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Abstract
Modern societies crucially depend on the robust supply with electric energy so that blackouts of power
grids can have far reaching consequences. Typically, large scale blackouts take place after a cascade of
failures: the failure of a single infrastructure component, such as a critical transmission line, results in
several subsequent failures that spread across large parts of the network. Improving the robustness of a
network to prevent such secondary failures is thus key for assuring a reliable power supply. In this
article we analyze the nonlocal rerouting of powerflows after transmission line failures for a simplified
ACpower gridmodel and compare different strategies to improve network robustness.We identify
critical links in the grid and compute alternative pathways to quantify the grid’s redundant capacity
and tofind bottlenecks along the pathways. Different strategies are developed and tested to increase
transmission capacities to restore stability with respect to transmission line failures.We show that
local and nonlocal strategies typically perform alike: one can equally well cure critical links by
providing backup capacities locally or by extending the capacities of bottleneck links at remote
locations.

1. Introduction

Weare currently witnessing a rapid transition in power generation from conventional to renewable power
sources. Typically, renewable power sources are strongly fluctuating, have a lower power output than
conventional ones, and their potential geographical locations are restricted to places with sufficient solar orwind
power [1, 2]. This development is challenging the operation and stability of electric power grids: power has to be
transmitted over long distances [3],fluctuationsmust be balanced by storage or backup power plants [4–6], and
many decentralized unitsmust be controlled [7–9].

In general power grids work reliably, and power outages on a large scale are rare events [10–12]. However,
just in the last decademajor outages were recorded in India (2012), Bangladesh (2014), Pakistan (2015),
Indonesia (2005), Brazil (2009), Turkey (2015) andGermany (2006). A detailed analysis of the latter outage can
be found in [13]. Each of these outages affectedmillions of people with potentially destructive impact [14, 15]. It
is commonly expected that the loadswill increase strongly in future grids [3], so that these outages can become
more likely. So it is urgent to trace backwhat causes such outages and tominimize the risk for these events to
happen in the future. Itmay come as a surprise that large power outages in the past oftenwere triggered by the
outage of a single infrastructure component, such as a transmission line [11]. In such an event, after one
transmission line failed, a second line became overloaded and initiated awhole cascade of further failures
[16–22].

To exclude such outages induced by single component failures, the so-called ( -N 1) rule is currently
implemented inmodern power grid operations. The ( -N 1)-rule states that at every instant of time, the power
grid has still to be fully functional even if any given single component, e.g., a transmission line, fails [23].
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However, this criterionmay be violated in times of high loads, as for example inGermany (2006). The
intentional shutdown of a single transmission line inNorthernGermany brought the entire grid to the edge of a
breakdown. A coupling of the busbars at a nearby transformer station thenfinally triggered the blackout, in
which the European grid fragmented into threemutually asynchronous areas [13]. Additionally, an inclusion of
newpower sources into the grid is ongoing, and the need for additional transmission lines continues. Therefore
it becomesmore andmore challenging tomaintain the implementation of the ( -N 1)-rule.

In this article we study how general supply networks can be cured from critical line failures by extending the
transmission capacities.We use anACpowerflowmodel based on the swing equation [24] tomodel the
dynamics of the supply networks, so that the results are in principle also applicable for power grids. In particular,
we analyze howmuch additional capacity is needed andwhere it can be inserted.We approach these questions in
terms of a graph-theoreticmax-flowproblem to derive rigorous results and provide an insight into the
robustness of complex supply networks.We quantify the redundancy of a gridwith respect to line failures and
identify the bottlenecks which limit the redundancy. The capacity needed to restore -N 1-security can then be
bounded frombelowby the lack of redundancy with respect to theflowprior to the link failure. This approach
also showswhere grid extensions should be placed. Typically, it plays aminor role whether capacity is increased
locally or non-locally at the position of grid bottlenecks.

2. An oscillatormodel for power grid dynamics

In this article we focus on the stability of ACpower grids with respect to transmission line outages. Consider a
transmission line connecting two nodes j andℓ of the gridwith impedance = +ℓ ℓ ℓZ R Xij j j , i being the
imaginary unit. In high-voltage transmission grids, ohmic losses are typically small such that we can neglect the
resistanceR. The real powerflow along this line fromnode j to nodeℓ is then given by

= ( ) ( )ℓ ℓ*F U IRe , 1j j j

where = -( )ℓ ℓ ℓI U U Zj j j is the electric current andUj is the complex voltage at node j. Evaluating this
expression, one finds
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where qj is the voltage phase angle. In the steady operation of a grid, the real power at each nodemust be

balanced, i.e., the injected power Pj
in must equal the power transmitted to the grid for all nodes = ¼j N1, , . In

terms of the nodal voltage phase angles this condition reads
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where ( ) j denotes the immediate neighborhood of node j, i.e., the set of nodes connected to j. The injected
power is the sumof themechanical power and the load, = -P P Pj j j

in mech load. For generator nodes the injected

power is positive with >P 0j
mech and =P 0j

load , while for load nodes the injected power is negative with

=P 0j
mech and >P 0j

load . In this article we analyzewhether this equation has a stable solution after the outage of
a single transmission line and how stability can be recovered by local or non-local grid extensions.We
concentrate on the real power flow in the grid, leaving aside problems of voltage stability or reactive power
compensation.We thus assume that the voltages are given by their nominal values and define the transmission
capacity of a line ℓ( )j, as = = ∣ ∣ℓ ℓ ℓ ℓK K U U Xj j j j with =ℓK 0j if no line exists.

To assess the dynamical stability we further need amodel for the dynamics of the single nodes.We
concentrate on the rotor angle or frequency stability of themachines connected to the grid. Generators are
modeled as rotating synchronousmachines, whose voltage phase angle equals themechanical rotor angle.
Typically the rotor angle qj is given in a reference frame rotating at the nominal frequency w p= ´2 50 Hz0 or
w p= ´2 60 Hz0 , respectively. The dynamics is then given by the swing equation [24]
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whereMj is themachine’smoment of inertia andDj is a damping coefficient. The right hand side is the
mechanical torque tj acting on themachine, which is related to the total power via w t· j0 , w0 being the base
frequency of the grid.
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Differentmodels have been used to describe the dynamics of load nodes and a comparison ofmodels for
synchronousmachine operation can be found in [25–28]. In the classicalmodel of electric power engineering
one assumes that loads are ohmic, which can be eliminated from the dynamics [24, 29]. Bergen andHill
introduced amodel on the basis of the load-frequency characteristics of a load node, leading to an equation of
motion of the form (4), however with inertiaMj= 0 [30, 31]. The loads are thus given byfirst order oscillators,
while the generators are given by second order oscillators. Othermodels consider synchronousmotors as
models of the load, such that all nodes are equallymodeled as second order oscillators [7, 32–34]. The dynamics
of the load nodes is then exactly given by equation (4)with <P 0j

in . In both cases the steady state of the grid is
given by the algebraic equation

å q q= - -( ) ( )ℓ ℓ ℓP K0 sin , 5j j j
in

which obviously coincides with the condition of real power balance for each node (3).
For the sake of simplicity, we choose tomodel all nodes as second order oscillators with equal values of the

inertia w º -M 10 kg m sj0
7 2 1 and the damping w º -D 10 kg m sj0

6 2 2 and also assume that all transmission
lines have the same transmission capacityK. The reason for this simplification is that we primarily focus on the
strategies, inwhich the actual loadmodels only enter in the identification of bottlenecks to be discussed below.
Otherwise the strategies apply to different and alsomore realistic versions of the loadmodels.We consider
hypothetical power grids, which are heavily loaded and thus not ( -N 1)-secure in the first place. Such
situations are rare nowadays, but are expected to becomemuchmore frequent in future highly renewable power
grids (see, e.g., [3]).

3. Critical links andflow rerouting

A failure of a single transmission line can have different types of impact on the operation of the power grid as
illustrated infigure 2. Itmay cause only weak transient disturbances such that the network relaxes back to a
stable steady state, or itmay destabilize the synchronous action of themachines and, in the extreme case, induce
a cascade of failures that ends up in a large-scale power outage.We call links, whose failure leads to a
desychronization of the grid, ‘critical links’. All other links are referred to as stable. An example is demonstrated
infigure 2, where a stable and a critical link aremarked in panel (a). The response of the frequency to a failure of
themarked critical link is illustrated in panel (b) and to themarked stable link in panel (c).

So suppose that the load in the grid is so large that some links are critical. Wewant to expand the grid to
restore -N 1-stability by building new links or by increasing the capacity of existing links. The central question
addressed in this article is howmuch additional capacity is needed andwhere it can be inserted.One obvious
strategy (called strategy A in the following) is to just duplicate every critical link to provide a backup. This
strategy trivially restores -N 1-stability but is rather costly in the sense thatmuch additional capacity has to be
added. The numerical examples studied in this paper (see figures 4–6) showhat generallymuch less capacity is
actually required. But howmuch additional capacity dowe really need andwhere canwe extend the grid?

To answer these questions we analyze theflow rerouting problem inmore detail. So denote the flows before
the outage by a superscript ( )0 .We consider the failure of a link (a, b) assumingw.l.o.g. ( ) F 0ab

0 , i.e., power
flows from a to b before the failure. A necessary condition for stability after the failure of link (a, b) is that a stable

Figure 1.Test grid based on the topology of the Romanian high-voltage power grid according to [35]with 88 nodes, out of which 22
are generators ( >P 0j

in , green diamonds) and 66 are consumers ( P 0j
in , blue circles). The links correspond to transmission lines.

The real powerflowof the links in the steady state is coded by the colors (blue representing low load, red high load). Amagnification of
themarked area is illustrated infigure 2. The transmission capacity of all links is set toK=1000MW.
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fixed point still exists.We nowderive a necessary conditions (10) for the existence of such a fixed point. If this
condition is violated, then link (a, b)must be critical. Furthermore, we discuss how the condition can be restored
by grid extensions, which guides us in the formulation of algorithms for curing all critical links as detailed in
section 4.

We denote theflows in thefixed point after the failure by + Dℓ ℓ
( )F Fj j
0 . Theflows changesmust satisfy

åD =
+ =

- =
¹

( )
ℓ

ℓ

( )

( )

⎧
⎨⎪

⎩⎪
F

F j a

F j b

j a b

for

0 ,

, 6j

ab

ab

0

0

i.e., we have to transmit the power ( )Fab
0 from a to b via an alternative route. Furthermore, theflow is limited by

the transmission capacities

- + D

 - - D + - ( )
ℓ ℓ ℓ ℓ
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( )

( ) ( )

 
 

K F F K

K F F K F 7

j j j j

j j j j j

0

0 0

for all links ℓ( )j, .Whether such aflow can exist is a standard problem in graph theory. So define theweighted
directed graph G̃, whose vertices are the oscillators and edges are the transmission lines.We have to consider a
directed graph, because the bounds for theflow change (7) are asymmetric. Hencewe define the edgeweights in

Figure 2.Critical and stable links in the Romanian power grid. (a)Zoom into the grid structure in central Romania, with one stable
and one critical linkmarked by arrows. (b)When themarked critical link is removed, the grid decomposes into two clusters which
remain phase-locked internally, but loose synchronywith respect to each other. No steady power transmission is possible between the
two clusters and emergency shutdownswill eventually becomenecessary. (c)When themarked stable link is removed, the grid relaxes
to a stable phase-locked steady state. In both panels we plot the evolution of the frequencies q̇ ( )tj averaged over the two clusters (b) or
the entire grid (c), respectively.

Figure 3.Response to the failure of a stable link. Fast drop off of the additional loadwith the distance from the removed linkwhen the
load has to be redistributed after the deletion of a stable link. The color codes the difference between the loads ¢ -∣ ∣ℓ ℓF Fj j after and
before the removal. It is pronounced only along the shortest alternative paths connecting the endpoints of the stable link.
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the graph G̃ as

= -˜ ( )ℓ ℓ ℓ
( )K K F . 8j j j
0

The line (a, b) cannot carry any flow after the damage sowe set

= = ˜ ˜ ( )K K 0. 9a b b a

Then one can easily compute themaximum – ‐a b flow, i.e., themaximumflow that can be transmitted from
node a to node b respecting the upper bound for theflows given by (8). Several algorithms have been developed
for this task, such as the algorithmof Edmonds andKarp and the algorithmof Ford and Fulkerson [36]. The
value of themaximum – ‐a b flowquantifies the redundancy of the gridwith respect to the failure of the link (a, b)
andwill thus be referred to as the redundant capacity Kab

red in the following. If this value is larger than ( )Fab
0 , then a

solution of theflowproblemdefined by equations (6) and (7) exists. Hence a necessary condition for the
existence of a stable steady state after the outage of a link (a, b) is given by

Figure 4.Howmuch additional capacity is required to cure all critical links?We compare the three strategies defined in section 4: A:
duplicating the critical line (blue dashed)B: adding a backup line ofminimum capacity locally (red dash-dotted)C: adding capacity at
bottlenecks nonlocally (solid green). The black dotted line shows the approximate lower bound (17). Results are shown for the test
grid based on the topology of the Romanian power grid shown in figure 1.

Figure 5.Comparison of strategies as infigure 4, but for randomnetworks with an average degree of six (a) and four (b).We compare
the three strategies defined in section 4: A: duplicating the critical line (blue dashed)B: adding a backup line ofminimumcapacity
locally (red dash-dotted)C: adding capacity at bottlenecks nonlocally (solid green). The black dotted line shows the approximate
lower bound (17).
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( )( ) F K . 10ab ab
0 red

This condition allows us to understand themain aspects of theflow rerouting problem and to identify
bottlenecks in the grid via themax-flow-min-cut theorem [36]. Consider a partition ( )V V,1 2 of the vertex setV
such that Îa V1 and Îb V2 (also called an – ‐a b cut of the graph). The edges connecting the two partsV1 andV2

(called the induced cutset)

= Î Îℓ ℓ( ) { ( )∣ } ( )E V V j j V V, edge , , 111 2 1 2

provide a certain amount of capacity forflow rerouting:

å=
Î Î

˜ ˜ ( )
ℓ

ℓK K . 12V V
j V V

j,
,

1 2

1 2

Themax-flow-min-cut theoremnow states that themaximum – ‐a b flow is equal to theminimumcapacity over
all – ‐a b cuts such that

= Î Î˜ ( )K K a V b Vmin with , . 13ab
V V

V V
red

,
, 1 2

1 2
1 2

Themax-flow-min-cut theoremnow tells uswhat to do if the necessary condition (10) for -N 1-stability is
violated. To increase Kab

red above ( )Fab
0 wemust add at least the capacity

= - ( )( )K F K . 14ab ab ab
add, min 0 red

Furthermore, themax-flow-min-cut theorem also tells uswhere to extend the grid. So let = +V V V1 2 be the
partition of the vertex set for which theminimum in equation (13) is attained and ( )E V V,1 2 the induced cutset.
The transmission lines in ( )E V V,1 2 are the bottlenecks for theflow rerouting from a to b—they are fully loaded
when themaximum a–b-flow is realized. To increase thismaximumflow,we have to extend the transmission
capacity between the two vertex setsV1 andV2. One obvious choice is to add another direct connection (a, b) as
used for the local strategy A. Butwe can also add transmission capacity at remote places, in particular by
extending any transmission line from the cutset ( )E V V,1 2 . One efficient strategy to localize a link in ( )E V V,1 2 is
again provided by the Edmonds–Karp algorithm. This algorithm calculates themaximum – ‐a b flowby finding
shortest paths from a to b and adding flows along these paths. In this sensewe propose the following strategy
(strategy C in the following) to increase Kab

red in a nonlocal way:

• Calculate the shortest path from a to b after the link (a, b) has been removed.

• Localize the bottleneck along the path.

• Increase the capacity of this bottleneck.

This strategy is particularly efficient if there is only one ‘critical’ cutset, i.e., only one cutset ( )E V V,1 2 which
limits themaximum a–b-flow,while all other links on the rerouting pathways have enough transmission
capacity ˜ ℓKj, left. Then the extension of a single line in ( )E V V,1 2 is sufficient to restore the condition (10). In
general there can be several bottlenecks along a rerouting pathway, which limit themaximum flow from a to b.
Thenwe have to iterate the procedure as detailed in the next section.

Figure 6.Comparison of strategies as infigure 4, but for a ring topologywith one rewired link.We compare the three strategies defined
in section 4: A: duplicating the critical line (blue dashed)B: adding a backup line ofminimum capacity locally (red dash-dotted)C:
adding capacity at bottlenecks nonlocally (solid green).
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Weemphasize that condition (10) is necessary but not sufficient for the existence of a stable steady state after
the outage of a line (a, b) for two reasons. First, the flows in a power grid cannot be chosen arbitrarily but are
determined by the phases q q¼( ), , N1 at each oscillator via equation (2). Hence it is possible that a suitable

– ‐a b flow exists, but that we cannot find phases such that q q+ D = -( )ℓ ℓ ℓ ℓ
( )F F K sinj j j j
0 for all links ℓ( )j, [37].

Secondly, theremay be a transient effect causing a desynchronization. After the loss of a transition line (a, b)
there can be a coexistence of a stable fixed point with a limit cycle [38]. Then it is possible that the system
converges to the limit cycle and loses synchrony although a stable operation is possible in principle [18].

4. Curing strategies

In this sectionwe describe how to operationalize the local and nonlocal strategies to extend the grid to restore
-N 1-security. First we identify critical links by removing single links from the network and recording the time

evolution of all rotator phases and their velocities. For stable links the phase differences become constant over
time, and the common frequency is the desired grid frequency. For critical links, deviations from the net
frequency outside a tolerance interval remain, whichwould lead to an emergency shutdown of parts of the
power grid in real-world power grids (see figure 2 for an example).We then analyze three different strategies to
stabilize critical links.

Strategy A:A straightforward local strategy is to build identical backup links for the critical links, i.e., to
increase the grid’s redundancy locally at the places, where critical failures take place.

Strategy B:As argued in the previous sectionwe typically need less backup capacity to restore
-N 1-security, a lower bound being given by expression (14). So, as a variation of strategy Awe insert a backup

link ofminimumcapacity. In practice, we increase the transmission capacity of the backup line in steps of 0.1 K
until the grid becomes stable with respect to an outage of the critical line (a, b).

Strategy C: Furthermore, we can also increase the grid’s redundancy non-locally by extending bottleneck
links along rerouting pathways as discussed in the previous section. If we find a critical link (a, b), we localize the
bottleneck on the shortest rerouting path and increase its capacity.We iterate this procedure if necessary until
the link (a, b) becomes stable. If there is no rerouting path, the critical link (a, b) is a bridge. These links are
trivially critical, sowe exclude these links fromour analysis.

Schematically, we use the following algorithm for strategy C: for a given uniformly chosen capacity ℓKj

calculate the load distribution in the normal operation of the grid. Sort the links in an arbitrary sequence. Start
the loop over all links (a, b):

(1) Determinewhether link (a, b) of the sequence is critical:

(a) Eliminate (a, b), i.e., set =K 0ab and run the dynamics.

(b) If the system approaches a stable state with q =˙ 0i for all nodes i, go to the next link in the sequence
without any update, otherwise the link is identified as critical.

(2) If the link (a, b) is critical, find and strengthen the bottleneck:

(a) Calculate the shortest path p from a to b in the residual network and identify the bottleneck, i.e., the
link ℓ( )j, for which the residual capacity

- ( )ℓ ℓ
( )K F 15j j
0

assumes itsminimumalong the path p.

(b) Increase the capacity at the bottleneck

¢ = ( )ℓ ℓK c K . 16j j

Herewe choose c= 1.1.

(c) Determinewhether the link is still critical despite the increased capacity. If no, go to the next link.

(d) If yes, repeat the procedure, i.e., GOTO step (a).

(3) Calculate the sum of the increase in capacities along the bottlenecks of all critical links to decide which
strategy is superior if all critical links of a whole network should be cured.

A few remarks are in order. The algorithm always increases the capacity along the shortest rerouting path as
inspired by the Edmonds–Karp algorithm, which is conceptually simplest. The restriction to the shortest paths
seems to be justified in the networkwith the topology of the Romanian grid, as we have explicitly checked. An
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example offlow rerouting for a stable link is shown in figure 3. One clearly sees that the flow changes D∣ ∣ℓFj are
largest along the shortest alternative paths.We tested the redistribution offlows for other stable links and found
similar decay behavior for all tested links in the Romanian grid. In cases where the change in the flowdecays only
slowlywith the distance from the critical link such as discussed in [39], one should include longer paths inmore
remote areas of the grid, which connect node awith b. The decay behavior in the flow rerouting problem is
discussed in detail in [39–42].

Our strategy applies to transmission line overloads, but does not capture voltage instabilities. Formodels
dealingwith transmission line overloads, the strategies are generally independent of the specificmodel system.
The strategies A, B andC can be applied for other dynamics. For strategy C the steady state of the dynamics
determines the bottlenecks, whereas strategies A andBwork in the sameway for any dynamics. Other improved
or refinedmodelsmay replace the oscillator dynamics, as long as they satisfy the continuity equation forflows,
and losses along the lines are negligible.

5. Performance of curing strategies

5.1. Curing the Romanian power grid
We test the performance of the strategies using a synthetic network, sharing the topologywith the Romanian
high voltage power transmission grid [35] as illustrated infigure 1 and the distribution of generators and
consumers including their actual values for production and consumption.However, we discard all connections
to neighboring countries and keep only the internal lines of Romania. The net power injection at the 66
substations is negative with Î -[ ]P 400, 0 MW, i.e., these nodes act as consumers (blue circles infigure 1).
There are 22 substations with positive power injection and Î [ ]P 24, 1108 MW (green diamonds). For
simplicity we assume that the transmission capacity of all links is equal, i.e., ºℓK Kj for all lines ℓ( )j, .
Furthermore, we vary the value ofK to interpolate between aweakly (K large) and a strongly (K small)
loaded grid.

The different strategies for improving network resilience are compared infigure 4.Obviously, the naive
addition of backup links by strategy A performsworst. A large amount of capacity (twice the original capacity of
all critical links) has to be added tomake the grid -N 1-secure.We note that the steps in the curve are due to the
fact that the added capacity is directly proportional to the number of critical links, which changes abruptly as a
function of the initial capacity. The slight increase between succeeding steps results from the fact that the added
line for replacement of the critical link is equippedwith the same capacity as the critical linkwas before its
removal.

Remarkably, the performance of the two alternative strategies B andC is very similar. This corresponds to
our graph-theoretical analysis of the flow rerouting problem in section 3: if we can attribute a critical link (a, b) to
exactly one critical cutset, then itmakes no difference if additional capacity is added locally or along one of the
bottleneck links in the cutset. In practice differences arise for example due to transient effects. Our numerical
results show that the difference in the total added capacity is rather small when adding capacity locally or
nonlocally.

The total added capacity can be estimated from the redundant capacity in the sense of providing a lower
bound. For one particular critical link (a, b)wemust add at least the capacity Kab

add, min defined in equation (14)
to restore -N 1-stability. Assuming that the critical lines are uncorrelated, i.e., that they are not caused by the
same bottleneck, we thus obtain the following lower bound for the total added capacity

å= - ´ >( ) ( ) ( )
( )

( ) ( )K F K F K , 17
a b

ab ab ab abtot
add, min

, critical

0 red 0 red

where  denotes an indicator functionwhich is one if the condition in the argument is true and zero otherwise.
Indeed this formula provides a reasonable estimate for the total added capacity in the network under
consideration (see figure 4). Obviously, the total numerical value is slightly higher since the graph-theoretical
considerations provide only necessary conditions for - ‐N 1 stability. For instance, several bottlenecksmay be
found along the paths for one critical link so that the added capacity in the algorithmwould be larger, or the
readjustment factors c in the algorithmhave not been chosen optimally small.

5.2. Randomgraphs
We further compare the different curing strategies for generic randomnetwork ensembles.Wefirst consider
randomnetworks of the Erdös Renyi type [43], againwith 100 nodes (five large generators with =P 100 MW,
ten small ones with =P 35 MW and 85 consumers with = -P 10 MW placed at random locations in the grid).
Results are shown infigure 5 for two different values for themean degree, connecting any randomly chosen pair
of nodes with probability (a) 4/100 or (b) 6/100, respectively. Hence each node is connectedwith four or six
other ones on average. Each link has the same transmission capacityK. For both connection probabilities,
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different realizations of the grid need different initial capacities Kmin that areminimally required for reaching a
stable state.We then compare and average only over grids with similar Kmin . Here we consider aminimal
transmission capacity of =K 34 MWmin for an average of four connections and of =K 46 MWmin for six
connections. In both cases we take the average over fifty random realizations.

The numerical results confirmour analysis for the Romanian test grid. The performance of strategies B and
C is comparable and in any casemuch better than the naive strategy A. For amean degree of 6 (figure 5 (b)), the
local strategy B performs slightly better. This confirms the view that it is typically ofminor importance whether
capacity is added locally or nonlocally at the position of the bottlenecks.

5.3. Ultrasparse networks
The effectiveness of the nonlocal strategy C relied on the assumption thatwe can attribute each critical link to
one remote bottleneck in the grid. This assumption can fail in specific network topologies. If there are several
bottleneck links along a rerouting pathway, strategyC requires to extend all these bottlenecks whereas only one
link has to be added in strategy B.On the contrary, if a single bottleneck causes several other links to be critical,
we can stabilize the entire grid by extending just this bottleneck using strategyC. Strategy Bwould require to add
capacity for every critical link separately.

We illustrate these effects for an ultrasparse network. As beforewe consider a networkwith 100 nodes and
randomly assignfive large generators with =P 100 MW, ten small oneswith =P 35 MW and 85 consumers
with = -P 10 MW to the nodes. The topology is a ringwith a single rewired link, i.e., a small-world topology in
the limit of an almost regular topology [44]. In particular, we start from a simple ringwhere every node is
connected to its nearest neighbors only. Thenwe randomly delete one heavily loaded link connected to a large
generator and reinsert it at a different location so that the ring is broken into a loop and an attached chain. All
links have the same transmission capacityK.

Depending on the initial value of the transmission capacityK, strategy B orCmay be superior, as
demonstrated infigure 6. The single rewired link is always critical.When this critical link fails, power flowhas to
be rerouted along the entire loop, where several bottlenecks are present for lowK. In the nonlocal strategyCwe
have to extend all these bottleneck separately, which is very costly. Indeedwefind that the local strategies A andB
outperform strategy C by far in this case.

The situation is reversedwhenK is larger. The rewired link remains critical but there is only one bottleneck
left in the gridwhich can be effectively extended using strategy C. Indeedwefind that the total added capacity is
smallest for strategy C for K 140 MW.

6. Conclusions and outlook

Single link failuresmay induce global outages in power grids and other complex supply networks. The design of
future grids which ensure -N 1 security is generally based on large-scale numerical simulations. In this article
we contribute to a better theoretical understanding of network resilience and optimization by comparing local
and nonlocal strategies to extend existing grids.

Building local backup lines is a straightforward option tomaintain -N 1-security, but elementary graph-
theoretic arguments show that the same result can often be achieved by a different, nonlocal strategy. To enable
flow rerouting after a link failure, the gridmust provide enough redundant capacity along alternative pathways.
If this is not possible, we can equally well build a newbackup locally or strengthen the alternative pathways
nonlocally. Based on these considerations we describe in detail an algorithm to identify and strengthen
bottlenecks along short rerouting pathways.

Local and nonlocal strategies are comparable if each critical link can be attributed to one bottleneck. Then it
is insignificantwhether we add capacity locally or at the bottleneck andwe can estimate the necessary grid
extensions from the redundant capacity. This scenariowas confirmed by numerical simulations for a real-world
grid topology as well as for randomnetworks. Strong differences between the strategies were found in an
ultrasparse network. If such a grid is heavily loaded, there are typically several bottlenecks along a rerouting path
such that the nonlocal strategies perform significantly worse than local strategies. On the contrary, a single
bottleneck can cause several links to be critical in the case of weak loads. Then the nonlocal strategy is clearly
superior as it cures all critical lines by strengthening a single bottleneck.

We note that the results presented abovemake no immediate conclusions about real-world power grids due
to several simplifications in themodel class itself. Yet, given the generic dynamics and conservation laws onflow
and supply networks, we are confident that this articlemay contribute to a better understanding of collective
properties offlow and supply networks. Itmay also provide valuable hints about the operation of real-world
power grids, wheremore detailed studies formore specific systems and settingsmight reveal specifically tailored
counter actions for a power systemunder consideration. Taken together, our results indicate that non-local
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rerouting offlows upon link failure often provides a viable complement to local updates. In power grids, taking
into account non-local rerouting along the lines of our strategy Cmay enhance our options to satisfy the

-( )N 1 -criterion in amore efficient way.
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entsoe.eu/lĩbrary/publications/ce/otherreports/Final-Report-20070130.pdf)
[14] Brummitt CD,Hines PD,Dobson I,MooreC andD’Souza RM2013Proc. Natl Acad. Sci. 110 12159
[15] HelbingD 2013Nature 497 7447
[16] Albert R, JeongH andBarabási A 2000Nature 406 378
[17] Albert R, Albert I andNakaradoG 2004Phys. Rev.E 69 025103
[18] Simonsen I, Buzna L, Peters K, Bornholdt S andHelbingD2008Phys. Rev. Lett. 100 218701
[19] Buldyrev SV, Parshani R, Paul G, StanleyHE andHavlin S 2010Nature 464 1025
[20] Schneider CM,Moreira AA, Andrade J S,Havlin S andHerrmannH J 2011Proc. Natl Acad. Sci. 108 3838
[21] WitthautD andTimmeM2012New J. Phys. 14 083036
[22] WitthautD andTimmeM2013Eur. Phys. J.B 86 377
[23] Kundur P 1994Power System Stability andControl (NewYork:McGraw-Hill)
[24] Machowski J, Bialek J and Bumby J 2008Power SystemDynamics, Stability andControl (NewYork:Wiley)
[25] Schmietendorf K, Peinke J, FriedrichK andKampsO2014Eur. Phys. J. Spec. Top. 223 2577
[26] NishikawaT andMotter A E 2015New J. Phys. 17 015012
[27] Weckesser T, JohannssonH andOstergaard J 2013 Impact ofmodel detail of synchronousmachines on real-time transient stability

assessment 2013 IREP Symp. Bulk Power SystemDynamics andControl-IXOptimization, Security andControl of the Emerging Power Grid
(IREP) p 1

[28] Auer S, Kleis K, Schultz P, Kurths J andHellmann F 2016Eur. Phys. J. Spec. Top. 225 609
[29] Motter A,Myers S, AnghelM andNishikawaT 2013Nat. Phys. 9 191
[30] BergenAR andHill D J 1981 IEEETrans. Power Appar. Syst.PAS-100 25–35
[31] Dörfler F, ChertkovMandBullo F 2013Proc. Natl Acad. Sci. 110 2005
[32] FilatrellaG,NielsenAHandPedersenNF 2008Eur. Phys. J.B 61 485
[33] RohdenM, Sorge A,WitthautD andTimmeM2014Chaos 24 013123
[34] Menck P,Heitzig J, Kurths J and SchellnhuberH J 2014Nat. Commun. 5 3969
[35] HutcheonN andBialek JW2013Updated and validated power flowmodel of themain continental European transmission network

Proc. IEEE PowerTech Conf. (NewYork, 2013) (IEEE) pp 1–5
[36] Ahuja RK,Magnati T L andOrlin J B 1993Network Flows: Theory, Algorithms, andApplications (Upper Saddle River, NJ: Prentice-Hall)
[37] ManikD, TimmeMandWitthautD 2016 arXiv: 1611.09825
[38] ManikD,WitthautD, Schaefer B,MatthiaeM, Sorge A, RohdenM,Katifori E andTimmeM2014 Eur. Phys. J. Spec. Top. 223 2527
[39] LabavicD, Suciu R,Meyer-OrtmannsH andKettemann S 2014Eur. Phys. J. Spec. Top. 223 2517
[40] Kettemann S 2016Phys. Rev.E 94 062311
[41] RonellenfitschH,ManikD, BrownT,Hörsch J andWitthautD 2016 arXiv:1606.07276
[42] JungD andKettemann S 2016Phys. Rev.E 94 012307
[43] Erdős P andRényi A 1959Publ.Math. Debrecen 6 290
[44] WattsD J and Strogatz SH1998Nature 393 440

10

New J. Phys. 19 (2017) 013002 MRohden et al

http://dx.doi.org/10.1126/science.285.5428.687
http://dx.doi.org/10.1140/epjst/e2014-02214-y
http://dx.doi.org/10.1016/j.renene.2010.03.012
http://dx.doi.org/10.1016/j.enpol.2012.09.009
http://dx.doi.org/10.1016/j.enpol.2012.09.009
http://dx.doi.org/10.1016/j.enpol.2012.09.009
http://dx.doi.org/10.1103/PhysRevLett.110.138701
http://dx.doi.org/10.1103/PhysRevLett.109.064101
http://dx.doi.org/10.1088/1367-2630/17/1/015002
http://dx.doi.org/10.1109/MPAE.2005.1507024
http://dx.doi.org/10.1109/MPAE.2006.1687814
http://dx.doi.org/10.1109/MPAE.2006.1687814
http://dx.doi.org/10.1109/MPAE.2006.1687814
http://dx.doi.org/10.1016/j.enpol.2009.07.049
http://dx.doi.org/10.1016/j.enpol.2009.07.049
http://dx.doi.org/10.1016/j.enpol.2009.07.049
http://www.entsoe.eu/l�ibrary/publications/ce/otherreports/Final-Report-20070130.pdf
http://www.entsoe.eu/l�ibrary/publications/ce/otherreports/Final-Report-20070130.pdf
http://dx.doi.org/10.1073/pnas.1309151110
http://dx.doi.org/10.1038/nature12047
http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1103/PhysRevE.69.025103
http://dx.doi.org/10.1103/PhysRevLett.100.218701
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1073/pnas.1009440108
http://dx.doi.org/10.1088/1367-2630/14/8/083036
http://dx.doi.org/10.1140/epjb/e2013-40469-4
http://dx.doi.org/10.1140/epjst/e2014-02209-8
http://dx.doi.org/10.1088/1367-2630/17/1/015012
http://dx.doi.org/10.1140/epjst/e2015-50265-9
http://dx.doi.org/10.1038/nphys2535
http://dx.doi.org/10.1109/TPAS.1981.316883
http://dx.doi.org/10.1109/TPAS.1981.316883
http://dx.doi.org/10.1109/TPAS.1981.316883
http://dx.doi.org/10.1073/pnas.1212134110
http://dx.doi.org/10.1140/epjb/e2008-00098-8
http://dx.doi.org/10.1063/1.4865895
http://dx.doi.org/10.1038/ncomms4969
http://arXiv.org/abs/1611.09825
http://dx.doi.org/10.1140/epjst/e2014-02274-y
http://dx.doi.org/10.1140/epjst/e2014-02273-0
http://dx.doi.org/10.1103/PhysRevE.94.062311
http://arxiv.org/abs/1606.07276
http://dx.doi.org/10.1103/PhysRevE.94.012307
http://dx.doi.org/10.1038/30918

	1. Introduction
	2. An oscillator model for power grid dynamics
	3. Critical links and flow rerouting
	4. Curing strategies
	5. Performance of curing strategies
	5.1. Curing the Romanian power grid
	5.2. Random graphs
	5.3. Ultrasparse networks

	6. Conclusions and outlook
	Acknowledgments
	References



