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Abstract. The plasma filamentation instability or beam-Weibel instability
generates magnetic fields and accelerates particles in collisionless astrophysical
plasma. This instability has been examined with multi-dimensional particle-in-
cell (PIC) simulations, demonstrating the formation of current flux tubes. Such
simulations could not model a statistically significant number of filaments. Here,
we model with a PIC simulation the filamentation instability that is driven by
nonrelativistic, cool electron beams in one spatial dimension at an unprecedented
resolution. We show unambiguously that the gradient of the magnetic pressure
which develops during the quasi-linear evolution of the filamentation instability,
gives rise to an electrostatic field component. The interplay of the magnetic and
electrostatic fields results in a wavenumber spectrum of the magnetic field that
is a power-law, which has been reported previously for multi-dimensional PIC
simulations. The magnetic field power spectrum decreases with the exponent
−5.7 and that of the electrostatic field with −3.8, yielding a ratio of 3:2.
The electromagnetic fields thermalize the electrons. The electrons develop a
velocity distribution in the simulation direction that decreases exponentially at
low speeds and faster at high speeds. The filamentation instability can thus not
efficiently accelerate electrons to high energies. The filaments develop into a
stationary final state. The probability distribution of the filament sizes is a Gumbel
distribution. In astrophysical settings, this implies that the long exponential
tail of this distribution may lead with a reasonable probability to large current
filaments, if the filamentation instability develops in a large enough volume. The
coherent magnetic fields of large filaments are required to explain the synchrotron
emissions of gamma ray bursts.
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1. Introduction

Plasma instabilities, which are involved when nonthermal plasmas relax on timescales that are
short compared to the diffusion times [1, 2], have recently attracted attention as a means to
generate strong magnetic fields in various astrophysical environments, e.g. in the jets of gamma
ray bursts [3]–[5] and on cosmological scales [6].

In a simplified system, in which the nonthermal distribution is due to two cool and spatially
homogeneous beams of electrons that interpenetrate with a relative flow velocity vector vb, we
find three classes of linear instabilities. The two-stream instability results in electrostatic waves
with a wavevector k ‖ vb [7, 8]. The mixed modes are partially electromagnetic and their k is
oblique to vb [9]. The filamentation instability leads to the aperiodic growth of electromagnetic
waves with k ⊥ vb [10]. The filamentation instability is important, if the modulus vb of the flow
velocity vector vb is not small compared to the speed of light c in vacuum, when both plasma
beams have a comparable density [11] and if no ambient magnetic field is initially present
[12]–[14]. The filamentation instability typically converts about 10% of the kinetic energy into
magnetic field energy, as particle-in-cell (PIC) simulations show [15, 16].

Recently, a PIC simulation of unmagnetized counter-propagating electron beams has been
performed [17]. By modelling only the two spatial dimensions orthogonal to vb, all modes but
the filamentation mode have been excluded. However, this restriction has enabled a simulation
box size that resolved a large number of current filaments from which some statistical properties
could be extracted. The wavenumber spectrum could be approximated by power-laws during the
initial growth of the filamentation instability and during the nonlinear stage, when the filaments
interact and merge [18]. While the power-law distribution of the wavenumber spectrum during the
nonlinear stage of the filamentation instability could originate from a preferential attachment of
the filaments [17, 19], the origin of the power-law during the initial stage has not been obvious. In
principle, it could be due to a phase change [17] or self-organization, as we find it in ferromagnetic
and other related systems [20]–[22].

The filamentation modes in a PIC simulation grow from noise that does not show a power-
law |k| spectrum [23] to their saturation at a growth rate, which is also not a power-law function
of |k|. It is thus unclear, how the transition takes place from the initial, linear growth phase of the
filamentation instability to a system that displays a power-law |k| spectrum. The identification of
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this mechanism would be difficult in the two-dimensional (2D) simulation geometry employed in
[17], because the linear growth and nonlinear filament merging processes occur simultaneously.
In this work, we thus resort to a 1D spatial geometry, which permits us to extract the mechanism
that is responsible for the power-law generation. It also allows us to examine the statistical
properties of the current distribution when the filamentation instability is saturated, since the
filament merging is practically inhibited. The large simulation box furthermore captures a
statistically significant number of filaments.

Section 2 introduces the PIC simulation method and the initial conditions. Section 3
examines the time-evolution of the filamentation instability for modes with k ⊥ vb. We confirm
previous observations that the filamentation instability develops an electrostatic component,
once the magnetic fields grow to a large amplitude. The 1D simulation geometry unambiguously
reveals the spatial correlation of the magnetic pressure gradient with the electrostatic field.
The latter develops in wavenumber space at large k = |k|. The simulation exhibits that the
k-spectrum of the magnetic field develops into a power-law function once the electrostatic
component grows to a significant amplitude. Once the filamentation instability saturates, the
evolution of the electron distribution is locked and the current forms a system of quasi-stationary
domains. This final state is, however, stable only in one space dimension [15]–[17]. We analyse
the size distribution and correlation of the domains, and we propose that the domain sizes follow
a Gumbel distribution [24]. In section 4, we discuss the relevance of our findings with respect to
models of interacting current filaments that are employed, for example, in the context of gamma
ray burst jets [3, 18, 25]. The typically invoked interaction of the current filaments through
magnetic fields may have to be expanded by the inclusion of electrostatic forces. This is the
case even in the system considered here and in [17], in which linear electrostatic instabilities are
excluded. The latter can lead to electrostatic waves with a k-spectrum that resembles white noise
[26] and to phase space holes [27]–[29].

2. The initial conditions and the plasma model

2.1. The plasma equations and the PIC method

We consider two counter-propagating identical electron beams. The beams move along the
z-direction with the velocity modulus vb = |vb|. Thus, in the chosen reference frame, the total
current vanishes. Particle collisions are neglected, which is justified in many astrophysical
environments [4], and the system thus evolves under the influence of the Vlasov–Maxwell set of
equations. With µ0 and ε0 being the vacuum permeability and permittivity, with the elementary
charge e and electron mass me, the governing equations are

∇ × E = −∂B
∂t

, (1)

∇ × B = µ0ε0
∂E
∂t

+ µ0J, (2)

∇ · B = 0, ∇ · E = ρ

ε0
, (3)
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ρ(x, t) = −e
∫ ∞

−∞
f(x, v, t) dv, (4)

J(x, t) = −e
∫ ∞

−∞
vf(x, v, t) dv, (5)

∂

∂t
f(x, v, t) + v · ∇xf(x, v, t) − e

me
(E + v × B) · ∇vf(x, v, t) = 0. (6)

We solve equations (1)–(6) with a PIC simulation code that is based on the virtual particle
method [30]. In contrast to electromagnetic Vlasov simulation codes [31]–[33] that solve
equation (6), PIC codes resort to the method of characteristics. The continuous distribution
f(x, v, t) is replaced by an ensemble of phase space elements, which we refer to as computational
particles (CPs). The momentum pj and the position xj of the CP with the index j are evolved in
time with the help of the Lorentz equation of motion dpj/dt = qc(E + vj × B) and dxj/dt = vj,
with pj = mc�jvj. The Lorentz factor of the jth CP is �j = (1 − v2

j )
−1/2. This is repeated for all

CPs. Each CP has a mass mc � me and charge qc/e � 1, but qc/mc = e/me. The microcurrent
qjvj of the jth CP is interpolated onto the numerical grid. This is repeated for all CPs, which
gives the global current J. The electromagnetic fields are updated by J with the help of the
equations (1) and (2). The new fields are interpolated to the position of each CP, updating its
momentum. This cycle is repeated for a given number of time steps.

2.2. The simulation set-up

The 1D simulation box is aligned with the x-direction, defined by the unit vector ex, and it uses
periodic boundary conditions. We denote the spatial coordinate by the scalar x. Two electron
beams are modelled that move along the z-direction. The charge is compensated by a background
of positively charged immobile ions. This system corresponds to spatially homogeneous beams of
infinite extent in all directions, which are cut perpendicularly to their flow velocity vector by the
simulation box. This excludes all wave modes except the filamentation mode. The resolution of
only one perpendicular direction implies, that the developing filamentation waves are planar and
have a wavevector k ‖ ex, even though the growth rates are isotropic for all k ⊥ vb. However, the
plane wave approximation is valid during the initial linear growth phase, as long as interactions
between waves (weak turbulence) are negligible.

Each electron beam has a density ne, that corresponds to the plasma frequency ωe =
(e2ne/meε0)

1/2 = 2π × 105 s−1. The total plasma frequency �p = √
2 ωe. Since the grid cell

size in PIC simulations should be comparable to the Debye length λD = ve/�p, where the
electron thermal speed ve = (kBT/me)

1/2, we cannot model the cold plasma that is frequently
invoked when filament interactions are examined [17, 18, 25]. We select ve = 5 × 106 m s−1 and
vb/ve = 18 in our simulation and thermal effects should thus be small. The x-direction is resolved
by Ng = 3 × 104 simulation cells, each with the length 	x = 0.9λD. Typically, the waves that
are driven by the filamentation instability have wavelengths λ = 2π/k ∼ λe, where λe = c/�p

is the electron skin depth. The box length is L = Ng	x = 444 λe and the lowest wavenumber
	k = 2 π/L. The filamentation instability is thus well-resolved. Each beam is represented by
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Figure 1. The key energy densities at early simulation times: panel (a) shows the
normalized kinetic energy densities of the two electron beams. Panel (b) displays
the normalized energy density EB of the By-component (upper curve) and EE

of the Ex-component. Overplotted are exponentials exp (�it) with �i = 0.45 �p

and 2 �i.

Ne = 6 × 106 particles, or 200 particles per cell. We let the system evolve in time for a simulation
duration TS = 533/�p that is subdivided into a total of 6 × 104 time steps 	t. Initially, E = 0
and B = 0. The simulation noise due to the finite number of CPs introduces broadband thermal
noise [23], which provides the initial amplitude for the wave growth.

3. Simulation results

3.1. Field evolution

We analyse the kinetic energy density Ek,j(t) = (Ng	
3
x)

−1 ∑Ne
L=1 mcc

2(�L − 1) of both beams.
Each beam is denoted by the index j = 1 or j = 2 and the individual CPs are addressed by the
index L. The magnetic energy density EB(t) = N−1

g

∑Ng

L=1 B2
y(L	x, t)/2µ0 and the electrostatic

energy density EE(t) = N−1
g

∑Ng

L=1 ε0E
2
x(L	x, t) are also investigated. Figure 1 shows Ek,j, EE

and EB during an early simulation time. The energy densities are normalized to E0 = Ek,1 + Ek,2

at t = 0. The mean ε0E
2
z , which is the electric field energy density associated with the linear

filamentation instability [9], remains two orders of magnitude below that of EE, while the mean
values of ε0E

2
y and B2

z/2µ0 stay at noise levels (not shown here).
At t �p ≈ 5, electromagnetic filamentation modes are growing and EB(t), which grows at

twice the rate of the wave amplitude, can be approximated by the exponential exp (�i t) during
the time 5 < t �p < 20 with �i = 0.45 �p. The peak growth rate of the cold filamentation
instability is �Max/ωe ≈ vb/c if both beams have equal densities and if � ≈ 1 [9]. For our
vb = 0.3 c, the growth rate is �Max = 0.3 ωe = 0.3 �p/

√
2 ≈ �i/2. While EB is an integral over

the energy contributions of all wave modes, its growth rate is close to �i. This is because the
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fastest growing modes dominate the k-spectrum and thus EB. After t �p ≈ 20, we observe in
figure 1(b) a growth of EE. Electron beams flowing in the z-direction cannot drive an electrostatic
two-stream instability in the x-direction. This, together with the observation from figure 1 that EE

grows at twice the rate of EB, implies that the Ex field is driven by the filamentation instability.
A simple 1D fluid model reveals the cause. It includes the magnetic pressure Pb = B2

y/2µ0,
which acts along the x-direction. The pressure gradient is dPB/dx = µ−1

0 By(dBy/dx). In the
absence of ions, the charge density is related to the electron density ne(x). The linearized density
variation δne(x, t) evolves in time according to

∂2

∂t2
δne(x, t) + �2

pδne(x, t) = (µ0me)
−1By(dBy/dx). (7)

The linear filamentation instability driven by cold beams results in an aperiodic growth of
By(k, t) ∼ exp (�it/2) for k > k0, where k0 is a lower bound for the unstable wave spectrum
[10]. A spatial variation of By arises from the random simulation noise, which yields the initial
amplitude By(x, t0) at the time t0 = 0. The filamentation instability is characterized by a high,
slowly changing growth rate over a broad k-interval. The superposition of many unstable waves
allows for an independent growth of fluctuations of By at different locations. Consider two
neighbouring positions x0 and x1 = x0 + dx that have an initial (noise) amplitude By(x0, t0) and
By(x1, t0). These fields grow at the same rate and dBy/dx = (By[x1, t0] − By[x0, t0]) exp (�it/2).
We find for the pressure gradient the growth BydBy/dx ∼ exp (�it). The pressure introduces
an aperiodically growing charge density modulation δne(x) ∼ exp (�it) and thus an electric
restoring force Ex(x) ∼ exp (�it). The electric field energy density grows as EE ∼ exp (2�it),
in line with figure 1(b). At t �p ≈ 28, EB and EE saturate and remain approximately constant on
the logarithmic scale until t �p = 80. Eventually an almost steady state distribution is reached
and after t �p = 400 the field energies change by less than 10% (not shown). The electron beams
lose about 10% of their initial energy to the growing electromagnetic fields, in line with previous
results [15, 17].

A Fourier transform over the x-direction in the form of

F(k	k, t) =
Ng∑
n=1

F(n	x, t) exp (−k	kn	x), (8)

is applied to Ex and By, the power spectrum F 2(k	k, t) = F(k	k, t) · F ∗(k	k, t) is computed
and shown in figure 2. Initially, only By grows at a k ≈ �p/c, in line with figure 1. Eventually, the
Ex component grows in a k-interval that coincides with the high-k tail of the By-spectrum. This
overlap suggests that the Ex field is connected to rapid (high-k) variations of By, while the slow
By variations do not give rise to an Ex. This can also be explained with the help of equation (7).
The sharpest gradients in By result also in rapid variations in the pressure force and, thus, in
growing Ex fields. Once Ex has reached a high power, both wave spectra shift towards lower
k. At all times we observe from figure 2 the correlation between E2

x(k, t) and the high-k tail of
B2

y(k, t). Figure 2 demonstrates that a steady state is reached after t �p ≈ 100, when the energy
densities in figure 1 approach an equilibrium.

The real frequency � of the waves growing due to the filamentation instability is zero
(aperiodic growth). We thus expect that the wave spectrum of By is dominated by stationary
structures after the instability saturates. If Ex is connected to the filamentation instability, we
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Figure 2. The dominant power spectra: panel (a) shows the normalized spectrum
B2

y(k	k, t) and that of E2
x(k	k, t) is displayed by panel (b). The color indicates

the 10-logarithm of the power, normalized to the peak power in (a).

also expect that the electrostatic structures are time-independent. We apply the Fourier transform
equation (8) over space and time. We transform Ex and By over the full simulation box and over
the time interval 400 < t �p < 533 and compute the power spectrum. The spectra are displayed
in figure 3. Both field components have their peak power at � = 0 and are thus time-stationary.
The peak power in E2

x(k, � = 0) is two orders of magnitude smaller than that of B2
y(k, � = 0).

The spectrum in figure 3(a) further reveals noise propagating on the electromagnetic wave
branch at low k and |�| ≈ �p as well as noise from the Langmuir wave, which has a weak
electromagnetic component in the presence of By 
= 0. The frequency spread of the stationary
structure in figure 3(a) at � = 0 arises from the finite sampling time, while the broadband wave
component in figure 3(b) is typical of thermal noise [23].

The power spectra E2
x(k, t) and B2

y(k, t) from figure 2 are each integrated over the time
interval 400 < t �p < 533, during which the fields are quasi-stationary, and the spectra are
compared in figure 4. Both field components show spectra that are well-approximated by power-
laws over a wide range of wavenumbers. At high k, the structures become predominantly

electrostatic. The power spectrum ofB2
y in figure 4 is steeper than that ofP⊥(k) =

√
B2

y(k) + B2
z(k)

given in [17]. In [17], the 2D power spectrum has been integrated over the azimuth angle, which
corresponds to a multiplication of the spectrum by k. The slope of B2

y(k) above kc/�p = 2
is equal to 3/2 times that of E2

x(k) in the same interval. Note, that we cannot obtain this
steady state result from equation (7) alone. By equating the squared electrostatic restoring
force and the squared magnetic pressure gradient in k-space, we would get the relation
E2

x(k) ∼ B2
y(k)(kBy[k])2 = k2B4

y(k) at high k.
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Figure 3. The dispersion relation averaged over the time 400 < t �p < 533:
panel (a) shows B2

y(k, �) and panel (b) shows E2
x(k, �). The color shows the

10-logarithm of the power spectrum, normalized to the peak power in (a).

Figure 4. The power spectra of By (red) and Ex (blue) integrated over the interval
400 < t�p < 533. Overplotted are power-laws P(k) ∼ k−5.7 and P(k) ∼ k−3.8.
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Figure 5. The phase-space density of beam 1 in units of a CP: panel (a) shows the
initial distribution, panel (b) the filamentation prior to the onset of the Ex-field.
Panel (c) displays the electron distribution when the Ex-field saturates, and panel
(d) corresponds to the final state.

3.2. Electron distribution

In what follows, we concentrate on the electron phase-space distribution f(x, vz), since it is in
this plane that the plasma structures form that develop in response to the filamentation instability.
The distributions at four different simulation times are illustrated in figure 5. Only the beam with
vz > 0 is shown. Since both beams are identical, the second beam has a similar distribution.At the
time t �p = 0 the beam is spatially homogeneous and has the speed modulus vb = 18 ve. During
the initial growth phase 5 < t �p < 20 of the instability, the electrons are redistributed along the
x-direction, as the snapshot at t �p = 18 shows. However, the phase space density modulation is
weak and no significant Ex is yet present.At the time t �p = 28, when the filamentation instability
in figure 1(a) has started to saturate, the electrons form phase space islands that are separated
by depleted intervals. This space charge leads to the strong electrostatic field component in
figure 1(b). The phase space islands still evolve in time. Eventually, a time-stationary phase-space
distribution is reached at the simulation’s end, shown in figure 5(d). The evolving phase-space
distribution in a sub-interval of the simulation box is also shown in the supplementary movie.
The movie demonstrates that the beam evolves from the initial, spatially homogeneous state to
a quasi-stationary final state.

Figure 6 confirms that the final Ex and By field components are directly related to the
electron distribution f(x, vz). The peak value Bmax of By in the simulation box is significant,
since it results in an electron gyrofrequency ωc = eBmax/me = �p/5. Figure 6(a) reveals that
Ex = 0 when dBy/dx = 0 or when By = 0, which results in a vanishing magnetic pressure
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Figure 6. The dominant field components and their connection to the electrons
at t �p = 533: the panel (a) shows the By-component (dashed line) and the
Ex component (solid line). The magnetic field is normalized to its peak value
275 V m−1 in the simulation box and the electric field to its peak value 50.5 V m−1.
Panel (b) shows the related electron phase-space distribution.

gradient in equation (7). The k-spectrum of the Ex-component must thus peak at larger k than
that of By, which is in line with the figures 2 and 4.

Since only Ex and By reach a significant amplitude, the E × B force points along the
z-direction. The electrons at the equilibrium point x0�p/c ≈ 2.5 in figure 6 experience no
electromagnetic fields and move freely, except for their interaction with the weak Ez component
of the filamentation instability [9]. As we move away from x0 to lower or to larger x, the moduli
of Ex and By grow linearly. Since ExBy > 0, as we move away from x0, the vz-modulation is
symmetric relative to x0 and it is identical for both beams. The v × B force deflects the electrons
of the beam with vb > 0 towards x0 and those of the second beam are deflected away from
x0. Each beam is thus pinched or diluted, depending on the vz-direction and on the sign of the
magnetic field gradient.

Figure 5 illustrates the structure formation within f(x, vz). The vy-component is unaffected
by the filamentation instability in the 1D simulation geometry employed here, since Bx ≡ 0.
While no clear structures develop in the f(x, vx)-plane (not shown here), the electrons are
accelerated due to their large vz and the strong, spatially varying By field. Figure 7 displays the
final, box-averaged electron distributions. The electron vy distribution is the initial Maxwellian
distribution. The vz distribution has been broadened due to the filamentation instability, but most
electrons still move at speeds ≈ vb. The f(vx) distribution shows an exponential slope up to a
value vx ≈ vb, above which it is dropping faster than exponential.

Figure 8(a) depicts the electron phase-space distribution at t �p = 533. Both electron beams
form similar filaments. The density maxima of each beam spatially coincide with the minima of
the other beam. The current component Jz calculated with equation (5) is displayed in figure 8(b)
and it shows an ordered sequence of current domains with a practically constant value of Jz.
As we go from one domain to the next, the current changes its sign. The width of the current
domains corresponds to the distance between two consecutive zero-crossings in figure 8(b).
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Figure 7. The velocity distributions log10 ne(vj) for positive speeds in units of a
CP at t �p = 533. The velocity is normalized to vb. The index j takes x, y, z.

Figure 8. The phase-space distribution of both electron beams is shown in panel
(a) for t �p = 533. The color scale denotes the number of CPs per bin. Panel (b)
corresponds to the Jz resulting from f(x, vz) in (a). The current is normalized to
its peak value in the shown interval.
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Figure 9. The size distribution of the (j + 1)th current domain versus that of the
jth domain obtained from the large simulation at t �p = 390. The size distribution
shows a preferred direction aligned with the diagonal.

This width is not constant. Thence, there is a distribution function for the probability of finding
a domain with a certain width. However, with a simulation box length of L = 444 λe, the total
number of current domains is only 234 at t �p = 533. This number is not sufficient to obtain a
statistically significant distribution function.

We thus expand our simulation box length by a factor 15 and reduce the simulation time,
while we keep all other plasma and simulation parameters unchanged. We measure Jz at the time
t �p = 390. We exclude the zero-crossings with a separation of less than 0.3λe, which removes
the small scale (noise) fluctuations around Jz ≈ 0.A trend in the size distribution can be extracted,
by plotting the size of the (j + 1)th domain versus that of the jth domain. Figure 9 reveals a
tendency of the filaments to cluster according to their size. Neighbouring domains preferably
have a similar size. Most large domains with a size > 4λe are found next to other large domains.
However, this is not an exclusive rule because we find in figure 9 various domains j with a size
above 4, which are next to domains (j + 1) with a size of around one.

The large simulation, which resolves ≈6.6 × 103λe, contains about 3500 current domains.
The size of the current domains in figure 9 can reach values of up to 5.5λe. The range of
possible filament sizes 0.3λe < S < 5.5λe is subdivided into intervals with a constant width
	S = 0.0444λe. The number of filaments that fall into a given size interval is counted and
the resulting count rate (probability distribution) is displayed in figure 10. The count rates
follow a curve with a single maximum that can be approximated by the Gumbel distribution
[24], as for example discussed in [21]. A distribution PD = 210 × exp (−u − exp [u]) with
u = 1.45 × (x/λe − 1.65) is fitted, which reproduces the single maximum and the slopes of
the measured distribution at low and large sizes.
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Figure 10. The size distribution obtained from the large simulation at t �p =
390: panel (a) shows the number (counts) of domains with a given size on a
linear scale. Panel (b) shows the distribution on a 10-logarithmic scale. The
distribution is well-approximated by the overplotted Gumbel distribution PD =
210 × exp [−u − exp (u)] with u = 1.45 × (x/λe − 1.65).

4. Discussion

Here, we have examined the growth and saturation of the filamentation instability in one spatial
dimension. This reduced dimensionality has firstly allowed us to suppress the filament merging
[18], which competes with the wave growth. Secondly, in 1D denoted by x, we can separate an
electrostatic Ex-component from the spatially varying strong By and weak Ez electromagnetic
components of the filamentation instability [9]. This has allowed for an in-depth analysis of the
electrostatic Ex component, which is developing during the quasi-linear growth phase of the
filamentation instability. We have also found that the electron velocity distribution along the
wavevector k decreases exponentially in a 1D geometry and that the final distribution of current
domain sizes follows a Gumbel probability distribution [24].

The low plasma temperature (thermal pressure) has led to a high signal-to-noise ratio for
Ex [23] and to a dominance of the magnetic pressure over the thermal pressure, facilitating its
investigation during the quasi-linear growth phase, when the electrons have not yet been heated.
We could thus unambiguously identify the relation between the electrostatic and the magnetic
energy densities as well as the k-spectrum and the frequency spectrum of the electrostatic
component. Since the Ex-component is driven by the spatial gradient of the aperiodically growing
magnetic pressure Pb = B2

y(x, t)/2µ0 ≈ B2
y(x) exp (�it)/2µ0, it goes to zero when either By(x)

or dBy(x)/dx vanish. Consequently the characteristic wavenumber of the Ex-component is twice
that of By and the real part of its frequency vanishes. We have confirmed this here.

At the simulation’s end, the k-interval that contained the strong Ex field has coincided with
the high-k tail of By. In the overlap interval, the power spectra of both components could be
approximated by power-law distributions. Previously only power-law distributed wavenumber
spectra for the magnetic fields have been reported, without specifying their physical origin
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[16, 17]. The power-law cannot be explained with the filamentation instability alone, which
shows an almost constant growth rate at high k, because the initial amplitude distribution given by
noise is not a power-law [23]. The overlap of a strong E2

x(k) signal with the power-law distributed
high-k tail of B2

y(k) suggests that the Ex component results in the power-law slope of B2
y(k) at

large k. The slopes are such that B2
y(k) ∼ k−5.7 and E2

x(k) ∼ k−3.8, giving an exponent ratio of
3:2. For sufficiently high k, the quasi-linear filamentation instability thus becomes electrostatic.
The functional dependence of Ex and By on k during the nonlinear, time-stationary equilibrium
of the filamentation instability does, however, not simply arise from an equilibrium between
the magnetic pressure gradient and the electrostatic restoring force, which led to the growth of
the Ex component during the quasi-linear phase. If we assume a drop Ex(k) ∼ k−1.9 and thus
E2

x(k) ∼ k−3.8, we can equate in k-space B2
y(k)(k By[k])2 ∼ k−3.8 or B4

y(k) ∼ k−5.7, rather than
the observed B2

y(k) ∼ k−5.7. We attribute this to the strong electron heating in the x direction,
which gives rise to a significant thermal pressure contribution.

Once the final equilibrium is reached, the electrons show an exponentially decreasing
velocity distribution f(|vx|) up to the initial beam velocity vb and an even faster drop above
vb, in line with that in 2D simulations [17]. It confirms that the filamentation instability is not
an efficient electron accelerator in one or two spatial dimensions. Thus, electrostatic instabilities
[17, 34] rather than the filamentation instability are probably responsible for the power-law
distributed electron energy spectrum reported in [35]. This is because the different beam density
ratios in [35] have favored electrostatic over electromagnetic instabilities [11].

The large simulation box has revealed the probability distribution for the current filament
size (magnetic domains). The size distribution is not a Gaussian, which would have suggested a
random and unconstrained current accumulation process. The distribution is best fitted to an
extended Gumbel distribution F(x) ∼ exp {a(y − exp [y])} with y = 1.45(Sj/λe − 1.65) and
importantly a = 1. The case a = 1 corresponds to the original Gumbel distribution for the
maximum value in a random draw from a set of statistically independent values, each with
an exponential distribution [24]. Chapman et al [21] further discusses the extended Gumbel
distribution and its relation to a range of physical effects such as the intensity distributions of
sunspots.

In our simulation, we have Ne particles and a box averaged mean value 〈Jz〉 = 0. Since
both beams are initially cool, each particle contributes an initial microcurrent J̃ z ≈ vb qc z. Due
to the initial random noise and the filamentation instability that result in a broad k-spectrum
of growing waves, these particles will cluster together and form randomly distributed current
filaments. Each of these filaments j will try to maximize its size Sj, until all particles are
distributed. Since each filament consists to a good approximation either of electrons with v ≈ +vb

or v ≈ −vb the total current, which in analogy to the magnetic domain structure we call the
magnetization Mj, is an extremal value. When the time-stationary, final equilibrium is reached,
each filament has a spatially constant macroscopic Jz(x) and a magnetization Mj ∼ Sj Jz. Each
Mj represents the maximum magnetization that can be reached locally through an accumulation
of the microcurrents of the individual particles. The distribution of these maxima will then obey
the Gumbel distribution with a = 1.

With respect to astrophysical plasmas, we find that the filamentation instability can result in
flux tubes that interact through both, electrostatic and electromagnetic forces. A previous model
[25] of flux tubes in the jets of gamma ray bursts, which result from the filamentation instability [3]
and interact only through magnetic forces, may have to be expanded. The (Gumbel) distribution
P(Sj) of the current filaments with size Sj, which is apparently generated by the filamentation
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instability, has a long tail. If the volume, in which the filamentation takes place, is large compared
to the electron skin depth λe, we may find many large current flux tubes. Due to their large
perimeter, these flux tubes will rapidly grow by coalescence with neighboring filaments. The
latter are typically also large as the simulation in this work evidences. The comparatively small
box volumes of the 3D PIC simulations [15, 16, 35] may underestimate the maximum size of
the current filaments, on which a standard model for the gamma ray burst emission is based [3].
Future work will address with PIC and hybrid simulations [36, 37] if ion beam filamentation
also results in a Gumbel distribution. This would result in even larger flux tubes and associated
coherent magnetic fields.
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