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Abstract. We introduce a novel scheme for one-way quantum computing (QC)
based on the use of information encoded qubits in an effective cluster state
resource. With the correct encoding structure, we show that it is possible to protect
the entangled resource from phase damping decoherence, where the effective
cluster state can be described as residing in a decoherence-free subspace (DFS)
of its supporting quantum system. One-way QC then requires either single or two-
qubit adaptive measurements. As an example where this proposal can be realized,
we describe an optical lattice set-up where the scheme provides robust quantum
information processing. We also outline how one can adapt the model to provide
protection from other types of decoherence.
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Quantum computing (QC) offers a huge advantage over its classical counterpart in terms of
computational speedup of tasks such as database searching and number factorization [1]. These
applications are expected to pave the way for the realization of a vast range of classically
prohibitive computational tasks in both science and industry. An exciting new approach known
as the one-way QC model [2] has attracted considerable interest from the theoretical [3] and
experimental quantum information community [4, 5]. The basic ingredients of this computational
model and the possibility of active feed-forwardability allowing fast gate performances have
very recently been experimentally demonstrated [4]. In general the model is based on adaptive
measurements in multipartite entangled resources known as graph states [6] which have been
experimentally produced for the case of up to six-qubits [5]. It is a promising candidate for the
implementation of QC in physical systems where highly entangled resources can be generated
in a massively parallelized fashion.

A particular class of graph states, known as cluster states, have proved to be crucial in one-
way QC, as they form universal resources for QC based on single-qubit adaptive measurements.
However, the accuracy of protocols using cluster states is affected by sources of environmental
decoherence and imperfections in the supporting quantum system [7]. It is therefore desirable
to design effective schemes to protect the quality of the entangled resources and the encoded
information within. Quantum error-correction (QEC) [8] and the use of decoherence-free
subspaces (DFS) [9] are two well-known methods that offer protection against loss of information
from a supporting quantum system to the environment. The former requires a considerable
overhead in system resources largely due to redundancy of the encoded information, while the
latter requires a careful understanding of symmetries in the system-environment dynamics. The
role of QEC in one-way QC has been studied previously [10], here we change perspective
and discuss the application of DFS as a novel method for protecting quantum information
during the performance of one-way QC. This approach requires significantly less physical
qubits and adaptive measurements than a scheme based on QEC and puts our proposal closer to
experimental implementation in far simpler physical set-ups. We first introduce, in section 1,
a model for a quantum system that supports a multipartite entangled resource constituting
an effective cluster state, invariant under random phase errors induced from scattering type
decoherence in the system-environment dynamics. We then show how one-way QC can be
carried out on this entangled resource with single or two-qubit adaptive measurements. In order to
provide an operative way to evaluate the resilience to noise provided by the protection of the
register by using a DFS, we outline a quantum process tomography technique that can easily be
adapted to various experimental set-ups [11]. We quantitatively analyse the case of information
transfer across a linear cluster state whose physical qubits are affected by phase damping
decoherence and show the superiority of the DFS encoding. In section 2, we provide a description
of an optical lattice set-up, where the required resource can be generated with cold controlled
collisions and the measurements performed via Raman transitions and fluorescence
techniques. Finally, section 3 summarizes our results and includes a brief outline of
how our scheme can be adapted to provide protection from other forms of collective
decoherence.
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Figure 1. (a) The effective two-dimensional cluster state layout with each pair of
physical qubits representing an encoded effective qubit. The qubits belonging to
each pair couple to the environment in the same way, as described by equation (5).
(b) Schematics for information propagation of a logical qubit |Qin〉. (c) Schematics
for the simulation of a gate operation on two logical qubits |Q1

in〉 and |Q2
in〉.

The body of the paper provides a detailed account of the procedures to follow in
(b) and (c).

1. The model

We consider a set of qubits occupying the sites of a lattice structure C as shown in figure 1(a).
Each pair of qubits is prepared in the singlet state

∣∣ψ−〉
ab

= 1√
2
(|01〉 − |10〉)ab (1)

with {|0〉, |1〉} the single-qubit basis. In what follows, each first (second) pedex labels a qubit
belonging to the top (bottom) qubit-layer with respect to the positive z-axis (see figure 1(a)). The
top qubits a and c of two neighbouring pairs are connected via the controlled-σz operation

Sac = |0〉a〈0| ⊗ 11c + |1〉a〈1| ⊗ σz,c (2)

with σl,i(l = x, y, z) the l-Pauli matrix applied to qubit i. In order to generate this entanglement
structure, one initially sets the top and bottom qubits a, b to the state |−〉, where |±〉 =
(1/

√
2)(|0〉 ± |1〉), resulting in the total state ⊗a,b∈C|−, −〉ab. The transformation

SC
‖ =

∏
a,b∈C|a,b∈γ‖

Sab (3)

is then applied to the qubits along the z-axis, where γ‖ = (0, 0, 1)T. This is followed by the
operation

∏
a,b∈C|a,b∈γ‖ 11a ⊗ Hb, where Hi is the Hadamard gate applied to qubit i, resulting in

the state ⊗
a,b∈C|a,b∈γ‖

∣∣ψ−〉
ab

. (4)
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The next step is the application of the transformation SC
= = ∏

a,c∈C|a,c∈γ= Sac to qubits belonging
to the top layer of the lattice, where γ= = {(1, 0, 0)T, (0, 1, 0)T}. We now consider the encoding
{|0E〉a′ := |01〉ab, |1E〉a′ := −|10〉ab}, where each pair of physical qubits embodies an effective
qubit a′ in a single-layer lattice C ′. The state generated in this way corresponds to a standard
cluster state

∣∣φ{κ}
〉
C′ with eigenvalue set {κ} containing κa′ = 0, (∀a′ ∈ C ′) [2], which we denote,

for ease of notation, as |φ〉C′ . From now on, the top and bottom physical qubits encompassed in
a′ will be labelled as a′

1 and a′
2 respectively.

The physical assumption we make here concerning the noise affecting the prepared
computational register is that while qubits in the x–y-plane across the lattice structure are at
a fixed distance from each other, the qubits along the z-axis are closer together (see figure 1(a))
such that each qubit in a pair couples to the environment in the same way. This means that the
environment cannot distinguish the qubits and one can write the Hamiltonian for the paired-qubit
system and the environment as [9]

H = E0 ⊗ 11 + Ex ⊗ Jx + Ey ⊗ Jy + Ez ⊗ Jz, (5)

where E0, Ex, Ey and Ez are the operators of the environment and we have Jx = (1/2)
∑2

i=1 σa′
i,x

,
Jy = (1/2)

∑2
i=1 σa′

i,y
and Jz = (1/2)

∑2
i=1 σa′

i,z
. The hamiltonian in equation (5) describes

well the physical situation when both qubits are very close together when compared to the
environment’s coherence length [9], where a Markov approximation is implicit in the description.
This is a reasonable assumption in many physical situations, one of which will be treated in
detail in section 2. The qubits affected by the collective type of noise described in equation
(5) are depicted by jagged surroundings in figure 1. The encoded qubit state |+〉a′ (equivalent
to |ψ−〉a′

1a
′
2
), before entanglement generation on the top layer, is invariant under environment-

induced phase shifts (associated with the final term in equation (5)) on the physical qubits,
|j〉 → eiφj |j〉(j = 0, 1). As any random phase shifts of this form commute with the operations
Sac on the top layer producing the encoded cluster state, the final state |φ〉C′ is unaffected by such
an environment also. The dual-rail encoding we have used is well-known in providing robust
protection against phase damping decoherence [9]. The combination of this encoding and the
entangling operations we describe put the encoded cluster state |φ〉C′ in a DFS for the phase
damping class of noise considered here, i.e. to describe the dynamics we set Ex = Ey = 0 in
equation (5). The possibility of encoding within such a DFS is important in many physical set-
ups where random phase fluctuations are the dominant source of decoherence. For example, in
optical lattices this decoherence mechanism is caused by an environment at nonzero temperature
exciting the motional states of the atoms that embody the physical qubits at lattice sites [12].

In order to understand how information can be propagated across the effective single layer
lattice shown in figure 1(a), we consider the prototypical configuration shown in figure 1(b).
Here a normalized logical qubit |Qin〉 = µ|0E〉1′ + ν|1E〉1′ is encoded on the effective qubit 1′

embodied by the physical qubits 1 and 2. After the entangled resource is prepared, the total state
of the effective qubits 1′ and 2′ is written as

|φ〉DFS = µ|0E, +E〉1′2′ + ν|1E, −E〉1′2′ (6)

with |±E〉 = (1/
√

2)(|0E〉 ± |1E〉). There are two ways to propagate information across effective
sub-clusters such as the one considered here. Depending on the physical set-up, one strategy
may be preferable to the other. The first is to perform a joint measurement on a pair of
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qubits comprising an effective qubit i′ in the basis Bi′(α) = {|ψ+α〉i′, |ψ−α〉i′ } with outcomes
sα
i′ = {0, 1} and |ψ±α〉i′ = (1/

√
2)(|01〉 ± eiα|10〉)i′1i

′
2
. In the case of i′ = 1′ this strategy simulates

the transformation σ
sα

1′⊕1
x HR−α

z on the logical qubit, where R−α
z is a single-qubit z-rotation in

the Bloch sphere by an angle −α.
The second method is to perform single-qubit measurements on i′1 and i′2 in the

bases Bi′1(α) = {|+α〉i′1, |−α〉i′1} and Bi′2(0) = {|+〉i′2, |−〉i′2} with outcomes sα
i′1,2

= {0, 1} and

|±α〉i′j = (1/
√

2)(|0〉 ± eiα|1〉)i′j (j = 1, 2). For i′ = 1′, i′j = j, this simulates the transformation

σ
sα

i′1
⊕s0

i′2
⊕1

x HR−α
z on the logical qubit.

Consider now the situation depicted in figure 1(c) where we have input logical qubits |Q1
in〉1′

and |Q2
in〉2′ . If no measurements take place on the qubit pairs and the two-qubit gate S13 is applied

to the top-layer physical qubits 1 and 3, we obtain a state that simulates the outcome of the
effective gate S1′2′

being applied to the logical qubits 1′ and 2′. These two examples represent
the DFS-encoded version of the basic building blocks BBB1 and BBB2 described in [7]. From
the above discussions, one can clearly see how similar the simulations on encoded cluster states
are to the original one-way model [2]. In fact with the addition of a third building block, acting
on an effective three-qubit cluster structure (whose demonstration in a DFS-encoded scenario
goes along the lines depicted above for BBB1 and BBB2) in a straightforward manner, the same
concatenation rules described in [7] can be applied here. The concatenation of the three BBBs
is sufficient to simulate any computational process.

A stabilizer-based approach is also possible in this model by using the correlation relations
G(a′)|φ〉C′ = (−1)κa′ |φ〉C′ where

G(a′) = Xa′
⊗

c′∈nghb(a′)∩C′
Zc′, Xa′ = (σzσx)a′

1
⊗(σzσx)a′

2
, Zc′ = σz,c′

1
⊗11c′

2
. (7)

With these tools, one can manipulate the relevant eigenvalue equations defining the cluster
resource and design the correct measurement pattern for any unitary simulation [2].

All the computational steps can be performed within the DFS, at no point during the
computation is the effective cluster state exposed to phase damping type decoherence. In the
case of an ideal cluster-resource being produced, this allows the noise effects to be cancelled
exactly. However in a real experiment, due to imperfections at the cluster generation stages,
we only obtain a state having non-unit overlap with the ideal resource |φ〉C′ . This results in an
effective resource that is partially residing outside the DFS and it is only this fraction that is
prone to environmental effects. The benefits of this proposal should now be clear: encoding in
a protected DFS provides us with a method of reducing greatly decoherence processes (ideally,
their complete cancellation) in such a way that avoids the use of a posteriori procedures for
correcting the resulting errors.

1.1. Noise-resilience characterization

Here we provide a general operative way to determine the effectiveness of the noise protection
provided by the realization of one-way QC within a DFS. This can be efficiently done by means
of a characterization of the effective map the logical state of a register undergoes in the presence
of a noisy computational process. This characterization requires the use of quantum process
tomography [13], whose main features we outline next.
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A dynamical map E , that we shall call a ‘channel’, acting on the density matrix of a quantum
system � is fully identified by the set of Kraus operators {K̂i} such that

� → E(�) =
∑

i

K̂i�K̂
†
i , (8)

with
∑

i K̂
†
i K̂i = 11. Channel characterization then reduces to the determination of the K̂i’s. By

choosing a complete set of orthogonal operators {K̂m} over which we expand K̂i = ∑
m eimK̂m

we have

E(�) =
∑
m,n

χmnK̂m�K̂†
n (9)

with the channel matrix χmn = ∑
i eime∗

in. This is a pragmatically very useful result as it shows
that it is sufficient to consider a fixed set of operators, whose knowledge is enough to characterize
a channel through the matrix χ. Thus, we need to find its matrix elements. In order to provide
them, we notice that the action of the channel over a generic element |n〉〈m| of a basis in the space
of the d × d matrices (and thus n, m = 0, . . . , d2 − 1), given by E(|n〉〈m|), can be determined
from a knowledge of the map E on the fixed set of states |n〉, |m〉, |+〉 = (1/

√
2)(|n〉 + |m〉) and∣∣+y

〉 = (1/
√

2)(|n〉 + i|m〉) as follows

E(|n〉〈m|) = E(|+〉〈+|) + iE(
∣∣+y

〉〈
+y

∣∣) − i + 1

2
[E(|n〉〈n|) + E(|m〉〈m|)]. (10)

Therefore, each �j = |n〉〈m| (with j = 1, . . . , d2) can be found completely via state tomography
of just four fixed states. It is clear that E(�j) = ∑

k λjk�k as {�k} form a basis, therefore from
the above discussion

E(�j) =
∑
m,n

K̂m�jK̂†
nχmn =

∑
m,n,k

βmn
jk �kχmn =

∑
k

λjk�k, (11)

where we have defined K̂m�jK̂†
n = ∑

k βmn
jk �k. Therefore we can write

λjk =
∑
m,n

βmn
jk χmn. (12)

The complex tensor βmn
jk is set once we make a choice for {K̂i} and the λjks are determined

from a knowledge of E(�j). By inverting equation (12), we can determine the channel matrix χ

completely and characterize the map. Let Û† be the operator diagonalizing the channel matrix
(which is always possible for a generic complex matrix, a null set with respect to the Lebesgue
measure). Then it is straightforward to prove that if Di are the elements of the diagonal matrix
Û†χÛ, then eim = √

DiÛmi so that

K̂i =
√

Di

∑
j

ÛjiK̂j. (13)

Important information can be extracted from this characterization of the channel for a logical
qubit transferred across a linear cluster. In particular, we can infer how close a logical output
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state E(�) will be on an average to a logical output qubit ρ when no noise is present. Let us
label the Schmidt-decomposed bipartite Bell state as |b〉 = (1/

√
d)

∑
i |i〉|i〉 and consider the

entanglement fidelity of the characterized channel [14]

Fe(E) = 〈b|(11⊗E)(|b〉〈b|)|b〉. (14)

This quantifies the resilience of a maximally entangled state to a unilateral action of the channel.
Fe(E) can easily be determined from the knowledge of the set {K̂i}. By using the channel fidelity
of entanglement, the average state fidelity resulting from the application of E can be determined
as [15]

F̄ = 1
3(2Fe(E) + 1). (15)

The theory of quantum process tomography can be applied to the specific experimental set-
up used for the implementation of DFS encoded one-way QC. The set-up dependence is
the method used for the state tomography required in order to find the set of output states
E(|n〉〈n|), E(|m〉〈m|), E(|+〉〈+|), E(|+y〉〈+y|) [12]. Here, we concentrate on a realization in a
condensed-matter system where these four state tomographies can be determined through photon-
scattering out of an optical lattice embodying the physical support for the computational register.
However, the technique is easily adapted to any other choice.

1.2. An application: information transfer through a linear cluster state

We now provide an example application of quantum process tomography to a case of interest
for our discussion. We concentrate on information flow across both a DFS and standard encoded
linear cluster state of three effective qubits. Here, in the standard encoded case, the effective
qubits correspond to the physical ones. We assume that each qubit (pair of qubits) in the standard
(DFS-encoded) cluster is affected by a phase damping (collective phase damping) decoherence
channel characterized by a strength  that, for the sake of simplicity, we assume to be same for
the entire qubit register. The parameter  can be thought of physically as the rate of damping,
or random scattering per unit time of the environment with the qubit systems. In equation (5)
this can be taken as the coupling strength of the environment to the qubit-pair system in the
final term.

We aim to transfer a quantum state from the first to the last effective qubit in a chain
of three elements, which from now on we label j = 1′, 2′, 3′. In the standard one-way model,
this implies the measurement of qubits 1′ and 2′ in the B1′(0) and B2′(0) bases. In order to fix
the ideas, in what follows we concentrate on the case where the measurements have outcomes
s0

1′ = s0
2′ = 0. This corresponds to the identity operation being carried out on a logical input

state. From the discussion in section 1, it is clear that the DFS encoding leaves the input state
|in〉 = cos θ|0〉 + eiφ cos θ|1〉 unaffected by the noise during the transfer across the chain. On the
other hand, a detailed calculation [16] reveals that in the standard encoded case, the state of the
logical output qubit residing on qubit 3′, i.e. after the performance of the protocol, in the presence
of the phase damping environment characterized by the strength , is written as

ρ3′ = e−(3t/2)−iφ

2
(et/2 cos φ − i sin φ) sin(2θ)|0〉3′〈1| + h.c. + 1

2 113′ +
e−t/2 cos(2θ)

2
σz,3′ . (16)
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Having this output state of the effective map undergone by the input logical state |in〉 and using
quantum process tomography, it is possible to compute the corresponding Kraus operators for
the channel using |in〉 ∈ {|0〉, |1〉, |+〉, ∣∣+y

〉}, giving

K̂1 = e−3τ/8

√
sinh

τ

4
cosh

τ

2
σx,

K̂2 = e−3τ/8

√
cosh

τ

4
cosh

τ

2
11,

K̂3 = e−3τ/8cosh
τ

4

√
2 sinh

τ

4
σz,

K̂4 = −ie−3τ/8sinh
τ

4

√
2 cosh

τ

4
σy. (17)

In these equations we took τ = t. It is straightforward to check that
∑

i K̂
†
i K̂i = 11 and that∑

i K̂i|in〉〈in|K̂†
i = ρ3′ .The evolution induced by the Kraus operators associated with the channel,

both in the DFS and standard case, is pictorially shown in figure 2 where the striking shielding
of the quantum information from the action of the environment is revealed. While the standard
evolution will soon collapse the state of the output qubit into a maximally mixed state 11/2, the
DFS encoded state is kept pure throughout the dynamics and for any value of the decoherence
parameter . In order to provide a full characterization of the channel, in panels (a) to (d) we
give the average state fidelity associated with each instance of the non-DFS channel.

2. Realization in optical lattices

The effective two-dimensional cluster state shown in figure 1(a) can be realized by using
alkali-metal atoms such as 87Rb trapped in a cubic three-dimensional optical lattice. The lattice
configuration is achieved with three slightly detuned pairs of counter-propagating laser beams
LX, LY and LZ, tuned between the D1 and D2 line with wavelength λ = 785 nm. The pairs
propagate along x̂, ŷ and ẑ respectively and are in a lin� lin configuration (linearly polarized with
electric fields forming an angle 2θi, i ∈ {x, y, z} [17]), providing lattice sites with periodicity
λ/2 for θi = 0, ∀i. We assume the lattice is initially loaded with one atom per site, which can
be achieved by making a Bose–Einstein condensate undergo a superfluid to Mott insulator (MI)
phase transition [18, 19].1 Each physical qubit at a lattice site can then be embodied by the
single-atom hyperfine states |h0〉 = |0〉 ≡ ∣∣F = 2, mf = 2

〉
and |h1〉 = |1〉 ≡ ∣∣F = 1, mf = 1

〉
with F and mf the total angular momentum of the atom and its projection along ẑ respectively.
These states can be coupled via a Raman transition [18], using an excited state |he〉 embodied
by an additional hyperfine state. Cold controlled collisions using moving trapping potentials
between adjacent atoms along the three spatial dimensions can be achieved by individually
changing the angles θi [12, 19]. The controlled collisions result in a phase shift applied to only
one of the joint states of adjacent atoms, |0〉a|1〉a+1 → −|0〉a|1〉a+1. The entangling operation

1 The atomic distribution can be fixed as in [20].
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Figure 2. Comparison between the DFS and standard evolution of a pure input
state transferred across a three-qubit (effective) cluster state with phase damping
affecting the individual physical qubits. From (a) to (d), t is taken to be
0.15, 0.5, 1 and 5 respectively. The outer blue ball shows the Bloch sphere of the
output logical qubit in the DFS case. The state is kept pure all along the evolution.
The inner ball corresponds to the standard case. An anisotropic shrinking of the
Bloch sphere, increasing with t, occurs in a way that quickly decoheres the
output state into a totally mixed state. Each dot on a sphere represents a physical
density matrix associated to a chosen set (θ, φ) in the input state.

S̃ac = |0〉a〈0|⊗σz,c + |1〉a〈1|⊗11c is produced and describes a conditional phase shift and is
equivalent to Sac with a σz operation on qubit c = (a + 1).

The initialization of the qubit register prior to any entanglement generation can be achieved
by applying Raman transitions to all lattice sites. These can be activated by standing-waves
of period λ/2 from two pairs of lasers L1 and L2, far blue-detuned by an amount � from the
transition |{h0, h1}〉 ↔ |he〉 and oriented along ẑ. All the sites will be located at the maximum-
intensity peaks [21] and with the atoms initially in |h0〉, a rotation of the qubits into the state |+〉
can be achieved as shown in figure 3(a), step 1. Next, a one-off setting of atoms on all layers (apart
from the top layer) to the state |0〉 can be achieved by either a blurred addressing technique [22],
interference methods [23] or microwave addressing [24], see figure 3(a), step 2. To generate
entanglement on the top layer only, angles θx and θy are varied so as to apply the operation
S̃C

= = ∏
a,c∈C|a,c∈γ= S̃ac. This creates a cluster state with a particular set of eigenvalues {κ}. The

non-zero values in this set can be accommodated by modifying the measurement pattern later, as
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Figure 3. (a) Steps taken to create the effective cluster state in an optical lattice
set-up. (b) A barrier technique (see footnote 2) to create a cluster state |φ〉C′

with the set κa = 0, ∀a in the central region. (c) Tightly focused laser beam with
Gaussian profile used for measurements of the atomic states via fluorescence.
(d) Level structure for projective measurements via fluorescence.

they will determine corresponding values in the final effective lattice2. We denote the resulting
cluster state on the top layer as |ψ〉 as shown in figure 3(a), step 3. It is possible to form standing
waves of period larger than λ/2 with the two pairs of lasers L1,2 used for the Raman transitions
[25]. Here, the two lasers in each pair are set at angles ±θ/2 to a given direction �v on the x–z

plane. This produces an intensity pattern in the direction perpendicular to �v on the x–z-plane
with period d = λ/[2 sin(θ/2)]. Thus we can rotate states on the even labelled layers to |+〉 via a
Hadamard rotation H , as shown in figure 3(a), step 4. Next, controlled collisions can be initiated
along ẑ by varying the angle θz. This applies the operation S̃C

‖ = ∏
a,b∈C|a,b∈γ‖ S̃ab creating an

entangled state |ψ′〉 on the top two layers. Due to the transformation |0〉a|+〉b → |0〉a|−〉b from
the controlled collisions of the atoms on odd layers a with those on even layers b, we produce
the structure shown in figure 3(a), step 5. In step 6, we apply the rotation H̃ := Hσx to all even
labelled layers using Raman transitions. Finally, the x–y lattice spacing is increased from λ/2
by adiabatically turning on a periodic potential with a larger lattice spacing [25], while turning
off the original laser pairs LX and LY .3

In order to understand how the DFS encoded cluster state |φ〉C′ is generated by the previous
steps on the top two layers of the lattice, one needs to consider the operations performed in each
step. First, we start with the state ⊗a,b∈C|+, 0〉ab in step 2. Then we apply S̃C

= on the top layer,
followed by H to the bottom layer. Finally S̃C

‖ is applied between the top and bottom layers and
H̃ to the bottom layer. The entire process is

∏
a,b∈C|a,b∈γ‖

(11a ⊗ H̃b)S̃
ab(11a⊗Hb) ×

∏
a,c∈C|a,c∈γ=

S̃ac
⊗

a,b∈C|a,b∈γ‖

|+, 0〉ab (18)

2 In step 3, a barrier of atoms in the state |0〉 could be created and a transformation |0〉a|+〉c → |0〉a|−〉c from the
controlled collisions of the barrier atoms with those within the barrier would produce a cluster state |φC〉.
3 This new enlarged lattice spacing is restricted by the validity of the Mott insulator regime [18].
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which can be reordered to give

∏
a,c∈C|a,c∈γ=

S̃ac


 ∏

a,b∈C|a,b∈γ‖

(11a⊗H̃b)S̃
ab

⊗
a,b∈C

|+, +〉ab


 . (19)

The square bracketed part is equivalent to ⊗a,b∈C|a,b∈γ‖ |ψ−〉ab. Using a barrier method on the top
layer (see footnote 2) allows

∏
a,c∈C|a,c∈γ‖ S̃ac to be formally equivalent to

∏
a,c∈C|a,c∈γ‖ Sac for the

central section of atoms. If this method is not used, then a different set {κ} must be taken into
account for the effective cluster state in the measurement pattern design. Comparing the above
steps with those described in section 1, one can easily see that they create the required effective
cluster state |φ〉C′ . An alternative method for setting up the required effective lattice could be the
use of a pattern-formation technique [26] to separate two layers of a three-dimensional lattice
from the rest by a gap of at least two layers. As the entanglement is generated via controlled
collisions, only the two separated layers will take part in the effective cluster state generation.
The benefit of the method outlined here is that all other layers are in the state |0〉, which is
important for the measurement stage we are going to discuss.

In order to perform the measurements, we assume that the x–y-plane has been expanded
such that a single two-qubit pair can be addressed individually in a top-down fashion by a
tightly focused laser beam with a Gaussian profile, as schematically shown in figure 3(c).4

This laser is tuned to a hyperfine transition |h1〉 → |h2〉 and applied for a pulse-time τp (see
figure 3(d)). The state |h2〉 is taken to have a large spontaneous-emission rate Ah2 such that,
within the time τp, many cycles of absorption-emission will occur (i.e. A−1

h2
� τp). We call

N|h1〉 the number of photons emitted by a single atom during τp when it is in the state |h1〉
and η′ as the ratio of the number of detected photons to emitted photons, due to non-ideal
quantum efficiency of the detectors that collect the scattered photons. Starting with the atom
in the state |ψ〉 = µ|h0〉 + ν|h1〉, if one or more photons are detected, the state of the atom
is inferred to be |h1〉. On the other hand if no photons are detected, the state of the atom
is |µ|2|h0〉〈h0| + |ν|2Pd

0 |h1〉〈h1|, where e−(1+η′/2)η′N|h1〉 � Pd
0 � (1 + 2η′/3)e−η′N|h1〉 [27]. Taking

|h2〉 from the P3/2 manifold with A−1
h2

= 2.62 × 10−8 [28] and a pulse-time τp = 2.62 × 10−6,
with η′ = 0.89 [29], we can effectively set Pd

0 = 0.
Let us consider the measurement laser addressing the two atoms embodying qubits 1 and

2 (effective qubit 1′) as shown in figure 1(b) in the top-down fashion described above. Before
the laser is applied, we take an encoded state |ψ〉 = µ|0〉 + ν|1〉 as being prepared on the first
effective qubit and assume a pair of tightly focused lasers L1 and L2 with Gaussian profiles
address the lattice along the x- and y-axes respectively between the top two layers causing the
states of qubits 1 and 2 to be subject to the Hadamard gate H via a Raman transition. More
formally, the operation H1⊗H2⊗113⊗114 is applied to the qubits. This produces the state

|φ〉1′2′ = (µ|+〉|−〉|01〉 − µ|+〉|−〉|10〉 − ν|−〉|+〉|01〉 − ν|−〉|+〉|10〉)1234. (20)

The measurement laser is then applied to qubits 1 and 2 projecting the atomic states into the σz

eigenbasis via the fluorescence technique described above. Together with the Hadamard rotations,
this carries out a σx projective measurement. A degeneracy in the outcomes exists because both

4 Position dependent energy shifts from focused lasers and an addressing microwave laser is also an option [24].
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Table 1. Outcomes from a laser measurement of qubits 1 and 2 in figure 1(b).

Pair 1′ Pair 2′ Logical U�

|00〉12
1√
2
[(µ − ν)|01〉 − (µ + ν)|10〉]34 σxH |ψ〉 σx

|01〉12 − 1√
2
[(µ + ν)|01〉 − (µ − ν)|10〉]34 H |ψ〉 11

|10〉12
1√
2
[(µ + ν)|01〉 − (µ − ν)|10〉]34 H |ψ〉 11

|11〉12 − 1√
2
[(µ − ν)|01〉 − (µ + ν)|10〉]34 σxH |ψ〉 σx

the states |01〉 and |10〉 will produce the same statistics of detected photons. However as it can
be seen in table 1, they apply the same rotations to the logical state upon propagation across to
effective qubit 2′. The byproduct operator U� which is used to cancel the probabilistic nature
of state transfer in one-way QC can therefore be found from a photon-number-resolving
detector [29].

In order to carry out an arbitrary measurement along the equatorial plane of the Bloch
sphere, one must implement an additional Raman transition prior to the Hadamard rotations.
This transition uses a tightly focused laser beam L1 in a top–down fashion along the z-axis
addressing qubits 1 and 2 and all the qubits below them in that column. This laser together with
a paired laser field L2, which has intensity maxima on every odd layer, rotates qubit 1 and all
qubits below it on odd layers by Rα

z . However, qubits on odd layers below qubit 1 are unaffected
as they are in the state |0〉. Alternative methods for the above processes could be given by an
interference approach [23] or microwave addressing [24].

3. Remarks

In this work we have provided a proposal for one-way QC carried out within a DFS of
a supporting quantum system. Our model integrates, for the first time, one of the most
promising models for QC and an effective strategy for information protection. We have also
described a possible optical lattice set-up as an example to show how this may be done
in a physically realizable setting. The resilience to noise induced by the encoding into a
DFS can be quantified by means of quantum process tomography as we have shown. So
far, only phase damping errors have been considered in our scheme. However it is possible
to extend the approach to the construction of a DFS offering protection from all types of
environmental error resulting from equation (5). In figure 4 we sketch the steps for the
achievement of full protection. The scheme is inspired by recent work [30] to which we refer
for further details. The encoding is given by {|0E〉1′ := (1/

√
2)(|10〉 − |01〉)12 |0〉3 , |1E〉1′ :=

(2/
√

6)|0〉1(|10〉 − |01〉)23 + (1/
√

6)(|10〉 − |01〉)12|0〉3}, where now three entangled physical
qubits (instead of two) embody a single effective cluster qubit. An important difference here
with respect to the phase damping DFS is that now encoding (see figure 4(b)) and decoding
stages (see figure 4(c)) are essential for providing the protection and recovery of the cluster
state. It must be stressed that the description we give here is not the most economical or
optimal one. Development of the scheme shown in figure 4, with a minimal resource perspective
is needed and is the topic of our current study. This could represent a powerful and novel
technique for the protection of one-way QC performed in systems exposed to environmental
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Figure 4. DFS linear cluster state protected from all system-environment
coupling terms of the form given in equation (5). (a) Sequence of operations
for transferring an arbitrary qubit input state |in〉. First, the standard cluster state
is prepared, then the qubits are encoded (see (b)). The only time at which the
cluster state is not protected is when the measurements are performed. However,
if the measurement stages (which include the decoding stage (c)) are carried out
in negligible time (with respect to the rate of decoherence), then the remaining
cluster after each measurement is never exposed to the environment. (b) Encoding
stage, where φ = 3π/4, θ1 = −cos−1(

√
2/3) and θ2 = −π/4 (c) decoding stage,

where φ = −3π/4, θ1 = cos−1(
√

2/3) and θ2 = π/4. In (i), qubit 3 is measured in
the {|0〉, |1〉} basis and if |0〉3 is obtained, then the circuit (ii) must be performed.
Qubits 2 and 3 can be discarded after the decoding stage.

effects. It would also represent an important simplification with respect to current proposals
for noise-resilient measurement-based QC.
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