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Abstract
I describe how real quantum annealersmay be used to perform local (in state space) searches around
specified states, rather than the global searches traditionally implemented in the quantum annealing
algorithm (QAA). Such protocols will have numerous advantages over simple quantum annealing. By
using such searches the effect of problemmis-specification can be reduced, as only energy differences
between the searched states will be relevant. TheQAA is an analogue of simulated annealing, a classical
numerical techniquewhich has nowbeen superseded.Hence, I explore two strategies to use an
annealer in awaywhich takes advantage ofmodern classical optimization algorithms. Specifically, I
showhow sequential calls to quantum annealers can be used to construct analogues of population
annealing and parallel tempering which use quantum searches as subroutines. The techniques given
here can be applied not only to optimization, but also to sampling. I examine the feasibility of these
protocols on real devices and note that implementing such protocols should requireminimal if any
change to the current design of theflux qubit-based annealers byD-Wave Systems Inc. I further
provide proof-of-principle numerical experiments based on quantumMonte Carlo that demonstrate
simple examples of the discussed techniques.

1. Introduction

Recently, there has beenmuch interest in using the quantumannealing algorithm (QAA) [1–3]which utilizes
quantum tunneling to aid in solving commercially interesting problems. A complete list of all potential
applications would be too long to give here.However applications have been studied in such diverse fields as
finance [4], computer science [5], machine learning [6–9], communications [10–13], graph theory [14], and
aeronautics [15], illustrating the importance of such algorithms to real world problems.While some of these
applications rely on the ability of theQAA to performoptimization byfinding the lowest energy state of a
classical problemHamiltonian, others such as [6–10, 13], instead rely on the fact that open quantum systems
effects allow for sampling of an approximate Boltzmann distribution. I will discuss both of these techniques in
due course.

The archetypalmodel for quantumannealing, because of its connection to condensedmatter physics as well
as the fact that it can be implemented on real devices [16] is the transverse field Isingmodel, withHamiltonianH
(s) given by
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encodes the problemof interest,χ is the hardware graph, andA(s) andB(s) are the annealing schedule, which
determines how the energy scales of the transverse and longitudinal terms changewith the annealing parameter,
Î ( )s 0, 1 . The problem is encoded by speficifying the values of hi and Jij. For theQAA, ( ) ( )A B0 0 and
( ) ( )A B1 1 , andA(s)decreasesmonotonically whileB(s) increasesmonotonically with increasing s. Applying
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theQAA consists ofmonotonically increasing swith time such that the ground state of the system changes over
time between the (known) ground state of the transverse part of theHamiltonian ( såi i

x) to the solution of the
(classical) problem to be solved, equation (2). The search space of the transverse Isingmodel is a hypercube
where each vertex corresponds to a bitstring, the dimension is equal to the number of qubits, and theHamming
distance between classical states corresponds to the number of edges whichmust be traversed between the states.
This structure is independent of the interaction graph defined by Jijwhich alongwith hi determine the energy at
each vertex.

I choose to focus on the transverse field Isingmodel for concreteness, and because the action of the
transverse field is a quantum analogue of single bit flip updates in classicalMonte Carlo. However, the
arguments presented in this paper should hold formost other search spaces aswell, withHamming distance
replacedwith amore general notion of search space distance.

TheQAA can be though of as analogous to classical simulated annealing (SA) inwhich quantumfluctuations
mediated by the addition of non-commuting terms to a classical Hamiltonian, play the role which temperature
plays in SA. Simple SA, however, has been superseded bymore sophisticated algorithms, such as parallel
tempering [17, 18], population annealing [19–21], and isoenergetic cluster updates [22] to name a few. This then
begs the question of whether quantum annealing hardware can be used in a clever way to gain the advantages of
thesemodern classical algorithms, by using a hybrid algorithm employing both quantum and classical search
techniques, or by usingmultiple quantum searches in a sequential way tomake algorithmic gains.

TheQAA, as it is currently designed, is not amenable to such adaptations. It is a global search, and there is no
obviousway to insert information, from either a classical algorithmor previous runs of theQAA, in a
meaningful way to improve the performance. Furthermore, theQAA is fundamentally different from classical
annealing in that, due to the famous no-cloning theorem [23] of quantummechanics, we cannot determine
exactly what the intermediate state of the system is part way though the anneal. This is in direct contrast to SA,
where every intermediate state is known, and can bemanipulated arbitrarily to build better algorithms. For
example, classical gains can bemade by runningmany runs in parallel and probabilistically replacing poor
performing copies with thosewhich are performingwell (population annealing), or raising the temperature for
thosewhich performpoorly and lowering it for thosewhich performwell (parallel tempering).

In order to build quantum versions, let us consider a subroutine similar toQAA, butwhich performs a local
search of a region of phase spacewith a controllable size around a user selected initial state. The input and output
of a single step of this algorithm is completely classical, so the no-cloning theorem is no longer a barrier and these
local quantum searches can be combined arbitrarily with both other quantum searches and classical searches.
Using this, I construct analogues to state-of-the-art classical algorithms, butmade of quantumbuilding blocks, I
also demonstrate how to construct new hybrid algorithmwhich can use any classical algorithmwhichmeets a
very general set of criteria as a subroutine. It is worth pointing out here that this kind of search has been
considered in a limited scope in recent work by others [24].

I further argue that these subroutines will be less sensitive to noise in the formof problemmis-specification
than theQAA. The typical random energy differences between states due to these errors scales like N , whereN
is the total number of qubits. A local search, however, only searches a small subspace of the total solution space,
and therefore only errors which occur on states within this subspace are relevant. A local search can therefore
givemeaningful results even in a problemwhere the global optimum is no longer correctly specified due to
noise.

Thismanuscript is structured as follows. In section 2 I give a brief overview of the currently used
optimization and sampling techniques whichwill be discussed in thismanuscript. In section 3 Iwill explain how
a hybrid technique can be constructed by combining local quantum searches with local classical searches.
Following that section, in section 4 I examine theways inwhich adaptive search ranges can be used, including
construction of analogues of parallel tempering and population annealing. In section 5 I describe how a local
search can be achieved using an annealer which implements a transverse field Isingmodel. I next perform simple
numerical proof of principle experiments usingQuantumMonteCarlo (QMC) techniques in section 6 on the
simplest of these algorithms to demonstrate the value of local searches. Next, I discuss how thesemethods can be
extended to sampling applications in section 7 and describewhy local searches should bemore robust against
problemmis-specification in section 8. Finally in section 9 I examine the feasibility of implementing such a
protocol on real devices, and concludewith general discussion in section 10.

2.Optimization and sampling techniques

To explain the newmethod I propose, it is useful tofirst summarize some classical and quantumoptimization
techniqueswhich are currently studied. The list given here is not intended to be exhaustive, and in particular will
only cover some of the classical techniques from theMonte Carlo ‘family’ ofmethods, thosewhich use
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Metropolis weighted updates. AMetropolis update is an update which is performed probabilistically in the
followingway: if the update lowers the energy of a state it will be performedwith 100%probability; however if

the update increases the energy than it will be performedwith a probability equal to -D( )exp E

T
whereDE is the

change in energy andT is an effective temperature. BecauseMetropolis updates obey detailed balance, they can
be used to sample a thermal distribution aswell as tofind ground states, assuming all other update steps also
obey detailed balance.

Simulated annealing (SA)
In SA an initial state is chosen randomly and is updated by flipping individual spins according toMetropolis
rules. The temperature parameter is then reduced according to an annealing schedule untilT=0 is reached. SA
derives its name from the fact thatMetropolis rules updates obey detailed balance, and therefore an SA run can
be thought of as a simulation of a physical spin systemwhich is cooled under classical dynamics.

Parallel tempering
In parallel tempering [17, 18], multiple copies of a system are initialized in random states eachwith a different
temperature parameter. Spin flipMetropolis updates are applied on each copy. These temperature parameters
are keptfixed, but additional update rules are applied to swap the temperature of copies probabilistically in away
which obeys detailed balance. These rulesmean that poorly performing copies have a high probability of having
their temperature raised so that they perform a long range exploration of the solution space, whereas the
temperature of copies which performwell are reduced so that their search becomesmore local. Because parallel
tempering is able to abort explorations of regions forwhich the algorithmperforms poorly it provides a
substantial improvement over SA. There is no knownphysical phenomenonwhich is an analogue of parallel
tempering.

Population annealing
Population annealing [19–21] also usesmultiple copies of the same system, again initialized in random states.
Unlikewhat is done in parallel tempering, spin flipMetropolis updates are performed on all copies at the same
temperature and it is slowly reduced according to an annealing schedule. In population annealing there is also an
update rule beyond simpleMetropolis updates. These rules probabilistically delete poorly performing copies,
and replicate thosewhich performwell in awaywhich not only obeys detailed balance but also forwhich the
average population remains constant and does not explode exponentially, or decay to zero. Aswith parallel
tempering, population annealing contains amechanism to abort searches which performpoorly, and provides a
substantial improvement over SA. The performance gains over SA fromparallel tempering and population
annealing have been observed to be comparable [19–21]. Again, there is no knownphysical phenomenonwhich
is an analogue to population annealing.

Quantumannealing algorithm
TheQAA is an algorithm inwhich quantumfluctuations act in an analogousway to theway inwhichMetropolis
updates are used in SA. The strength of the quantumfluctuations is then slowly turned down according to an
annealing schedule, this could be performed for instance using the transverse field IsingmodelHamiltonian in
equation (1). For the purposes of this paper, I useQAA to refer to the process bywhich quantumfluctuations are
slowly turned down, and not the specific nature of the fluctuations. There are actually twomechanisms bywhich
theQAA can obtain the ground state of theHamiltonian. In a closed quantum system setting the adiabatic
theoremof quantummechanics guarantees that, for slow enough evolution, the systemwill remain in its ground
state as long as it is initialized in its ground state [25–27], this is conventionally called adiabatic quantum
computation (AQC) [2]. For discussion of the effect of open quantum systemphenomena onAQC, see [28]. On
the other hand, in an open quantum system settingwith a low temperature bath, interactions with the bath can
lead transitions toward lower energy states, thismechanism is known as quantumannealing (QA) [1]. TheQAA
is performed on an analog physical system, which can be thought of as an analog computer. Rather than being an
analogue to a physical process as SA is, theQAA is a physical process itself. QAA-like protocols have also been
successfully implemented in condensedmatter systems [3].While the quantumdistribution obtained from the
QAAwill not generally be the thermal distribution onewould findwith zero transverse field, it has been
demonstrated experimentally that a quantum annealer can be used for thermal sampling under some
circumstances [10], it has also been demonstrated numerically that in some cases the transverse field can act as
an effective proxy forfinite temperature [11, 12]. Recent work has also suggested that the dissipation fromopen
quantum system effects inQA can lead to an improvement in performance over AQC [29].

3
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Quantumrandomwalk
A continuous time quantum randomwalk [30] is a quantumprotocol bywhich a quantum system is allowed to
evolve under afixed quantumHamiltonian to explore a solution space. It has been demonstrated that
continuous time quantum randomwalks yield a similar degree of quantumadvantage as other quantum search
algorithms [31], for further extensions to spatial searches, see [32]. As I discuss later, in the limit of instantaneous
annealing, the local search protocol which I propose is a quantum randomwalkwith a localized starting
condition and subject to noise from afixed temperature bath.

Comparison between techniques
Whether the dominant searchmechanism is open system effects (QA), or the adiabatic theoremof quantum
mechanics (AQC), theQAAuses a singlemonotonic anneal, and therefore is a quantumanalog of SA. There is
no sense inwhich theQAA can abort poorly performing searches in favor of thosewhich performbetter. The
reason that using theQAAmay still be preferred over either parallel tempering or population annealing is that
QAAmay grant a large quantum advantage. If such an advantage were larger than the classical advantage which
advanced techniques such as parallel tempering or population annealing have over SA, then theQAAwould be
preferable. However, it is possible, especially for early generations of annealers, that only amodest advantage,
which is not as large as the advantage from advanced classical techniques is present. In this case theQAAwould
still be out-performed by these advanced techniques sowould not be a desirable approach to real world
problems.However a techniquewhich could gain a small quantum advantage (possibly not even as large as the
onewhich theQAAhas over SA) alongwith the advantages of advanced classical techniqueswould still represent
an improvement in the state-of-the-art. I examine three possible approaches to achieve this goal: a hybrid
algorithmwhich combines local quantum searches with any classical algorithmwhich follows a very general set
of criteria (section 3), an analogue of parallel tempering which uses a local quantum search as a subroutine
(section 4), and an analogue of population annealingwhich uses a local quantum search as a subroutine
(section 4).

3.Hybrid computing

It has been demonstrated experimentally that theQAAperformswell in problems characterized by tall thin
barriers in the energy landscape [33]. On the other hand, from elementary arguments about quantum tunneling
amplitudes [34] it is expected to perform relatively poorly for energy landscapes characterized bywide, flat
barriers.While it is possible to experimentally generate problemswhich are characterized by an energy
landscape consisting of thin barriers [35, 36] it is unclear whether any problemswith this structure are
interesting in the real world.While looking for such problems is one interesting route for research, it is also
worth thinking about how annealersmay yield a benefit in phase spaces characterized by amixed energy
landscape, withmany barriers of varyingwidth.

In general onewould not expect the phase space of a real optimization problem to have only thin energy
barriers for which quantum tunneling yields amajor benefit. One advantage of using local searches is that
differentmethods can be used to traverse different types of features of the landscape. As an example, imagine the
global optimum lies in a ‘rough’ region of phase spacewithmany tall thin energy barriers, but the phase space
also has some relatively ‘smooth’ global structurewhichwould require tunneling through a verywide barrier as
shown infigure 1. In such a case the traditional QAAwould performpoorly. On the other hand a classical search
should be able to efficiently explore the larger features of the space and could easilyfind the rough region of
phase space where quantum tunneling could then provide amajor advantage.

One key point about this example is that a quantum searchwould benefit even from random initialization,
tunneling probability drops exponentially with barrier width, so if the barrier in the ‘smooth’ part of the space
waswide enough, the probability of successful tunneling to the rough region in theQAAwould be zero for all
practical purposes. On the other hand, if we assume that the quantumalgorithm explores the rough region
efficiently, then on random initialization the probability of success will be approximately proportional to the
phase space volume of the rough region.

In amore complex phase space, optimizationmay potentially benefit from sequential use of a variety of
algorithms in stages, feeding results between various classical algorithms and the quantumdevice. Any classical
algorithmor theQAA could be used to initialize such a protocol, but intermediate stages would have to be able to
take one ormore input value and search based on that input. Fortunately,most classical algorithms are
structured in such away that they store intermediate states which are updated sequentially and thereforemeet
these criteria. The entireMonte Carlo ‘family’ of algorithms (parallel tempering, population annealing,
isoenergetic cluster updates etc...), for instance could all be used this way, as could genetic algorithms.
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As I discuss in section 4, analogues ofmany of these classicalMonte Carlo based protocols can be constructed
and implementedwith local search on a quantum annealer.

As I discuss in the next section, the important characterizing feature of a local search is its range. In the next
section I discuss how the ability to control the range of a search can be used to construct hybrid quantum search
algorithms. In contrast to themethods discussed in this section, where individual calls to a local quantum search
can be interspersedwith local classical search algorithms, in themethods I discuss in that section, all searches will
be performed quantummechanically, subject to an overall classical control structure which decides which local
searcheswill be performed and at which range at each subsequent step.

4.Howmuch to search

Let us now examinemore closely how control of the range of a local searchmay be used to gain a computational
advantage. In the previous section I have outlined the basic idea of constructing hybrid algorithms from classical
and quantum local searches, but have not yet specified how control over search range can be utilized. For this
section, I will assume the existence of a local search protocol which searches a region around a point in solution
spacewhere the range is defined by a parameter ¢s , with ¢ =s 1corresponding to no search being performed
(stays in initial state with 100%probability), and ¢ =s 0 corresponding to a global search as performed by the
traditionalQAA, and intermediate values correspond to intermediate ranges. In section 5 Iwill discuss how to
implement such a protocol on an annealer an abstract way using the traverse field Isingmodel and demonstrate
that such a local search can be accomplished in a schedule which anneals to the point = ¢( )A s s , = ¢( )B s s after a
preparation protocol. In section 9 Iwill discuss the possibility of implementing such a search on real devices.

I will not assume that the functional dependence of the range of the search in terms of themeanHamming
distance explored, h ¢( )s is known, only that the rangemonotonically increases with decreasing ¢s . I further will
assume that h ¢( )s may vary depending on theHamiltonian or initial state chosen. One could choose ¢s
heuristically either byfinding a value of ¢s which typically explores within a desired range for a given class of
Hamiltonians, or by doing several runs each time for different values ¢s of the local search subroutine is called
and outputting the overall best solution(s) found.While these heuristic techniques shouldwork in principle,
they are probably sub-optimal, sowe therefore discuss amore sophisticatedways to approach this problem.
Additionally we discuss how this freedom to choose ¢s can be used to build analogues of powerful classical
algorithms, but whichmake use of a quantumprocessor.

I assume that each call to the annealer, whichwewill refer to as an annealing run and as the function
ANNEALER_CALL in our algorithms actually consists ofmultiple searches around the same point and defined
by the same parameter, ¢s each of which I refer to as an individual annealing cycle.

If a specific search radius is desired, for example by amaximumamount of errorwhich can be tolerated due
to problemmis-specification, then this search can be done adaptively. This is possible becausewhile itmay be

Figure 1. Schematic representationway inwhich a hybrid algorithm can potentially gain an advantage infinding the local energy
minima (circled in green) (a)Wide energy barrier blocks tunneling for theQAA, leading to suboptimal solution in smooth region of
the energy landscape. (b)A classical algorithm can be used to overcome the ‘smooth’ features of the energy landscape, after which
quantum tunneling can be used to explore rough parts of the landscape. (c) In this hypothetical example even random initialization
can help the search if the initial wide energy barrier is avoided by chance.
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extremely difficult to predict howmuch phase spacewill be explored in a given run, it is easy to check
experimentally.All one needs to do is to gather a statistically significant sample and check the typical Hamming
distance from the initial state. Based on these distances, ¢s can be either reduced or increased. If the bisection
adaptive search protocol given in algorithm1 is used, the number of runs required scales logarithmically with
the desired accuracy of ¢s . Logarithmic scaling is achieved because the bisectionmethod halves the search range
for ¢s at each step, therefore, assuming that the search range has been estimated correctly, the precision of the
parameter ¢s will improve exponentially at each step.

Algorithm1.Adaptive determination of ¢s to explore a region of phase space with a given size, see section 5 for
the details of how the local search given inANNEALER_CALL can be implemented.

1: procedure ADAPTIVE_ S_PRIME ( )H state dist Nstep, , , ▹ adaptive procedure for finding s’which searches a specified volume of phase

space

2: ¬s prime_ 1 2

3: ¬s min_ 0

4: ¬s max_ 1

5: for = + +i i N step1, , do

6: ¬ ( )results H state s primeANNEALER_CALL , , _ ▹Call to quantum annealer

7: ¬ ( )run dist results_ TYPICAL_HAMMING_DIST ▹Get typicalHamming distance

8: if <run dist dist_ then

9: ¬s max s prime_ _

10: ¬ + * -( )s prime s min s prime s min_ _ 0.5 _ _ ▹ halfway between s min and s prime_ _

11: else

12: ¬s min s prime_ _

13: ¬ + * -( )s prime s max s max s prime_ _ 0.5 _ _ ▹ halfway between s and s prime_ max _

14: end if

15: end for

16: return s prime_

17: end procedure

Anothermethod is to use the fact that the strength of the transverse field, and by extension ¢s , can act as a
proxy for temperature to create analogues of familiar classical algorithms, which use quantum rather then
thermalfluctuations to compute. I will examine hereways to create analogues of two such classical algorithms,
parallel tempering and population annealing.

For parallel tempering,weneed to assign an effective temperature to each value of ¢s , for calculating swap
probabilities anddetermining the optimal spacing of ¢s values used. Iwill demonstrate in section 5 that the control
parameter ¢s corresponds to a point in the annealing schedule = ¢( )A s s , = ¢( )B s s . Using this fact, an analogous
temperature for any value of ¢s canbe found in the followingway.Assume that a single qubit subject to a
longitudinalfield of unit strength is at the point ¢s in the annealing schedule, at this point theHamiltonianwill be,

s s¢ = - ¢ + ¢( ) ( ) ( ) ( )H s A s B s . 3x z
1

This 2×2Hamiltonian can be diagonalized analytically yielding the following ratio in the ground state between
the basis states in the classical basis

y
y

=
¢ + ¢

¢
+

¢
¢

( )
( )

( ) ( )
( )

( )
( )

( )
A s B s

A s

B s

A s

1

2
. 4

2 2

By comparing the quantumprobability distribution to a Boltzmann distribution on only the longitudinal part of
equation (3)we can derive an effective temperature,

y
y

¢ =
-

( ) ( )
( )

( )
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥T s 2 ln

1

2
. 5eff

2 1

For reasons I explain later, this effective temperaturemay not necessarily be a useful approximation of the
temperature of the actual observed raw output of an annealing run, but rather a proxy to establish the strength of
thefluctuationswhich cause the system to tunnel. As a demonstration of this technique, figure 2 illustrates an
example of calculatedTeff for the annealing schedule of aVesuvius generationD-Wave device.

Now that we have ¢( )T seff , we can initializeN ‘replicas’, eachwith a unique ¢si , in random states and apply
sequential local searches alongwith the standard swapping rule for parallel tempering [18],
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i j
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eff eff

where Ei is ameasure of the energy of each distribution, a natural choice forEi andEj is the lowest energy found
in an annealing run, whichwould act as ameasure of the depth of localminima in the potential landscape. This
means that the algorithmwill swap to a broad search (higherTeff) to escape shallow localminima, but search in a
more focusedway (lowerTeff) in deepminima. The values of ¢s whichwe use for this algorithm can be chosen
based on ¢( )T seff as discussed in [18].

Because ¢( )T seff is not an actual temperature this analog of parallel temperingwill also not obey detailed
balance exactly, even in the long time limit, however, as I discuss in section 7, we can still use this algorithm for
approximate sampling by performing some classical post processing.

In this analogue of parallel temperingwe define the ‘state’ of a replica as the lowest energy state found in the
previous annealing run.With this definition, we have all of the ingredients for a complete parallel tempering
analogue, as given in algorithm 2.Note that if we use this algorithmwith E in equation (6) defined as the
minimumenergy found, thenwe can extract the lowest energy found in the algorithmwherewe define a ‘virtual’
¢ =s 1 state for which = +T 0eff and the annealing protocol is not actually called, but rather the results simply
consist of the state and its energy.

Algorithm2.Quantum analogue of parallel tempering, see section 5 for the details of how the local search given
inANNEALER_CALL can be implemented.

1: procedure QUANTUM_PARALLEL_TEMPERING ( )H s primes Nstep, _ , ▹Quantumanalogue of parallel tempering

2: ¬ ( )N qubits length H

3: ¬ ( ( ) )states length s primes N qubitsRANDOM_ZEROS_AND_ONES _ , ▹ Initialize randomarray of states

4: ¬ ( ( ) )energies zeros length s prime_ , 1

5: for = + +i i N step1, , do

6: for = + + ( )j j length s primes1, , _ do

7: ¬ ( ( ) )results H states j s primeANNEALER_CALL , , : , _ ▹Call to quantum annealer

8: ¬( ) ( )states j results, : LOWEST_ENERGY_STATE ▹ Extract lowest energy state

9: ¬( ) ( )energies j resultsMINIMUM_ENERGY ▹Maywant to usemean energy instead for sampling applications

10: end for

11: return states ▹ States at each stepmay be useful for sampling

12: for = + + ( )j j length s primes1, , _ do

13: for = + + + ( )k j k length s primes1, , _ do

14: ¬ ( ( ) ( ) ( ) ( ))prob energies j energies k s primes j s primes kSWAP_PROB , , _ , _ ▹Apply Eq. 6

15: if RAND() < prob ▹Uniform randomnumber between 0 and 1

16: ¬ ( )temp state states j_ , :

17: ¬( ) ( )states j states k, : , :

18: ¬( )states k temp state, : _

19: end if

20: end for

Figure 2.Calculated values ofTeff versus s for the annealing schedule used by aVesuvius generationD-Wave device. Annealing
schedule is shown in the inset.
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(Continued.)
21: end for

22: end for

23: endprocedure

Let usfinally consider a different approach, one inwhichwe do runswith progressively larger ¢s and
therefore progressively smaller ¢( )T seff . Let us take our inspiration for this from the classicalMonte Carlo
technique of population annealingwhichwas introduced in [19] and further discussed in [20, 21]. In this
technique,many replicas are run under SA and at each temperature step replicas are either destroyed or copied
based on a probabilistic criteria related to their energy.

Following the classical prescription, for a given replica, themean number of copies of that replica whichwill
appear at the next stepwill be
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The choice of the normalization constantQ guarantees that, while the total number of replicas willfluctuate
from step to step, themean number of replicaswill remain N̄rep throughout the algorithm.Without this properly
defined normalization, the number of replicas would either grow exponentially and cause the algorithm to
become impractically slow, or reduce to zero, leaving the outcome undefined.Wenow simply follow the same
prescription as we didwith parallel tempering, defining the ‘state’ of a replica as theminimumenergy found in a
given annealing run, and defining the energy of that replica as the corresponding energy. From this we can now
construct the quantumanalogue of population annealing shown in algorithm3. The effect of this algorithm is to
identify and preferentially searchwith increasingly short range local searches regionswith deep localminima.

Algorithm3.Quantum analogue of population annealing see section 5 for the details of how the local search
given in ANNEALER_CALL can be implemented.

1: procedure QUANTUM_POPULATION_ANNEALING( )H s primes N bar, _ , ▹Quantumanalogue of population annealing

2: ¬ ( )states N bar N qubitsRANDOM_ZEROS_AND_ONES , ▹ Initialize random array of states

3: ¬ ( )energies zeros N bar, 1

4: ¬N N bar

5: for = + + -( )i i length s primes1, , _ 1 do

6: ¬ []newEnergies ▹ Initialize empty variable

7: ¬ []newStates ▹ Initialize empty variable

8: for = + +j j N1, , do

9: ¬ ( ( ) )results H states j s primeANNEALER_CALL , , : , _ ▹Call to quantum annealer

10: ¬( ) ( )states j results, : LOWEST_ENERGY_STATE ▹ Extract lowest energy state

11: ¬( ) ( )energies j resultsMINIMUM_ENERGY ▹Maywant to usemean energy instead for sampling applications

12: end for

13: ¬ +( ( ) ( ))Q energies N bar s primes i s primes iNORMALIZATION_FACTOR , , _ , _ 1 ▹Apply Eq. 8

14: for = + +j j N1, , do

15: ¬ +( ( ) ( ) ( ))N mean energies j s primes i s primes i QUNNORMALISED_PROB , _ , _ 1 ▹Apply Eq. 7

16: ¬ ( )N copy N meanPOISSON_RANDOM_NUMBER ▹ Poisson distributed randomnumber

17: if N copy> 0 then

18: for = + +k k N copy1, , do

19: ( ( ))newEnergies energies jAPPEND , ▹Append to list of energies

20: ( ( ))newStates states jAPPEND , , : ▹Append to list of states

21: end for

22: end if

23: end for

24: ¬ ( )N length newEnergies

25: ¬ ( )energies newEnergies

26: ¬ ( )states newStates

27: return states

28: end for

29: end procedure
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5. Local search on an annealer

For a useful local searchwe desire two properties, firstly the search should be local in the sense that it only
explores a fraction of the states in the state space and secondly the search should seek outmore optimal (lower
energy) solutions over less optimal ones. Consider a protocol to search the phase space near a chosen classical
state in the presence of a low temperature bath. The system isfirst initialized at s=1 in a statewhich specifies the
starting point of the algorithm and therefore the region to be searched. Local searchwith a controllable range is
then performed by decreasing the annealing parameter s in equation (1) to a prescribed value ¢s (thereby turning
on a transverse field), possibly waiting for a period of time, and then returning to s=1 and reading out thefinal
state normally. The low temperature bathwillmoderate transitions between states, with detailed balance acting
as a guarantee thatmore optimal states will be favored in the search.

Onemodel which has been able to successfully predict experimental results [35–37, 39, 40] is to assume
decoherence acts in the energy eigenbasis. In thismodel, which arises from a perturbative expansion in coupling
strength [41, 42], coherence can be lost rapidly between energy eigenstates and transitions between these states
can bemediated by the bath but the eigenstates themselves are not disrupted by the bath. Because the eigenstates
themselves will generally be highly quantumobjects, even a completely incoherent superposition of them can
still support quantum effects.

Solving problems using tunnelingmediated by open quantum system effectsmeans that even if the system is
initialized in an excited state, interactions with the environment will cause probability transitions to other
eigenstates. Detailed balance implies that for a bathwithfinite temperature the transitions will occur
preferentially toward lower energy states. Furthermore, ifA(s) is appropriately small compared toB(s) in
equation (1) then the quantum fluctuations can be viewed as localfluctuations around a classical state, the
strongerA(s) is compared toB(s), the less local this searchwill be. Consider the perturbative expansion around a
(non-degenerate) classical state = ñ∣ ( )C s 1 which can bewritten as,
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where Dn is a diagonalmatrix which depends on the spectrumofHProblem and  is a normalization factor. If we
assume dephasing noise, then the tunneling rate between two perturbed classical states, ñ∣ ( )C s and ¢ ñ∣ ( )C s will
be proportional to så ¢( ) ( )C s C si i

z . By inserting the state given in equation (9), we see that
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where ¢( ( ) ( )) C C1 , 1 is theHamming distance (number of edges required to traverse on the hypercube)
between the two classical states andK indicates higher powers of ( )
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perturbed classical states is therefore exponentially suppressed in theHamming distance between the states. As
an eigenstate of a transverse field Isingmodel ¹ ñ∣ ( )C s 1, 0 is a fundamentally quantumobject whichwill
exhibit quantum entanglement and therefore will be able tomediate tunneling between classical states quantum
mechanically.We therefore expect a quantumadvantage to be preservedwithin the local search. By using
quantum searches only locally we have removed the possibility of gaining a quantumadvantage for long range
searches beyond the range of each local search.However, for this price we gain amajor advantage, the classical
long range search can be done using state-of-the-art techniques such as parallel tempering or population
annealing, therefore a small quantumadvantage in the local search still results in an improvement over the
underlying classical algorithm. By contrast, traditional quantumannealing only represents algorithmic
improvement over classicalmethods if the quantumadvantage is at least as large as the advantage which state-of-
the-art classical techniques such as parallel tempering have over simulated annealing.

The question is nowhowwe can program the initial state. The initial states required for the local search
protocol are completely classical, and therefore could be programmed directly bymanipulating the qubits in a
classical way. Another completely classicalmethodwould be to prepare a simple energy landscapewhere the
desired state has the lowest energy and first heat and then cool the system, thus preparing it by classical thermal
annealing. Both of thesemethodswould require additional controls or degrees of freedomwhichmay not be
accessible on a real device. For this reason Iwill instead focus on preparing the initial state using the standard
QAA,which an annealer is able to perform by definition. This is accomplished by running theQAAwith a simple
Hamiltonian to guarantee that the system is initialized in a desired state y ( Î -( ) { }y i 1, 1 )with a high
probability, for example

å ås s s= - -
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which is a gauge transformof an unfrustrated ferromagnetic system in afield, andwill have a very simple energy
landscape and a relatively large energy difference between the lowest energy andfirst excited state. Annealing
runswith thisHamiltonian therefore should therefore reach the target state ywith a high probability. After this
step, one needs to be able to reprogramHProblem in equation (1) to be theHamiltonian of the problem inwhich
we are interested. I will discuss the feasibility of performing such a protocol on real annealers in section 9.

Oncewe have the desired initial state and problemHamiltonian programmed, we simply need to turn on a
desired strength of transverse field, controlled by the value ¢s shown infigure 3. Itmay also be desirable towait
for a time τ before turning the field off again and reading out the state. The readout does not need to be any
different thanwhat is usedwith the standardQAA.While I will not generally assume the capability to anneal to
= ¢s s instantaneously, as the annealing rate on real devices is sometimes experimentally limited [48], it is worth

pointing out that in this limit each run is effectively a noisy continuous time quantum randomwalkwith a
localized starting condition and afinite temperature bath. In a relatedwork I will examine the relationship
betweenQAA and quantum randomwalks in the context of global rather than local searches [44].

The functionANNEALER_CALL in algorithms 1, 2, and 3 can be constructed by repeatedly performing the
annealing cycle protocol illustrated infigure 3with the same value of ¢s and the same initial state = ñ∣ ( )C s 0 each
time. This function than returns a list of thefinal state found in each successive annealing cycle, which is can be
thought of as the results of a probabilistic local quantum search around = ñ∣ ( )C s 0 . In the next section, I provide
numerical demonstrations of the principle of local quantum search.

6. Proof of principle

6.1.Methods
Now that I have discussed how a local search algorithm can be constructed, I will perform some numerical
experiments to act as a proof of principle for thesemethods.While a full numerical examination of all
techniques discussed here is beyond the scope of this paper, it is instructive to examine the behavior in some
simple cases to demonstrate that the underlying principles are sound. The numericalmethodwhich Iwill use for
this is path integral QMC,which has previously been used to study the behavior of quantum annealing [33, 46–
50], this idea is often referred to as path integral quantum annealing (PIQA).

PIQA is based on approximating the quantumpartition function as a classical partition function of a
Hamiltonian consisting ofmultiple coupled copies of the originalHamiltonian, I do this following themethods
of [50], usingP=60 Trotter slices to simulate a system atT=0.05,meaning that the actual temperature of the
coupled copies is =PT 3. The number ofMonte Carlo steps per spin (MCS), tPIQA is varied in different
numerical experiments as explained later. Formore details of the numericalmethodology, including classical
pre-annealing, I refer the reader to the appendix.

Figure 3. Schematic representation of a single annealing cycle to perform a local search. First the standardQAA is implementedwith
the problemHamiltonian given in equation (11) to initialize the qubits in the desired state. After this theHamiltonian is
reprogrammed and the device is annealed to ¢s and optionally allowed to remain at that point for a time τ. The device is then annealed
to s=1 and read out.
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While these techniques do not simulate the details of the systembath interactions, they do use local updates
to approach a Boltzmann distribution relative to a quantumHamiltonian. This can roughly be thought of as
similar to the action of a bathwhich performs local updates which obey detailed balance. It is often the case in
quantumannealing that tunnelingmediated by these interactions dominates over other factors such as
coherence between energy eigenstates, which are not present in PIQA. It has in fact been shown experimentally
that similar scaling can be obtainedwith PIQA aswith hardware physical annealers, albeit with a large constant
factor advantage in favor of the hardware [33].

For these proof of principle studies, I consider amodified version of aHamiltonianwhich has been
previously used in an experimental quantum annealing study [37]. ThisHamiltonian has been chosen because it
is known to be difficult to solve using quantumannealing, andwas previously used to demonstrate the beneficial
role which thermalfluctuations play in solving problems on real world devices. Asfigure 4 demonstrates, we
have added additional couplers of strength δ to thisHamiltonianwhich increase the roughness of the energy
landscape. Except for infigure 4, I use d = 0.2. I have also observed numerically that these couplersmake the
problem easier for the PIQA, but standard PIQA still performs relatively poorly in the regimewe examine. I have
elected to use a linear annealing schedule for these studies = -( )A s s1 , =( )B s s owing to its relative
simplicity.

This problem is not particularly hard for classical algorithms, as demonstrated by the high success rate of
simulated annealing depected infigure 4. The relative ease of this problem for classicalMonte Carlo approaches
is likely due to the small state space of this problemwhich is constructed of relatively few spins, it can be solved in
less than a second by exhaustive search. As the title of this section implies, the calculations here are not intended
to prove a scaling advantage of these protocols, but rather a proof of principle of the underlyingmechanisms.

One advantage of thisHamiltonian is that it can be implemented on aD-Wave chimera graph,meaning that
in principle thisHamiltonian could be used as an experimental tool on real world annealers. However that the
values ofT and tPIQA for the numerical studies here have not been chosen tomatch the parameters of any of
these devices.

6.2. Results
Let usfirst examine the effective range exploredwhen annealing hardware is programmed in an initial state at
s=1 and s is decreased linearly to a value ¢s at a constant rate. Asfigure 5 illustrates, Hamming distance from the
initial state, in this case the true ground state of the finalHamiltonian illustrated infigure 4 increases
continuously as s is decreased until the annealing trajectorymerges with that of a traditional PIQA runwhich
starts at small s and then forwhich s is increased. This plot clearly demonstrates how ¢s and the annealing rate
(which acts as a proxy forwait time at ¢s )may be used to control the typical range of a search.

Let us now consider an example problem to demonstrate the action of the local searchmechanism. Ifirst
note that none of the 1000 PIQA runs using a traditional annealing schedule whichwere used to produce figure 5
were able tofind the correct ground state, demonstrating that this problem is relatively hard for quantum
annealing as it is usually formulated. Let us instead consider a very simple hybrid algorithm: initializing in a

Figure 4. Inset: IsingHamiltonian used in proof of principle studies. Solid lines are ferromagnetic couplers with strength = -J 1,
dashed lines are ferromagnetic couplers with strength d= -J . Red circles indicate qubits with appliedfield of+1,magenta indicate
field of−1, and gray indicate nofield. Everywhere except for in themain plot of thisfigure, I use d = 0.2.Main plot: Simulated
annealing success probabilites Pwith various values of δ for a sweepwith 1000 steps using a linear anneal starting atT=10. Error bars
represent one standard deviation of themean.

11

New J. Phys. 19 (2017) 023024 NChancellor



randomly selected state at s=1, anneal to ¢s , wait a period of time τ and then anneal back. To gain a fair
comparison between different values of ¢s , I elect tofix the total number of steps t = 1000PIQA .

Figure 6 shows the results of this protocol. Firstly, I note that even at effectively zero transverse field, the
system is able tofind thefinal ground state withmoderate probability, this is an artifact of the small problem size.

For relatively small ¢
¢

( )
( )

A s

B s
, the probability offinding the ground state remainsfixed at this same value, this is the

frozen regime, where quantumfluctuations are not strong enough tomediate tunneling. At a larger value of ¢
¢

( )
( )

A s

B s
,

the probability offinding the ground state increases due to tunneling fromnearby states, it is in this local
tunneling regimewherewe can see the advantage of local quantum searching, the state is transfered to a nearby
localminimumwithout becoming trapped in the falseminimumwhich prevents traditionally formulated

quantumannealing fromperformingwell. Finally, if ¢
¢

( )
( )

A s

B s
is too large, the system tunnels into the falseminima

and the success rate drops off, this regime is the global tunneling regime.

Figure 5.Hamming distance from true final ground state versusA/B. The simulation is started in the true ground state at s=1 and
annealing backward using PIQAwith t = 500PIQA (red), t = 1000PIQA (orange), t = 2000PIQA (yellow), t = 3000PIQA (purple),
t = 4000PIQA (green), and t = 5000PIQA (cyan). The dashed black line is a PIQA run starting at =( ) ( )A s B s 3 and annealing to
s=1 ( ( ) ( )B s A s )with a linear schedule and t = 1000PIQA . All curves are the result of averaging 1,000 individual PIQA runswith
T=0.05 and P=60.MeanHamming distance is calculated by averaging between all Trotter slices and PIQA runs. The difference
between the dashed curve and the solid curves at =A B 3 is likely a statistical artifact relating to how the PIQA for the dashed line is
initialized, see appendix for details.

Figure 6.Probability of finding the ground state versus ¢
¢

( )
( )

A s

B s
. These data show three regimes, a frozen regimewhere no quantum

tunneling can occur, a local tunneling regimewhere performance is enhanced by quantum tunneling fromnearby states into thefinal
ground state, and a global tunneling regime, where the state can tunnel throughout the system, and therefore gets trapped in a false
minimumwith high probability. This figure is based on accumulated statisitics of 500 individual random starting points whichwere
all subjected to the same classical pre-anneal. Error bars represent one standard deviation of themean.
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This simple example acts as a proof of principle for the power of a local quantum search, specifically, that
local quantum exploration can lead to success evenwhen a global search fails.While the problemused in this
example is small, and relatively simple, the same principles will hold for larger examples where the rough region
is harder to explore classically.

7. Applications to sampling

While the parallel tempering-like routine in algorithm2will not obey detailed balance exactly, itmay do so in an
approximate sense and thereforemay approximate a fair sampling of the localminima of the energy landscape.
Because the systemmust be annealed to the point s=1 at the end of each call to the annealer, the raw states
extracted from this algorithmwill not provide a good approximation of a thermal sample of the problem
Hamiltonian unless this step is performed very fast. On the other hand, these states do still provide very
approximate information on the relative thermal probabilities to be found in different localminima, with
quantumfluctuations acting as a rough proxy for thermal fluctuations. It has been shown in [9] that for some
machine learning tasks a quantumdistribution atfinite temperature is actually preferable to a Boltzmann
distribution on a classical Isingmodel. For other tasks it has been shown that using quantum fluctuations as a
proxy for thermal distributions is sub-optimal, butmakes little difference in practice [11, 12]. An approximate
thermal sample can be obtained byfirst taking all of the data from the states output by algorithm 2 at a desired
Teff (perhaps throwing thefirst few iterations away as warmup period), and then applying themetropolis rules
at =T Teff to obtain a fair thermal sample within each of these localminima.

For the estimation of the relative importance of localminima for sampling purposes, themean energy found
in each runmay actually be amore appropriatemeasure, rather then theminimumenergywhich the annealer
found, and thereforemore accurate sampling resultsmay be obtained if theminimum in line 9 of algorithm 2 is
replaced by themean of all of the energies found in a run.

Similarly to the parallel tempering analogue, the population annealing analogue can be used to approximate
thermal weight of different localminima and therefore to sample with appropriate post-processing. Aswith the
parallel tempering themean energy in an annealing runmay be amore appropriate choice then theminimum
energy as the criterion for howmany copies of a replica to carry on to the next stage of annealing.

For themore generalized hybrid algorithm, or if an exact Boltzmann distribution over the classical Ising
Hamiltonian is desired, how to perform sampling is less clear, but sampling could still benefit fromusing these
algorithms.While the hybrid algorithmmay be able to give amore complete accounting of low energy local
minima then othermethods, it does not provide any clue on the relative thermal weights of each. In principle
however, classical post processing could allow an estimate of the entropy and therefore free energy in disjoint
localminima. By integrating the specific heat numerically usingMonte Carlo techniques, these free energies
could then be usedfind the appropriate weightings to calculate an overall Boltzmann distribution.

It is alsoworth noting that if fast annealingwere available, as suggested in [9], then post processingwould not
be necessary for either the population annealing or parallel tempering as the distributionwithin each disjoint
minimumwould already be of the formdesired for a quantumBoltzmannmachine.

8.How to avoid solving thewrong problem

Problemmis-specification, where the controls for stating the problem (theHamiltonian for theQAA) do not
matchwhat the user intended, is amajor difficulty in analog computing [45]. In real devices thesemis-
specifications come from a variety of sources, such as low frequency noise from the environment whichmimics
the control device or simply from the fact that the controls lack the precision to represent the actual intended
problem. For the purposes of this discussion the source of the control error does notmatter, only that it is
effectively randomand relatively uncorrelated. On real devices, techniques such as gauge averaging can be used
to get rid of any correlation in the control error, and non-random components can be removed by repeated
measurement and adjustments of the device.

The effect of problemmis-specification is that the classical energies of states are changed randomly. The
typical change in energy for any state in the phase space will be proportional to the energy fromapplying a
Hamiltonian corresponding to themis-specifications to that state. By general statistical arguments this energy
shift will be proportional to N , whereN is the total system size [51]. If themis-specification is strong enough
compared to the energy difference between local versus global energyminima, then the optimumof themis-
specifiedHamiltonianwill no longer correspond to the optimal solution of the target problem, and even a
machinewhich finds the lowest energy state perfectly on themis-specifiedHamiltonian can only obtain an
approximate solution.
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Problemmis-specificationmeans that, as a device to perform theQAA is scaled, the errorsmust also be
reduced or the devicewill no longer be able to reliably optimize, and any fundamental limit on the precision of
the controls will also be a limit on the size of problem for which a such a device will be useful. The reason for this
is that theQAA is a global search, corruption of the energy landscape anywhere in the phase space has the
potential to destroy performance.

For a local search however, the total size of the space is irrelevant to the performance of the search. The
reason is as follows, which state is optimumdepends only on the relative energy of states which are explored,
clearly shifts relative to the energy of states which are not searchedwill have no effect. Errors due to problemmis-
specification arise from the device being effectively ‘tricked’ by bitstrings which have falsely been assigned a
lower energy than the actual solution. The deviation in energy differences between the searched bitstrings is
therefore the relevant quantity, and overall energy shifts in all states which can be reached are irrelevant.

Local searches are not immune to problemmis-specification.However, if I assume that the shape of the
subspace explored is itself roughly in the shape of a hypercube then by the same arguments as [51], the relevant
energy shift caused by the problembeing incorrectly specifiedwill go as h ¢( )s where h ¢( )s is the typical
Hamming distance between the states explored.While h ¢( )s itselfmay scale withN for afixed ¢s , the value of ¢s
can be adjusted for different system size based on the algorithm1, and therefore heldfixed, thus removing the
direct dependence of the error onN. As I discussed previously,fixing the range of the search doesmean that a
quantumadvantage cannot be obtained beyond the range of the search, however, it does not preclude the
possibility of such an advantage within the search range.

Even if the assumption that the subspace explored by the local search is roughly hypercubic in shape is
relaxed, then the effective typical energy shift can still be upper-bounded using the following arguments.
Increasing the number of states in a search space can never decrease the probability of the search space being
corrupted by problemmis-specification. This is intuitively clear because if a bitstring exists in the search space
which due to problemmis-specification has a lower energy than the correct solution, this bitstringwill still be in
the search space if it is expanded, and the search spacewill still be corrupted. Therefore, if the furthestHamming
distance between states reached in a local search is h ¢( )smax than the probability of state space corruption for the
search space has to be less than the probability of corruption in a hypercubic space with size h ¢( )smax and

therefore the effective typical energy shiftmust be less than h ¢( )smax , which again could be substantially less
then the total system size,N.

In principle local searches are still a valid optimization technique for arbitrarily largeHamiltonians as long as
each search does not search too large a subspace.

9.Hardware implementation

Let us now examine the question of whether the reprogramming step infigure 3 is experimentally feasible. To do
this wemust discuss the details of how an annealer actually works. In this section Iwillfirst discuss in general
termswhy themethods proposed here should be practical on any annealer, this will be followed by a brief
discussion of the feasibility of doing such searches specifically on the superconducting circuit hardware
constructed byD-Wave Systems Inc.

The local search protocol laid out in this paper does not require anymodification of the parts of the protocol
for which quantummechanics plays a role. The only additional capability beyondwhat one should expect for
any useful quantum annealer (programmableHamiltonians, ability to adjust parameters over an appropriate
range, some degree of coherent quantum interaction, etc ...), is the ability to program the state of themachine at
the end of the anneal. As I havementioned previously however, at this point the annealer is in a completely
classical state and there is no need to protect a delicate quantum superposition.

If the annealer architecture also supports individually addressablemanipulation of individual qubits by
either quantumor classicalmeans then the necessary state can be initialized by first running the annealer with
the desiredHamiltonian and thanmeasuring the result and applying appropriate gates to reach the desired state.
In this case the problemHamiltonian does not ever need to be changed. One example forwhich this will
certainly be true is a simulation of a quantum annealer which is run on a universal quantum computer, in this
case no initial annealing run is even necessary, the bits can just be initialized in the ñ∣0000 .... state and than
appropriate bit flips could be applied.

As I have discussed in section 5, directmanipulation of the qubits is not necessary, as long as the
Hamiltonian can be reprogrammed at s=1without disturbing the (classical) state of the bits. As the
Hamiltonianmust already be programmable for an annealer to be useful, the necessary criteria for this to be
possible is that the qubits either are naturally stable enough or can bemade stable enough that their state is not
changed by reprogramming theHamiltonian. Even in a systemwhich lacks natural stability, such stability could
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be achieved for example by turning on strongfield termswhile the couplers are reprogrammed, and then
turning thefield terms off again.

I now specifically discuss the superconducting circuit architecture byD-Wave systems Inc. These devices are
based on superconducting circuits of the type shown schematically infigure 7 [53].

One crucial aspect to the feasibility of theD-Wave hardware for local searches is that it has been shown
experimentally that open quantum system effects play amajor role in the ability of theD-Wave devices to
perform tunneling and find ground states [37]. It is worth pointing out that the importance of open quantum
system effects does not indicate that theD-Wave devices are classical rather than quantum solvers. In fact, for
these devices there is experimental evidence of both entanglement [38] and tunneling [35, 36].

In theD-Wave architecture there is classical superconducting control circuitry [52]which is used to set the
fields and couplers in equation (2). Tuning the components of this circuitry which are used to program these
states will produce stray fields and heat which onemay be concerned could disrupt the state of the qubits. The
final classical state of these qubits should be very stable, and need not support any delicate quantum
superpositions since it is a classical basis state. The reason for the stability is theway inwhich the qubits are
implemented. The effective Isingmodel in theD-Wave device is produced by circuits which actually implement
an effective double well potential [39], this potential is then tuned between amono- and bi- stable regime. The
ground andfirst excited state of each of these individual wells can bemapped to an effective Ising spin, for which
quantum tunneling between thewellsmediates superposition states as illustrated schematically infigure 8. The
strength of tunneling depends exponentially on thewidth and height of the barriers between these twowells, and
therefore tuning far into the bistable regime strongly suppresses any quantum tunneling, andmakes the qubits
effectively classical. In this classical regime itmay still be possible for external heat to cause the qubit to be excited
over the energy barrier thermally. To avoid this problemone should be able to simply bias the qubits further into
the bistable regime until the barrier heights are sufficient, or to perform the reprogrammingmore slowly so heat
hasmore time to dissipate.

An outstanding question is whether theD-Wave chip as it is currently constructed is capable of
implementing such a protocol.While it has not been tested experimentally whether or not such reprogramming
will disrupt the state of the qubits on these devices, the low level controls do exist to perform the protocol in
figure 3 [54]. If a highfidelity could be obtained in the reprogramming step on the current device, then the
algorithms given in this paper could be tested by someonewith low level access to these devices without
performing any physicalmodifications. If this is indeed the case, such experiments could provide a proof-of-
principle for the ideas stated here. To go beyond proof-of-principle it would probably be desirable to optimize a
machine to perform the protocol given infigure 3 so that the time to reprogram, and the energy released in the
reprogramming step (whichwould determine the time needed to cool afterward) are bothminimized.

Figure 7.Circuit schematic where fluxes through small and large loops control the effective potential which thefluxf experiences are
illustrated in figure 8. Formore details about the circuit design, see [53].
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Even if the suggested reprogramming routine is not possible at highfidelity on currentD-Wave devices, it is
likely that it could bemade feasible through design alterations on updated devices, or on other hardware for
simulating transverse field Isingmodels.

10. Conclusions

Wehave discussed a newprotocol using quantumannealers whichmay be feasible on current devices with no
alterations, as well as performed a proof-of-principle numerical experiment to demonstrate the idea of a local
search using a quantumannealer. I discuss numerous advantages over theQAA as it is implemented currently.
In contrast to theQAA, the idea I propose can perform a local search rather then a global search. One advantage
of such a search is that the effect of problemmis-specification depends on the range of the search, rather then the
overall number of qubits, and therefore thismethod shouldwork evenwhen noise would ruin a global search
with theQAA. I further argue that this type of search can be used to construct hybrid algorithms, where quantum
and classical searches can be used sequentially to gain the complementary advantages of each. I argue that an
advantage could be obtained in this case even if the classical algorithm is simply to randomly initialize the state of
the annealer. I furthermore construct analogues of powerful classical algorithms, but using a quantum
processor, and discuss how thesemethods can be applied to samplingwith appropriate post-processing. Because
the protocol I propose is able to take advantage of state-of-the-art classical techniques, it will represent an
algorithmic improvement even if the local searches gain only a small quantumadvantage, in contrast the
traditionalQAAonly provides such an improvement if the quantum advantage is at least as large as the classical
advantagewhich advanced techniques such as parallel tempering have over simulated annealing. I have further
demonstrated the underlying principles of these algorithmswith simple numerical experiments.

Acknowledgments

The authorwas supported by EPSRC (grant ref: EP/L022303/1), andwould like to thankViv Kendon for several
critical readings of the paper and useful discussions. The author further thanks Trevor Lanting, Helmut
Katzgraber, Gabriel Aeppli, AndrewGGreen, and Paul AWarburton for useful discussions. Numerical data and
code are available from the author upon request.

Figure 8. Schematic figure illustrating how theD-Wave annealer implements the IsingModel. left: Representation of ground and first
excited state in the x–z plane of the Bloch sphere. right: Corresponding potential with ground and first excited states overlayed. Top:
monostable potential corresponding to strong transverse field (s=0)Mid: bistable potential with quantum tunneling corresponding
to transverse and longitudinal field of similar strength (intermediate value of s). Bottom: bistable potential where tunneling is no
longer supported corresponding to strong longitudinalfieldwith no transversefield (s=1).
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Appendix. Path integral quantumannealing

ToperformPIQA, I followed the procedures given in [50].While I will not reproduce the derivations of that
paper, I will touch on several important similarities and differences which are necessary to be aware of to
reproducemynumercal results.

Timeparameter tPIQA

The time parameter tPIQA counts the number ofMonte Carlo steps per spin (MCS). Aswas done in [50], at each
time step, a ‘classical’ cluster update was also attempted for each of the spins in the Ising system. These updates
consisted offlipping the same spin simultaneously in all Trotter slices.

Starting conditions for traditionalQAA
For runs performedwith the traditionalQAA, I startedwith ¢s such that =A B 3 rather than atB=0. This is
to prevent the Trotter slices frombecoming completely uncorrelated, and is consistant with themethodology
of [50].

Classical pre-anneal
Aswas done in [50], I initialized all PIQA runswith a classical pre-anneal to achieve the appropriate initial state.
This pre-anneal consisted of 100Monte Carlo sweeps run on the classical Hamiltonian. After the pre-anneal, all
Trotter slices were initialized in this state, the breaking of this uniformity in initialization is likely the cause of the
numerical artefact seen near =A B 3 for the dashed line infigure 5. For runs initialized at =A B 3 this
classical pre-anneal was performed at =T PTclass , on the other hand for runs startingwith B A this was done
by taking =T Tclass .

In cases wheremultiple PIQA runs are plotted starting at s=1, the initial states for the PIQA is taken as the
result of a single classical pre-anneal with the same set of initial states. This removes unimportant statistical noise
due to the pre-annealfinding different classical states in different cases. The actual relative statistical variations
between points infigure 6 is probably therefore actually substantially smaller than the errorbars, which represent
absolute statistical variation in the values, although it is difficult to estimate precisely by howmuch.
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