbital angularmomentum
state of the photon [14, 15].

Theweakmeasurement is at the heart of this scheme, while it has also been an extensive research topic in
recent years [28–37], particularly in the superconducting circuit quantum electrodynamics (cQED) system. In
this work, we present an analysis of theweak-value-based scheme for qubit state tomography in the cQED
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system. In order to apply to generic parameter conditions, our studywill focus on the finite strength ofweak
measurement [38, 39]. This goes beyond the usual limit of vanishing strength, and thus results in a generalized
pre- and post-selection (PPS) average, rather than the original AAVWV, as the shift of the pointer in the
apparatus.Moreover, very recent research has shown that strongerfinite-strengthmeasurement can give a better
result in state tomography [40], while some efforts are devoted to developing new schemes of dispersive readout
[41–43], which go beyond the standard approach used in the state-of-the-art experiments [28–32, 35–37] and in
our present work. To extract the AAVWV from the PPS average (raw signal), we propose to apply the analytic
formula derived for the homodynemeasurement in circuit QED [39]. By varying the phase of the local oscillator
(LO), one can easily extract the complexweak value and determine the complexwavefunction by applying a
simple iterative algorithm. For the first time, we also obtain an analytic result for the PPS average beyond the
bad-cavity andweak-response limits, and demonstrate how to reliably determine the qubit state in this regime.

2.Methods

2.1.Measurement current and rates
The cQED systemwas originally described by thewell-known Jaynes–Cummingsmodel [28]. In the dispersive
regime [28], i.e., with the detuning between the cavity frequency ( rw ) and qubit energy ( qw ) beingmuch larger
than the coupling strength g, the cQED system can be described by theHamiltonian [28]

H a a a a a a
2

, 2r
q

z z m meff * 
w

s c s= D + + + +


( ) ( )† † †

where r r mw wD = - arises from the fact that thisHamiltonian is expressed in the rotating framewith the
microwave drive frequency ( mw ). The transition frequency of the qubit reads q qw w c= + , which ismodified
by a dispersive shift g 2c = D, with r qw wD = - . In equation (2), a† (a) and zs are respectively the creation
(annihilation) operator of the cavity photon and the quasi-spin (Paulimatrix) of the qubit. m is themicrowave
drive amplitude applied to the cavity.

The dispersive coupling characterized by the third term in the aboveHamiltonian allows for a homodyne
measurement with output current given by [44]

I t t t , 3ci zs x= - G á ñ +( ) ( ) ( ) ( )

where tx ( ) is aGaussianwhite noise originating from fundamental quantum jumps during themeasurement.
This expression for the current was obtained in the absence of qubit rotation and by eliminating the cavity
degrees of freedom (the so-called polaron transformation) [44]. In a bitmore detail, tciG ( ) is the coherent
information gain rate ofmeasurement given by [44]

t t cos , 4ci
2 2k b j qG = - b( ) ∣ ( )∣ ( ) ( )

wherej is the LO’s phase in the homodynemeasurement,κ is the leakage rate of the cavity photons, and
t t t t e2 1

ib a a b= - º qb( ) ( ) ( ) ∣ ( )∣ with t1a ( ) and t2a ( ) being the cavity fields associatedwith the qubit states
1ñ∣ and 2ñ∣ , respectively.

In addition to the information gain rate ciG , there exists as well a no-information back-action rate, which
reads [44]

t t sin . 5ba
2 2k b j qG = - b( ) ∣ ( )∣ ( ) ( )

Tounderstand the physicalmeaning, let us consider the stochastic evolution of qubit state c t c t1 21 2ñ + ñ( )∣ ( )∣ ,
conditioned onmeasurement records in a single realization. The rate ciG appearing in equation (3) is associated
with the attempt to distinguish the qubit basis states (information gain), which causes a change in probability
between 1ñ∣ and 2ñ∣ conditioned on themeasurement record, together with a relative phase change between
them that conserves the quantumpurity of the superposed state—this actually corresponds to the term ‘coherent
information gain’. Unlike the information gain rate, the rate baG is only related to phasefluctuation between 1ñ∣
and 2ñ∣ (no change in probability). The sumof ciG and baG , m ci baG = G + G , gives the totalmeasurement rate.
Differing somehow from mG , the overall decoherence rate is given by [44]

t t t4 Im , 6d 1 2*c a aG =( ) [ ( ) ( )] ( )

as a result of tracing the cavity degrees of freedom from thewhole entangled qubit-cavity state. An interesting
point is that mG is not necessarily equal to dG , owing to certain ‘information loss’. It is only for ideal (quantum
limited)measurement that m dG = G and the single quantum trajectory is a quantum-mechanically pure state.

2.2.QuantumBayesian rule
Conditioned on the output currents, equation (3), one can faithfully keep track of the stochastic evolution of the
qubit state. In order to get analytic expression for the PPS average, rather than the equation for the quantum
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trajectory, we apply alternatively the quantumBayesian rule (BR) [45–48]. Using the output currents during
t0, m( ), we updatefirst the diagonal elements jjr ( j= 1, 2) of the qubit state (densitymatrix) [47, 48]

t P t t0 , 7jj m jj j m mr r=( ) ( ) ( ) ( ) ( )

where t P t0m j jj j m1,2 r= å =( ) ( ) ( ). This result simply follows the standard Bayes formula, and the functional
distribution of current reads [48]

P t I t I t V
1

exp 2 , 8m
I

t1 2 1 2
2

m
= -á - ñ( ) { [ ( ) ¯ ( )] ( )} ( )( ) ( )

where I t tci1 2 = G¯ ( ) ( )( ) and t dt• •t m
t1

0m

m

òá ñ = -( ) ( ).V t1 m= is the distribution variance, and I is the

normalization factor of the distribution probability (to be canceled from the numerator and denominator of the
Bayes formula). Note that equation (8)differs fromour usual knowledge. According to the central limit theorem,

corresponding to 1ñ∣ and 2ñ∣ , the averaged stochastic current, I t t I tdm m
t1

0

m

ò= -( ) ( ), should respectively be

centred at I t t tdm
t

ci1 2
1

0

m

ò= G-¯ ( ) ( )( ) and satisfy the standardGaussian distribution

P t V I I V2 exp 2 . 9m m1 2
1 2

1 2
2p= - --( ) ( ) [ ( ¯ ) ( )] ( )( ) ( )

In [48], we have demonstrated that this ‘standard’ result is valid only for a time-independent rate ciG , in
equation (3).

Secondly, we update the off-diagonal elements as follows:

t P t P t t D t t t0 exp i . 10m m m m m m m12 12 1 2 1 2r r= - F + F( ) ( )[ ( ) ( ) ( )] ( ) { [ ( ) ( )]} ( )

Compared to the original simple BR [45], a couple of correction factors appear in this result, specifically given by
[47, 48]

D t t t t aexp d 2 , 11m

t

d m
0

m

ò= - G - G{ }( ) [ ( ) ( )] ( )

t t t bd , 11m

t

q1
0

m

òF = W
~( ) ( ) ( )

t t t I t cd . 11m

t

ba2
0

m

òF = - G( ) ( ) ( ) ( )

Herewe have introduced t B tq qw cW = + +
~ ( ) ( ), i.e., the bare qubit energy qw is renormalized by the

dispersive shiftχ and the shift induced by the ac Stark effect, B t t t2 Re 1 2*c a a=( ) [ ( ) ( )]. Briefly speaking, the
purity degradation factor D tm( ) is a result of non-ideality (information loss) in themeasurement, while the two
phase factors e ti m1- F ( ) and e ti m2- F ( ) result, respectively, from the dynamic ac Stark effect and the no-information
back-action.

2.3. PPS average in the bad-cavity andweak-response limits
In experiments the cQED system is usually prepared in the bad-cavity andweak-response limits. In this case, the
cavity field evolves to a stationary state on a timescalemuch shorter than themeasurement time.One can thus
carry out the ac Stark shift and all the rates using the stationary coherent-state fields of the cavity, 1ā and 2ā ,
which read [47]

i i 2 , 12m r1 2 a c k= - - D  +¯ [ ( ) ] ( )( )

where r m rw wD = - is the offset of themeasurement and cavity frequencies. For instance, in the bad-cavity
andweak-response limits, we obtain the stationaryB(t) as B n2c ¯, where n 2a=¯ ∣ ¯ ∣ and i 2ma k= -¯ ( )/ ,
which recovers the standard ac Stark shift. Also, a resonant drive ( m rw w= ) results in 0q =b .

Now let us consider theweak value forfinite-strengthmeasurement. For simplicity, we denote the

measurement result as x I t t I tdm m
t1

0

m

òº = -( ) ( ), and x I 1j j
j

ciº = - G¯ ¯ ( ) . In the same spirit as theAAV

WV for an infinitesimal strength ofmeasurement, we employ the following PPS average as a definition for the
WVassociatedwithfinite-strengthmeasurement [20, 38, 39]:

x
x xP x P

x P x P

d

d
. 13f i

x f

x f

i

i

ò
ò

y

y
á ñ =

y

y

( ) ( )

( ) ( )
( )

P x
iy ( ) is the distribution probability of themeasurement outcomes associatedwith the pre-selected state iy ñ∣ ,

before the post-selection using fy ñ∣ . Px fy( ) is the post-selection probability given by P xx f f fy y r y= á ñ( ) ∣ ˜( )∣ , by
applying the quantumBR to update the state from ir to xr̃( ), based on themeasurement outcome x. After some
algebra, we obtain [39]
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where ci1 = G , eba
t

2
d m = G -G and 1 e 2td m = - -G( ) . In this result, the AAVWV is slightlymodified as
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where iy ñ∣ ˜ differs from the initial state c c1 2i 1 2y ñ = ñ + ñ∣ ∣ ∣ by a phase factor as c ce 1 2i
t

1
i

2
q my ñ = ñ + ñ- W

~
∣ ˜ ∣ ∣ .

We see that, by tuning the LOphasej based on equation (14), one can conveniently obtain the real and
imaginary parts of w

zs̃ , fromwhich an efficient technique of state tomography can be developed forfinite-
strengthmeasurement.

In experiments, the PPS average xf iá ñ , or themeter’s shift in otherwords, is the sub-ensemble average of
output currents, post-selected from the records of the first stage of weak (partial collapse)measurement. In
practice, one should keep and average only those ‘x’ data that are followed by successful post-selection of fyñ∣ .
To generate this post-selection for each trajectory, onemay rotate the qubit state (quite arbitrarily) at the
moment tm, and determine fyñ∣ as the rotated version of the former basis state 1ñ∣ . This procedure actually
defines a newbasis for the subsequent post-selection, i.e., with 1ñ∣ corresponding to fyñ∣ .Wemaymention that
thismethod of obtaining xf iá ñ is not affected by themeasurement strength. After getting xf iá ñ , the AAVWVcan
be easily extracted from equation (14).

2.4. Beyond bad-cavity andweak-response limits
Following the same definition of the PPS average, equation (13), we have

x
I t x I t P I t P

I t P I t P

M

M
, 16f i

I t f

I t f

1

2

i

i





ò
ò

y

y
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y

y

[ ( )] [ ( )] ({ ( )}) ( )

[ ( )] ({ ( )}) ( )
( )

{ ( )}

{ ( )}

where x I t t I t tdm
t1

0

m

ò= -[ ( )] ( ) ( ) , and the two probability distribution functionals read

P I t P t P t

P

0 0 ,

.
m m

I t f f f f f

11 1 22 2

11 11 22 22 12 21 21 12

i
r r

y r r r r r r r r
= +
= + + +

y ({ ( )}) ( ) ( ) ( ) ( )
( ) ˜ ˜ ˜ ˜{ ( )}

Herewe have denoted the Bayesian updated state by x I tr r r= =˜ ˜( ) ˜({ ( )}). The probabilities P tm1,2 ( ) follow
equation (8), being functionals of the current record I t t t0, mÎ{ ( ) ∣ [ ]}. In equation (16), involved in both the
numerator and denominator is the functional (or ‘path’) integral, I tò [ ( )]( ), whichmeans summing all the
possible currents of themeasurement. Bymeans of theGaussian path-integralmethod, calculation of
equation (16) is straightforward.We obtain

M t t t td d e

2 Im e , 17

t

ci f f

t

ba
t t

f
t t

1
0

11 11 22 22
0
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21 12
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d
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Reorganizing this result further in terms of the AAVWV form,we find that the same expression as equation (14)
can be obtained, with only several parametersmodified as

t t t td , d e , 1 e 2. 19
t

ci

t

ba
t t t t

1
0

2
0

d dm m
tm

d

tm
d

0 0  ò ò ò ò= G = G = -- G - G( ) ( ) ( ) ( )( ) ( )

TheAAVWVof equation (15) is nowmodifiedby replacing the initial state iy ñ∣ with c ce 1 2i
t

1
i

2
m1y ñ = ñ + ñ- F∣ ˜ ∣ ∣( ) .

tm1F ( ) is givenby equation (11b).
Actually, the aboveweak-value formalism that results in (17) and (18) can be related to the past quantum

state (PQS) formalism proposed recently [33–37], if we replace the densitymatrix i jfij fr r= á ñ∣ ∣ by the PQS

EffectMatrix E i E jij = á ñ∣ ˆ∣ . The PQS formalism generalized the post-selection in theWVproblem to successive

continuousmeasurements characterized by the positive-operator valuedmeasure (POVM) operator Ê , which in
general does not collapse the superposed state of a qubit.However, for the purpose of state tomography, the
post-continuousmeasurement in PQS is harder to repeat than the post-selection in theweak value because of its
highly stochastic nature. Therefore the PQS should be hard to apply to the problemof state tomography.
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2.5. Numericalmethods
From equation (14)we see that, in theweak limit ofmeasurement (the linear response regime), wemay
approximate the denominator by unity (neglecting the second term). In this case one can obtain Re w

zs( ) and
Im w

zs( ) from the PPS average of currents by choosing, respectively, the LO’s phase 0j = and 2p . In themore
general case (the nonlinear response regime), the full denominator of equation (14) should be taken into
account. In this case one can extract Re w

zs( ) and Im w
zs( ) by applying an iterative algorithm. That is, first, set trial

values for the real and imaginary parts of the AAVWV through

x xRe , Im .w
z

f i w
z

f i1 0 2 2 s s - á ñ  - á ñj j p= =( ) ( )∣ ( ) ( )∣

Then, iteratively evaluate equation (14) several times until convergence is reached. In our numerical example
illustrated in the next section, we found that this iterative approach is always efficient. The reason for applying
this procedure is that there is a ‘±sign’ problemwhen solving the AAVWV from the quadratic equation (14).
An alternativemethod to overcome this problem is not solving for the AAVWV fromequation (14), but solving
for the unknowndensitymatrix elements ijr directly from the linear equations (16)–(18).

Regarding the accuracy of theAAVWVextracted, wefind that, by simulating 106 trajectories, an accuracy of
0.5% can be achieved for 0j = , which decreases to 3% for 2j p= . The reason is that, in the latter case, the
component related to information gain (thefirst term) in equation (3) vanishes, thus resulting in stronger
fluctuations of the output currents. In practice, onemay choose 4j p= rather than 2p . Using equation (14),
Re w

zs( ) and Im w
zs( ) can be easily extracted as well. For this choice, the same accuracy as for 0j = can be

achieved.
With the knowledge of Re w

zs( ) and Im w
zs( ), based on equation (15), one can directly determine the

unknown state, c c1 2i 1 2y ñ = ñ + ñ∣ ∣ ∣ , as follows. Note that, owing to the dynamic ac Stark effect, the
wavefunction involved in the AAVWV is actually ‘modified’ as c ce 1 2i

t
1

i
2

m1y ñ = ñ + ñ- F∣ ˜ ∣ ∣( ) . Up to a
normalization factor, we rewrite this unknown state as

c1 2 , 20iy ñ = ñ + ñ∣ ˜ ∣ ˜∣ ( )

where c c c e2 1
i 1= F˜ ( ) . For a given post-selection state b b1 2f 1 2y ñ = ñ + ñ∣ ∣ ∣ , the AAVWVcan be expressed as

b b c

b b c
. 21w

z 1 2

1 2

* *
* *

s =
-
+

˜
˜

( )

From this result, we obtain

c
b

b
r

1

1
e , 22w

z

w
z

1

2

i
*s

s
=

-
+

º q
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟˜ ( )˜

which fully characterizes the unknown state iy ñ∣ by noting that c c re2 1
i 1= q-F(˜ ).

3. Results

In all the simulations, we considermeasurement under resonant driving, which corresponds to
0r r mw wD = - = where rw and mw are, respectively, the cavity frequency and the frequency of themeasuring

microwave. Corresponding to the experiments [29–32] and the associated theory [46], the results infigures 1–4
apply in the bad-cavity andweak-response regime. In an arbitrary systemof units, we denote the strength of the
microwave drive as 1.0m = , then set 8k = and 0.1c = under the bad-cavity andweak-coupling conditions.
With this choice, one can estimate the average photon number in the cavity (in a steady state) as n 0.006¯ , from
n 0

2a=¯ ∣ ∣ and i 2m0a e k= - ( )/ . This weakfield in the cavity, together with theweak dispersive couplingχ,
defines also a regime ofweak response (in the sense of themeasurement signal to the qubit state). However, in
figure 5we display results beyond the bad-cavity andweak-response limits by setting 2k = and keeping me and
κ unchanged, which results in the average cavity photon number n 1.0=¯ in a steady state.

In the following results, we denote the unknown (to be determined) state as ecos 1 sin 2i
i

2 2
i i iy ñ = ñ + ñq q f-∣ ∣ ∣ ,

and ‘secretly’ assign 3iq p= and 50i qf = W
~

. For the post-selection state fy ñ∣ , we only alter the polar angle θ to
illustrate the quality of tomography. In all cases, we run the polaron-transformed effective quantum trajectory
equation [39, 44] to generate 106 PPS trajectories.

Infigure 1we display the extracted AAVWVagainst the post-selection state fy ñ∣ . Ourmain interest here is
the correction effect of the second  term in the denominator of equation (14).We thus simulate two strengths
ofmeasurement by choosing themeasurement time t 0.05m d

1= G- forfigures 1(a) and (b), and t 0.5m d
1= G- for

(c) and (d).We compare the AAVWVs (the red and blue dots) extracted from equation (14)with the ‘true’
results (solid lines) calculated using equation (15)with the ‘testing’ state iy ñ∣ . The results shown by the red dots
are extracted from the full formula of equation (14), while the blue dots are obtained by neglecting the second 
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term in the denominator.We see that for vanishing strength ofmeasurement, as shown infigures 1(a) and (b),
the effect of the  term is negligible. However, for afinite strength ofmeasurement (figures 1(c) and (d)), one
must take the  term into account.

We now turn to investigate the possible influence of the quantum efficiency of theweakmeasurement on the
present tomographymethod. Actually, the conventional scheme is rather less severely impacted by the quantum
inefficiency, sincemany tomography experiments were successfully performed before the advent of efficient
amplification. Atfirst sight, the present scheme based on continuousweakmeasurement will be influenced by
the quantum efficiency of themeasurement, since quantum efficiencywill affect state inference (e.g. the off-
diagonal elements) conditioned on themeasurement results, and thus affect the probability of success of post-
selection.However, in our previous study [39], theweak values (PPS averages) of similar qubitmeasurements
were found to be free from the quantum efficiency of the detector. Below,we illustrate numerically that, indeed,
the present tomographic scheme is free from the quantum efficiency of the homodyne detection.

For the set-up of the present investigation, there are twomain sources affecting the quantum efficiency of the
measurement. One is the noise added in the signal amplification; the other is the photon loss during signal
collection.However, both sources can be commonly characterized in theory by the parameter η (the quantum
efficiency) [44, 46].Within the Bayesian formalism, the inefficiency can be simply accounted for by inserting a

Figure 1.Extracted AAVWVs versus the post-selection state (characterized by its polar angle θ). The correction effect of the second 
term in the denominator of equation (14) is illustrated through its inclusion (red dots) and omission (blue dots), in comparisonwith
the ‘true’ values (solid curves). Two strengths ofmeasurement are considered: t 0.05m d

1= G- in (a) and (b); t 0.5m d
1= G- in (c) and (d).

Parameters: 0rD = , 1.0m = , 0.1c = and 8.0k = .

Figure 2.AAVWVs extracted from the PPS averages for ideal ( 1h = ) andnon-ideal ( 0.8h = )measurements, in comparisonwith
the ‘true’ values (solid curves). Parameters: 0rD = , 1.0m = , 0.1c = , 8.0k = and t 0.5m d

1= G- .
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Figure 3.Alternative plot of the result in figure 2, via the fidelity of the estimated state ρwith respect to the ‘true’ one, i i i y y= ñá∣ ∣,
using F Tr i r= ( ).

Figure 4.Tomographic plot of the estimated state from the result infigure 2 (an example using post-selectionwith 0.65q p= ).
Detailed numerics: the ‘true’ (unknown) state was set as 0.75i,11 = and 0.34 0.265ii,12 = + ; the state estimated from ideal
measurements ( 1h = ) is 0.7509511r = and 0.33218 0.27691i12r = + , while the result for 0.8h = is 0.7489111r = and

0.3356 0.27461i12r = + .

Figure 5.AAVWVs extracted frommeasurements beyond the bad-cavity andweak-response limits. Red dots: results extracted
correctly using equation (14) together with the factors in equation (19). Blue dots: results extracted improperly using equation (14) in a
steady state of the cavity fields, as done in the bad-cavity andweak-response limits. The ‘true’ results are shown by the solid curves.
Parameters: 0rD = , 1.0m = , 0.1c = , 2.0k = and t 0.5m d

1= G- .
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decoherence factor e t1 m mh- - G( ) into the off-diagonal elements of the qubit state; when running the quantum
trajectory equation [39, 44], one can simultaneously reduce the rates ciG and baG by a factor ‘1 h- ’.

Infigure 2we compare the AAVWVextracted from the idealmeasurement (red triangles, with 1h = )with
the result for efficiency 0.8h = (blue dots)3, while plotting both against the ‘true’ result (solid curve). Indeed, we
find all three results in perfect agreement. Infigure 3we further display the fidelity of the estimated state ρwith
respect to the ‘true’ one, i i i y y= ñá∣ ∣, using thefidelity definition F Tr i r= ( ), while infigure 4we
characterize, for a specific example, the full state (diagonal and off-diagonal elements of the densitymatrix) in
terms of the usualmeans of quantum state tomography. Through these results, we see that, indeed, theweak-
value-associated scheme of quantum state tomography is free from the efficiency of quantummeasurement.

Actually, this efficiency-free statement is from averaging a sufficient number of trajectories, whichwas
implied in the analytic proof in [39] and in the above numerical demonstrations. For a limitedmeasurement
resource (limited size of trajectory ensemble), the small number of photons detected (owing to poor efficiency)
will cause strong fluctuations and errors for state tomography. In practice, this problem can be partly overcome
by increasing the driving power of themeasuringmicrowave and properly enhancing the time ofweak
measurement (collectingmore photons to yield the integrated current for the Bayesian inference). Our
formulation, equation (14) togetherwith (19), being valid for finite-strengthmeasurement under broad
parameter conditions, will be useful in solving this problem. This solving strategy is also supported by very
recent research [40], which showed that stronger finite-strengthmeasurement can give a better result for the
weak-value-based tomographic scheme.

Finally, let us consider the situation beyond the bad-cavity andweak-response limits, and illustrate how to
reliably extract theAAVWVand determine the qubit state. Actually, the basic requirement of the bad-cavity and
weak-response limits is k c [47, 48]. Under this condition, the time-dependent factor in the cavity field
dynamics [47, 48], e et ti 2c k - , would become less important so thatwe can neglect the transient dynamics of the
cavity field, and all the rates ( dG , baG and ciG ) can be treated as steady-state constants. Thus, we simply change

8k = to 2k = and keep all the other parameters the same as in figures 1–4. In this case, if we improperly use
equation (14)with all the rates and the ac Stark shift determined by the steady-state cavity fields, as indicated by
the blue dots in figure 5, the extracted AAVWVwill suffer serious error from the ‘true’ result. However, if
insteadwe combine equation (14)with the factors given by equation (19), satisfactory results can be obtained, as
shown infigure 5 by the red dots. This ensures that the present scheme of state tomography can be applied
beyond the bad-cavity andweak-response limits, if one properly applies equations (14) and (19).

4. Summary anddiscussions

Wehave presented a scheme for qubit state tomography in the superconducting circuitQED system, based on
weakmeasurements and the associated quantumBayesian approach. The Bayesian approach allows us to derive
a compact expression for the PPS average, which encodes the full information of the AAVWVandmakes the
participation of its real and imaginary parts tunable bymodulating the LOphase of the homodyne
measurement. For thefirst time, we also obtained an analytic expression for the PPS average beyond the bad-
cavity andweak-response limits, and demonstrated how to determine the qubit state in this regime.

It would be of interest in the circuitQED system to explore the direct scheme of state tomography formore
complicated states, e.g., an entangled state ofmultiple qubits and a nontrivial state of cavityfields.We propose to
leave these problems for future investigations.

Wemay conclude the present workwith a fewmore remarks. (i)Comparedwith the conventionalmethod of
tomography, whichmeasures separately the averages of xs , ys and zs and thus needs precise orthogonal basis
rotations, theweak-value-based scheme involves simpler (quite arbitrary) state rotation for the post-selection to
encode the full complex information of the unknown state into a single PPS average. (ii)While the post-selection
involves the discarding of data, this problem in state tomography is less severe than the amplifications based on a
singular weak value. For state tomography, if themeasured state is not severely orthogonal to the post-selection
state,most data can survive in the post-selection. (iii)Comprehensive and quantitative assessment of the quality
and efficiency of the new scheme against the conventional one is an open questionworth further analysis by
taking into account, for instance, the post-selection, the number ofmeasurements, and the tolerance to
imperfections (e.g. improper rotations, unfaithfulmeasurements, etc).

3
The efficiency of quantummeasurement in circuit QED experiments is currently around 0.4–0.5, while further improvement is expected

in the near future. In our simulationwe assumed amodest efficiency 0.8h = . The important point is that the quantum efficiency does not
affect the task of state tomography, which is actually guaranteed by two essential proofs: (i)Applying the quantumBayesian rule, in [39], we
analytically proved that the PPS average xf iá ñ is free from η. (ii) In [48], even beyond the bad-cavity andweak-response limits, we analytically
proved the equivalence between the Bayesian rule and the quantum trajectory equation for arbitrary η.
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