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Abstract. A general procedure is presented which permits the form of an
extended spin Hamiltonian to be established for a given magnetic solid and
the magnitude of its terms to be evaluated from spin polarized, Hartree—Fock
or density functional calculations carried out for periodic models. The
computational strategy makes use of a general mapping between the energy
of pertinent broken-symmetry solutions and the diagonal terms of the spin
Hamiltonian in a local representation. From this mapping it is possible to
determine not only the amplitude of the well-known two-body magnetic coupling
constants between near-neighbor sites, but also the amplitudes of four-body
cyclic exchange terms. A scrutiny of the on-site spin densities provides additional
information and control of the many broken-symmetry solutions which can be
found. The procedure is applied to the,CaQ,, S,CuG,F,, SLCuO,Cl, and
CaCuO,Cl; square lattices and the Srldy ladder compound. It is shown that

a proper description of the magnetic structure of these compounds requires that
two- and four-body terms are explicitly included in the spin Hamiltonian. The
implications for the interpretation of recent experiments are discussed.
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1. Introduction

The discovery of the anomalous properties of highsuperconducting cuprates (HTCSs) in

the late eighties has triggered a considerable interest in the crystal and electronic structure of
these compounds from both experimental and theoretical points of jey6]. An enormous
research effort on ceramic materials, mostly based on copper oxides, has been carried out
continuously to try to improve the properties of known structures and synthetic pathways and
has resulted in the synthesis of a wide variety of cuprates. The impressive richness of low-
dimensional magnetic behavior of the different copper compounds can be, to a large extent,
traced back to the stacking of the distorted Guxtahedra (or CuxXpyramidal or Cu planar

units) in the lattice4, 6]. Most of the cuprate based materials are formed by almost independent
CuQy units with distant apical ligands to complete the strongly distorted Zg@r CuQ,X

units and, hence, the structure is dominated by the link betweern, Gni®s. Depending on

the nature of the counter ions and on the number of links between the different uitS,
different structures can be formed ranging from the typical lamellar two-dimensional (2D)
structure of the HTCSs to many lower dimensional structures by different combinations of edge-
sharing and corner-sharing Cy@laquettes (or Cufunits) that can give rise to spin ladders
(e.9. Sk_1Cu,0Oy,_1 series withn > 2 [7]-[9]), zigzag spin chains (e.g. SrCu@10]) and
quasi-1D systems (e.g..&uO, (A = Ca,Sr) [L1, 12] or Li,Cu0, [13]) formed by edge-sharing

CuQy units.

The electronic ground state of this kind of materials is usually described by the open
shell nature of the Cii ions arranged in the CuQunits in which the C(Bd®) atomic
configuration gives rise to a,t. type hole with the lobes pointing towards the O ions.
The resulting Cu—O-Cu pathways range fron®0® to 180 and they are responsible for
the rich variety of low-dimensional magnetic structures dominated by moderate ferromagnetic
(FM) to strong antiferromagnetic (AFM) interactions. From the theoretical point of view, these
systems are strongly correlated in nature, making standard band theory techniques based on
density functional theory (DFT) unable to accurately describe either their valence or low energy
spectrum 14]. However, it has been shown that hybrid exchange-correlation functionals can
provide reliable descriptions of strongly correlated transition metal magnetic systeshar(l
references therein).
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Most of the HTCS materials have a lamellar structure in which strong AFM interactions
take place along 180Cu—O—Cu bonds in edge sharing L4 plaquettes leading to a 2D
network of effective spir§= 1/2 particles. These strong magnetic interactions observed in the
HTCS are thought to be fundamental ingredients of the Aigbuperconductivity microscopic
mechanism$, 16]. Since these compounds may be regarded as effeStivd /2 spin lattices,
their low energy spectrum and collective properties are assumed to be governed by a simplified
Heisenberg Hamiltonian as in equation (1)

\ foa 1
H=Y"J (S'SI_Z)’ 1)
(i.j)

which only accounts for the magnetic couplidg between nearest-neighbor (NN) centers
andj. This is in agreement with the widely accepted general picture for HTC superconductivity
involving a ‘Heisenberg sea’ where holes or electrons are introduced by doping the perfect
structures. However, it has been claimed that to fully understand the magnetic excitations,
infrared and neutron scattering spectra of 20]H{23] and spin ladder cuprate4, 25| it

is necessary to extend the spin Hamiltonian as in equation (2)

HzZJu (3-:31—%)
o3 ] (58) (58)+(6-8) (5-8) - (5-8) (65-8) - 2]

+..., (2)

In this expression the constantgiland 116 have been introduced to define the zero of energy
as that of the FM solution. In this spin model, the signs and amplitudes of the local intersite
magnetic interactions govern the collective properties of a spin lattice. They appear as the basic
ingredients of the effective spin Hamiltonian which in full generality involves not only the
two-body exchangd;j but also other interactions, such as those represented by the four-body
cyclic term Jsing, Or even higher-order terms.

The largest two-body couplings are expected to occur between NN sites although next-NN
(NNN) interactions may be non-negligible or even of the same order of magnitude (cf GuGeO
system P6, 27]). Regarding the four-body operator terms, they may be important yO&u
plaguettes since their origin lies in the cyclic circulation of electrons around the ring. Their
importance and that of analogous cyclic six-body effects have been pointed out in other types
of half-filled band systems such as thhesystem of conjugated organic molecul@8§][ Similar
four-body terms are crucial to describe the ground state propertigsedp].

The direct determination of the amplitude of the many-body terms of an extended spin
Hamiltonian such as the one in equati@) from experiment is, in general, impossible. Spin
ladders with a variety of intersite distances represent an especially difficult case. In general, the
experimental determination of the coupling constants is based on a series of hypotheses about
the negligibility of interactions between ‘remote’ sites. From these hypotheses, a given spin
model is assumed and validated only from a numerical fit of the thermodynamic or spectral
properties. It is customary to consider NN interactions only although this may be an excessive
simplification and eventually can lead to contradictory estimates of the dominant couplings.
This is precisely the case of the cuprate spin ladders for which conflicting valueshfii€ieq
ratios ranging from 0.5 to 1.0 were proposed. Interactions involving sites at a longer distance or
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involving various sites had to be invoked to rationalize the different experimental results arising
from different techniques. One may think for instance in inter-ladder interactions, diagonal
terms in the plaquettes or four-body cyclic effects. Indeed, several theoretical studies seem to
consistently indicate that four-body termd;{;) are crucial P1]-[24]. Here, it is important

to point out that very recently Toadet al [30] provided strong experimental evidence of

the importance of the)ing term in LaCuQy with Jing =~ 0.5 J. This value is comparable to

the pairing energies and strongly suggests that the resulting circulating currents could have an
important role in the mechanism of superconductivity. This is in contrast with previous estimates
of Jing for 2D and spin ladder cuprates, obtained either from indirect measurements or from
numerical simulations with an extended Heisenberg model, which propose substantially smaller
amplitudes withJ,ing ~ 0.3 J [19, 21, 22, 24, 31]. The origin of these discrepancies relies on the
choice made by different authors for the magnitude of the other coupling constants in the spin
Hamiltonian of equationd). Hence, thel;,y term as evaluated by Toadet al relies on NN

and NNN coupling constants af = 1118 meV andJy = —11.4 meV, respectively, extracted

from one of the various fittings of the magnon spectrid]. However, it is important to

point out that this value fod is smaller than another experimental estimate of £&meV
obtained with a NN Heisenberg Hamiltonia®?]. Moreover, one should note that the present
estimate of a FMJy differs from previous theoretical prediction83 and from fitting to
experimental measurements on materials with similar exchange gdihidwever, one should

also recognize that the theoretical study by Anmdtal [33], takes only into account two-
electron processes to evaluate tljsterm while, as clearly explained by Toadet al [30]

and references therein, the FM charactedgtrises precisely from three-electron exchange
processes around a plaquette, which are of the same order of magnitude as four-electron
exchange processes around the same plagquette and which are not taken into ac88uBd]in [

The discussion above illustrates the difficulties faced by experimentalists when attempting to
extract the magnitude of the important terms and the need for independent accurate and unbiased
theoretical predictions. For the Sr&d ladder compound a similar situation is encountered; the
recent Raman response experiments by Schetiatsuggest, g = 140 meV,Jing/ Jung= 0.2

and Jeg/ Jung= 1.5 [39], in contrast with previous work indicating a more isotropic behavior
between rungs and leg3q.

From the preceding discussion it is clear that an accurate prediction of the various magnetic
interactions entering in the spin Hamiltonian as in equati®ng not only highly desirable to
understand the ground state properties of this kind of systems but urgently needed. One could,
for instance, start from some approximate electronic Hamiltonian such as a single-band model
involving only the magnetic centers or a two-band model involving also the electrons of the
bridging ligands. However, this is likely to introduce even more problems since it is difficult
to assess the accuracy of such a multiparametric approach. An alternative and straightforward
way to an unbiased estimate is the direct evaluation of the amplitude of the relevant magnetic
interactions on a realistic model system treating all the electrons in a large enough basis set.
If practicable, this pragmatic approach will present the advantage of providing an independent,
unbiased and consistent prediction of the amplitude of relevant exchange parameters that can
solve the difficulties encountered by the usual fitting techniques used by experimentalists.

Unfortunately, the direct calculation of the important terms is not a simple task since it
also requires the use of a model for the solid. In a first approach, one may neglect translational
symmetry and define a properly embedded finite cluster, a fragment of the periodic lattice with
two, three or four magnetic sites with their coordination ligands and perform thebésitio
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(using the exact Hamiltonian) explicitly correlated calculations. This strategy, in particular when
using the so-called difference dedicated configuration interaction (DDCI), has provided very
consistent and reliable evaluations of the two-body interactions in a large series of perovskites,
oxides and 2D cuprate8T]-[41]. However, this approach rapidly faces computational limits
due to the need for very large embedded cluster models. This is especially the case when
attempting to extract four-body terms in ladder compourdd@{45]. Alternatively, one may
exploit the periodic symmetry of the crystal but in this case explicitly correlated calculations
are not feasible and one must rely on spin-polarized mean-field type approaches. In such a case,
only the FM solution may be considered as a valid approximation of an eigenstate of the problem
with properly defined spin quantum numbed$,[48]. The solutions with lower values of the
square of the total spin operat8f (lower magnetization) cannot be properly treated. Fixing

a priori different localized periodic spin distributions one may obtain a set of distinct self-
consistent solutions of different energies. However, these solutions are not eigenfunctions of the
S? operator; they are (spin) broken-symmetry solutions. We will show that assigning the energy
of the broken-symmetry solutions to the expectation value of the corresponding spin distribution
of a Heisenberg Hamiltonian enables one to obtain estimates of the magnetic coupling constants.
Such approaches have been rather extensively used in the field of molecular magnetism and may
also be employed on embedded clusters to extract the two-body t#48m]. The mean-field
calculations may use the exact Hamiltonian, and the corresponding information comes either
from unrestricted broken-symmetry Hartree—Fock (UHF) solutions or from the similar ones
obtained by means of DFT approaches. In the first case, the resulting evaluations of the AFM
couplings are severely underestimatéd][ [50]-[52]. In the second one, the introduction of
electron correlation effects improves the result but the numerical values are highly sensitive to
the chosen exchange-correlation potentials. Notice that the local density approximation (LDA)
and the different generalized gradient approximations (GGA) in DFT frequently lead to metallic
solutions, closed shell in naturgq], which miss the main physical features of the low energy
states and cannot provide any information about the magnetic couplings. Actually, the best
results are obtained with hybrid functionals initially proposed by Be&& $4], for which

a percentage of Fock exchange is mixed with a given DFT exchange-correlation functional.
However, the results are again strongly dependent on the amount of Fock exchange included
in the exchange potentiab}, 56]. Previous calculations have shown that the best percentage,

at least for NiO L5] and cupratesq7, 58], is around 35% Fock. Here, it is worth pointing

out that hybrid DFT calculations need to include the non-local Fock contribution which can be
accurately computed when the total density is expressed in terms of Gaussian type orbitals
(GTO) basis sets. Recently, however, it has been shown that a reasonable accuracy can be
reached employing plane waves as wgf|[

In the present work, we report a generalization of the periodic symmetry-broken (UHF or
DFT) approach which permits one to obtain not only the various NN and NNN most important
two-body terms, as initially done for MKM = Cu, Ni, Co, Fe, Mn) compound$2, 60], but
to predict higher-order terms such as the four-body cyclic terms appearing in equatida (
this end broken-symmetry hybrid DF computations are carried out for @U@, SLCuO,F,
SrL,CuG,Cl, and CaCuO,Cl, 2D square lattices and the Sr{y two-leg spin ladder. A general
theoretical framework is presented that permits one to extract accurate values for the many-body
terms of extended spin Hamiltonians from these periodic first-principle calculations. In addition,
it will be shown that these periodic calculations confirm the importance of the FM interladder
exchange and of the four-body intra-plaquette operator.
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This paper is organized as follows: in secti&rwe develop the relevant methodological
aspects to extract the amplitude of the parameters of a general spin Hamiltonian from periodic
all-electron calculations of the electronic structure of the systems. First, the logics leading to a
mapping between spin eigenfunctions and symmetry-broken solutions is developed in a general
scheme starting from the Hubbard model for a plaquette with few remarks on the calculated
solutions. SectioB describes the computational details of the calculations. The results obtained
for the planar cuprates and the ladder system are reported in séetrat) finally, in sectior,
we present the conclusions of this investigation and further extensions of the theory.

2. Theoretical background and methodology

Let us assume that one may calculate a mean field single determinant description of the FM
state in a given unit cell. This wavefunction is usually expressed in terms of symmetry-adapted
(delocalized) Bloch functions. An appropriate localizing transformation of the singly occupied
functions will define atom-centered Wannier magnetic orbitéls $2]. The FM solution for

the system may be written as

®s,max = |COre-abc---nj, (3)

where core stands for the closed-shell part of the wavefunctiomabgdc, .., n represent the
magnetic orbitals localized on the different magnetic centers. In this picture there is one electron
per site and one can refer to the corresponding determinant as a valence bond (VB) neutral form
(see also the definition ir6B]). In the following, the expectation energ® s; max| H |Pszmax) =

Eo will be taken as energy origirey = 0). Then electrons im orbitals define a half-filled band
problem. Each of the possible distributions of the magnetic electrons in the magnetic orbitals
defines a determinant and the set of these determinants spans an orthogonal VB basis set. The
matrix elements of the exact Hamiltonian in this basis define a valence configuration interaction
matrix. In order to understand the physical effects arising from the interaction betweeartke

B (or spin up and spin down) electrons, we shall consider first a finite set of neighbor sites, the
periodicity being introduced in a subsequent step. One must first recall that the lowest energy
determinants are the neutral ones (in the VB sense), for which any magnetic orbital is singly
occupied. The ionic determinants set, presenting positively and negatively charged sites, are of
higher energy. Let us consider a given VB neutral determinant as

: (4)
built with the local magnetic orbitals of the FM solution and where the bars indicate, as usual,
beta spin electrons (hendds synonymous offe andi of i 8).

The expectation energy (within the exact non relativistic Hamiltonian) of such a
determinant is given by equatioB)(

(@ [H|®)—Eo= ) Y K, (5)

iea(l) jep(l)

wherea (1) and (1) are the set of spin orbitals of and g spin in ®, andi«a and jj3 the
corresponding spin orbitals. This expectation energy is higher than tiay,@f. Since it misses
the direct (positive) exchange integrals betweendrend 8 spin orbitals. It is reasonable to
assume that the nonzeky; integrals concern NN and NNN site pairs only. These integrals

®, = |core-a---hijkim---n
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have been estimated in cupratég]f[45], [57, 64, 65] and play an important role in defining
the final value of the magnetic coupling constant. However, for the perturbative development
given below we consider that the difference among the diffegnintegrals is small enough to
be neglected in front of the excitation energies to the VB ionic determinant and a common zero-
order energ\Eq will be kept for the VB neutral determinants in the perturbative developments.
The strategy will now consist of establishing a relation between the diagonal elements
of the Heisenberg Hamiltonian and the energies of symmetry-broken UHF solutions. This is
accomplished by means of suitable perturbation expansions.
The Heisenberg Hamiltonian is obtained from the exact one by considering the space of all
VB determinantsp, as a model spac&§] in the frame of the effective Hamiltonian theory of
Bloch or des Cloizeauxd[7, 68]. Let us callP the projector on this subspace of dimendibn

P="1®) (@i, ()

I1=1,N
the effective Hamiltoniard ¢ is defined by théN eigen equations
He"|PWy) = En/P¥r), m=1,N (7)
where the vectorBl,,) are theN eigenvectors ofi

H|Wp) =En ¥, m=1N, (8)

having the largest projections on the model space E&nthe corresponding eigenvalues. Since
all VB neutral determinants have the same spatial part, the effective Hamiltonian may be written
in terms of spin operators and, in principle, it will involve many-spin operators.

Due to the large energy gap between the neutral and VB ionic determinants the effective
Hamiltonian may be approached through the quasi-degenerate perturbation theory (QDPT). Let
us consider the diagonal matrix element associated with a deterndnamb the second-order

() |A|®.) (2. A @) 22

=Ep+ Kij——1], (9
where we have considered that the direct exchange integyaése small in front of the energy
differences between the neutral and the VB ionic configurations in the evaluation of the second-
order corrections. The determinad#{ interacts with all the determinants obtained by charge
transfers betwees andg sites leading to ionic determinants of the form

o

<I>.>=<<I>.‘H‘<I>.>+ 3

acionic

q)i"j—l :a}’a;@.; <<I)i+j‘| ‘I:"@|>:t”’ (10)
and

(ﬁi*jﬂ :qja]@h <¢i*j+l

ﬁ‘«r.>=tij. (11)

The amplitude of the hopping integtgl rapidly decreases with the distance between siesl
j. Comparing(®, |Hcr|®,) with equation ) one obtains

3 —2fk, A
Jj =2 Kj THA (12)
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which is a rather well-known relation. Let us suppose now that one tries to optimize the energy
of a symmetry-broken determinaft, obtained from®, by relaxing the spin orbitals. To the
first-order this optimization is equivalent to a Cl betwdgnand the singly excited determinants
leading to

t..
1
V) =@ — Z Ci(j) (®i+j-1 +Bi-j+ ) = @ —.Z ﬁ (®i+j-1 +®i-j+1), (13)
i, jp la, B
the spinorbital rotations
. i .
=i — — 14
2yl 14)
iB
. tij .
i=i-2 g (15)
i
giving delocalization tails to the spin orbital on sité on to the orbitals of the neighbor sites

occupied byg spin electrons (or equivalentl;z-,(jl) =1t;/U). From ¥, one can define a UHF
single determinant

®| = [core-a ---hi'jKI'm ... 1|, (16)
which only differs from¥, by second-order effects
® ~ ¥ +0(2 (a7)

and its energy only differs from the second-order corrected energy associated viagtthird-
order terms

. . 2t2
<<I>/I H‘<I>’|>%<<I>|‘H)<I>|>—ZU”+O(3). (18)
i, jB
Hence,
EPF = (® | H"|®)+0@) ~Eo— 3 X Jy. (19)
i, jB

Equation (9) relates the calculated energy of thebroken symmetry solution for the exact
Hamiltonian, relative to the FM state, to the corresponding energy expression of the Heisenberg
Hamiltonian in equationl) and it provides a first useful relationship to extract the relevant two-
body magnetic coupling constants from the different broken-symmetry solutions. Since this
relation is also valid whe®, represents a periodic spin distribution, equatid®) provides a
practical way to extract these effective parameters from periodic calculations. This is precisely
the procedure followed in previous works? 60]. However, it is possible to use the perturbation
developments above to generalize the procedure in such a way that extraction of higher-order
terms in the spin Hamiltonian as in equati@ylfecomes straightforward. Before continuing the
development a caveat is necessary since the Wannier functions as in eqBatio@] refer to

the whole crystal. In practice, one has to limit the number of spin distributions to a finite number
which is given by all possible spin permutations in a large enough supercell. Convergence of
the results with respect to the model chosen can be indeed verified by extending the supercell.
However, since the magnetic coupling constants are local param&@rstte results are

not expected to vary significantly upon enlarging the supercell used to extract the relevant
parameters. Therefore, starting franmon equivalent spin distributior®,, ®;, ..., &y, one

may, in principle, determine quantitiesJ;; and, of course, discriminate the leading terms from
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the negligible ones. As will be shown later on, it may happen that several spin distributions lead
to identical relationships between the calculated broken-symmetry energies and theJset of
values. However, if one performs a large enough number of broken-symmetry calculations it
will be always possible to obtain a sufficiently large numiyeof independent equations from
different guesses, and since one only looksrfer m spin couplings, it becomes also possible

to evaluate the consistence of the calculated set of magnetic coupling constants. The procedure
is not only general but allows an auto check of the obtained results.

In the forthcoming discussion, we will show how to obtain the higher order terms by
exploiting the perturbation development introduced above. However, before proceeding with
such a generalization, it is convenient to consider the on-site spin densities. In principle, an
approximate estimation of the spin density on site spin mean-field solutioh, p; (1), can
be obtained from the first-order corrected wavefunction. Notice, however, that for simplicity
we are heretofore usingto denote®,. Let us recall that this perturbation treatment—using
the Hubbard model Hamiltonian as zero-order Hamiltonian—gives, in an approximate way,
the effect of relaxing the orbitals from the FM reference to the self consistent orbitals for the
particular broken symmetiysolution, assuming that the relaxation comes from up to first-order
mixing neutral and VB singly ionic determinants. It can be shown ph@t) is thence given by

t \2
pi(h) :pi(sz,max) _ZZ (j) . (20)
j

The second term in equatioB0Q) reflects the impact of the VB singly ionic determinants in
the final spin density obtained with the relaxed orbitals. If the larg@shplitudes concern NN
pairs of sites and they are of equal or of similar magnitude, one may expect that

pi(l) :Pi(Sz,max) _)\nll\ij;a (21)

where s = 2(t;; /U)? and n'NNﬂ is the number of8 spin NN atoms of a giver spin in the
distributionl. In some lattices the FM solution, which has been introduced above as the starting
vector defining the set of orthogonal magnetic orbitals, may have a very high energy, due to
the spatial vicinity of the magnetic centers. In such a case the energy minimization of the FM
determinant may produce irrelevant magnetic orbitals, with exceedingly large delocalization
on the ligands. The magnetic orbitals which are appropriate for the description of the low-
energy states keep a stronger metal character. A signature of this problem is observed when the
atomic spin densities at the highly frustrated, high-energy unrestricted solutions no longer obey
equation 21). Therefore, the obedience to this equation may be used as a criterion to retain the
guess distributionh as a valid member of the set. In practice, when the FM solution becomes
exceedingly high, it is convenient to express all energy differences with respect to the lowest
AF solution.

The mapping procedure above described can be extended to provide information
concerning the high-order terms of the spin Hamiltonian in equa#ipsuch as four-body cyclic
operator amplitudes. In a rigorous QDPT development starting from the Hubbard Hamiltonian
and using the set of VB neutral and singly ionic forms as model and outer spaces, respectively,
one may find that these four-body spin operators appear at fourth-order and imply a cyclic
circulation of the electrons around a plagquette. Such a circulation of the electrons is impossible
in a plaquette with all spins paralle{S,) = £2), but it generates off-diagonal and diagonal
corrections when the tot&, value for the plaquette is O atl. It has been showr2B, 42] that
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for a plaquette witts, = +1 the fourth-order diagonal corrections due to the cyclic circulation
of electrons is

A T 4t tikta
(IJkl!H(4)‘Ijk|>:—%=—4gijkl- (22)
It reflects processes of two types, involving the major spin electrons
[ k
X X X X X X X X
-
—
o) X x[o X xlo X x[o 0 X
{ 4
P, o,
or the minor spin electrons
[ k
X X X X ¥ [o] P x|0 X X X
-
—
[s) X olx X X [§) X
{ 4
P, @,

through clockwise or anticlockwise movements; hence the factor 4 in equahnt(is now
possible to show that the variational symmetry-broken solutignassociated t@, effectively
incorporate these effects. To the second-order the oibitahy be expressed as

i"=i+c ]+l +cPk (23)
with Ci(jl) =1 /U and
t !
@ _ Dk (@ lk
Gk =G L’J—+c” U’ (24)
as represented by the corresponding diagrams, wibgerg taken as the vacuum state

o = Cik
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and the unrestricted self consistent solution involves the fourth-order diagrams
l J
kP lio o+ kb i — egzi (1)
j [

which correspond to the minor spin circulation appearing in the last scheme of the plaquette. A
similar identification can be performed for the major spin electron movements,
K=k+cij+cT+cdi (25)

and the corresponding wavefunction diagrams

Cal
~

k
= S =Cki

1 ~.|

and the corresponding fourth-order energy diagrams

[

T

itk o+ T e — e
! J

For aS, = 0 plaquette it has been shown from a QDPT expansi@h that the fourth-order
corrections due to the cyclic circulations of spins result in a diagonal energy shift equal to

_ 8ij Lkt

(jKITACT @i kD) = (i TkT AT kD) = Uz = "8G (26)
It is also possible to identify term by term the contributions such as
[ k
X X X o[x x|o X x|o X X X
-
—
0 0 §) 0 o 0 o}
I 7
®, o,
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which involves the circulation of the spin electrons with a fourth-order correction included in
the variational treatment leading & .

L[Yi Lfya

% — eg;fio(r)

The factor two with respect to th® = 1 case comes from the time-ordering degree of freedom
between the second and third interactions and the sign change is due to the hole—hole interaction.
For the spin alternant distributianjkl in the plaquette the mechanisms involve doubly

ionic intermediate states fojkl as

x|o o X 0
-
[ k
X o X 0 x|o X o X
-
(I)[
——
0 X olx oX X X 0
I I
A
@,
0 OIX 0 X

There are 46 of such processes, each of them contributirlgtlpyklt“/zue’ = gijxi/2. The
corresponding energy diagrams are of the type

and they involve the components of the UHF function on the doubly ionic determinants of the
form jjll as

~ (1) @) (D)
D ~® - Y C (aj+a¢I>| +ai_+a]<1>.)+ Y. clad (@aa‘a®) (27)
(iee, | B) ia, jB.ka,lB
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obtained at the second-order through the diagrams

- I
)

Hence, the cyclic contributions to the energies of the symmetry-broken single determinantal
solutions are at the fourth-order at least, identical to the cyclic QDPT diagonal corrections
(®,|He"@|®,). It has been shown by some of u2] 43, 45] that these corrections may be
expressed in terms of four-spin operators (equation 2) as

ikt (@] éziézjézkézl + éziézlézjézk_ éziézkézjézl — = |®)) (28)
and, hence, the four-body corrections can be identified as the diagonal terms of the biquadratic

operator with amplitudes given by the average values of equak)ni( the following section
examples of the applications of this general formula will be given and discussed in detail.

3. Computational details

The calculation of the energy of each relevant magnetic solution has been carried out at the
experimental geomettyand using different exchange-correlation potentials as implemented

in the CRYSTALO3 code 13]. These are the well known B3LYP hybrid method4| 75|

and the Fock-35 scheme proposed by Moreiral to reach a balanced description of many
electronic structure properties of NiQ4], which gives satisfactory values of NN magnetic
coupling constants in molecular magnets and solid state magnetic cupi@tég|[ Crystalline

orbitals are built as linear combinations of Bloch functions which in turn are built from atomic
basis sets (AOs) optimized for the crystal environment. The AOs are contracted real spherical
harmonic Gaussian type functions (GTFs). Extended all-electron basis sets have been used
to describe the Cu and O atoms whereas effective core pseudopotentials have been used to
represent inner electrons of the remaining ions. These standard all-electron and pseudopotential
basis sets have been previously used by Moreira and Dadvgsr§] and Suet al [79]. They
correspond to the optimized basis sets for the corresponding ions and the outer isolated sp or sp
and d exponents are re-optimized for a given environment. Also, the basis sets can be obtained
from the CRYSTAL site (http://www.chimifm.unito.it/). Strict convergence criteria and a set of
105 points in the irreducible Brillouin zone have been used to ensure a numerical accuracy of
10~" Hartree per formula unit.

4 For SpCuQ,Cl, and CaCuQ,Cl, the cell parameters used in the calculations are those reported by Miller
et al [69] and Argyriou et al [70], respectively. For SICUG,F, a tetragonal symmetrized cell derived from
orthorhombic SYICuQ,F, 57 reported by Al-Mamouriet al [71] has been considered. Similarly, a tetragonal
symmetrized cell derived from the orthorhombic structure reported by Longo and R&&dbr[La,CuOy has
been considered.
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Figure 1. Schematic representation of the magnetic solutions calculated to
extractd, Jy and Jiing in the 2D layered cuprates.

4. Results

In this section, we will discuss the application of the methodology and general procedure
described above to the case of 2D square lattices which are common to many cuprates which
may become superconducting under doping and to the case of ladder compounds which have a
more complex structure.

4.1. Spin Hamiltonian parameters for the 2D square lattices

For the cuprate planar square lattices which may be seen as constructed of adjacent plaquettes,
three interactions are expected to be important. Thesd aetween NN,Jy; between NNN
through the main diagonal of a plaquette, and, finally,, which is the four-body ring
interaction in the plaquette.

The amplitudes ofJ, Jy and Jing have been estimated from the energy differences
corresponding to the magnetic solutions schematically shown in fig@ee of these solutions
corresponds to a FM alignment of all magnetic moments whereas the other three are symmetry-
broken AFM arrangements. Table reports the relationship between the above-described
effective parameters and the calculated energy for UHF and each of the two DF methods.
These energy differences univocally determine the amplitudes of the three parameters since,
in this case, the corresponding set of equations is linearly independent. The calculated values
of J, Jy and Jiing for 2D cuprates are reported in tatite Concerning the leading NN spin
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Table 1. Energy expressions per Cu atom (relative to FM phase) for the magnetic
solutions in figurel used to extract = J;; (NN), Jy = J; (NNN) and Jig in

the 2D LgCuQ,, SLCuG,F,, SLCuO,Cl, and CaCuQ,Cl, layered cuprates.

The three entries for each magnetic phase show the corresponding calculated
values (in meV) for the Fock-35, (B3LYP), and [UHF] potentials.

Phase Energy expression JGu0, SrCuGF, SrCuG,Cl, CaCuO.Cl,

140.1 153.7 130.8 146.7

AFM  J (182.8)  (214.6) (182.0) (196.6)
[31.0] [33.1] [26.2] [32.4]
78.9 84.7 70.1 79.1

AFML  J/2+J3/2+3ing/8 (102.5)  (125.1) (103.1) (109.4)
[15.4] [16.9] [13.2] [16.3]
78.8 82.2 68.2 78.3

AFM2  J/2+J4 (100.3)  (118.1) (99.4) (105.5)
[15.1] [17.0] [13.3] [16.0]
0.0 0.0 0.0 0.0

FM 0 (0.0) (0.0) (0.0) (0.0)
[0.0] [0.0] [0.0] [0.0]

coupling amplitudesJ) it is worth noting that UHF largely underestimates them, as found

in many previous worksg7, 76, 80]. Density functional calculated values generally represent
an improvement over UHF results although they exhibit the typical strong dependence on the
exchange-correlation functional already pointed out by Martin and Ba$f]. Hence, B3LYP
overestimates thé values by a factor close to 1.5 whereas the values predicted by the Fock-35
potential are close to experiment as also expected from previous work on similar sysfems [
76, 80]. Therefore, one can take the Fock-35 values as a reliable prediction. In all cases, the
NNN diagonal interaction is predicted to be small and of AFM character, in contrast to what
is suggested by some fits to experimental d&fid [However, the most important result of the
present work concerns the cyclic exchardgg amplitude. The general procedure described in
detail in sectior? has permitted the first direct estimate of the amplitude ofithgterms from

ab initio periodic calculationsg?2].

For LaCuQy, the outcome of the present periodic approach using the Fock-35
parameterization is in agreement with the other only available theoretical estimates for
this compound arising from cluster calculations performed by either explicitly correlated
wavefunctions 42, 43] or DFT based calculations4p, 76] and experimental estimations
of J [22, 32]. In addition, the present Fock-35 estimate Bfg ~ 35.8 meV is in excellent
agreement with the indirect evaluations of Coldgaal (Jing ~ 38+8meV) [22] and the
simulations of Mizuneet al (J;ing ~ 40 meV) B1]. Notice, however, that thé,,y/ J = 0.25 ratio
predicted here is smaller than that reported by Toatlat[30], which is of 0.5, but in excellent
agreement with a more generally accepted rdtig/J = 0.3 [21, 22, 31] for this compound.
Finally, we would like to point out that the experimental determination of this term is still under
discussion and even the existence and importance of four-body terms@u@Qahave raised
some controversy8f3]. The present work provides unbiased first principles results that fully
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Table 2. Numerical values (in meV) for the two- and four-body exchange
amplitudes in LaCuQy, SLCuG,F,, SLCUO,Cl, and CaCuO,Cl, 2D cuprates
obtained using the Fock-35, (B3LYP), and [UHF] potentials. Available
experimental data are discussed in sectibasd4.1

System J Ji Jring Jring/ J Te(max (K)
140.1 8.8 35.8 0.25
La,CuQy (182.8) (8.9) (53.1) (0.29) 42
[30.9] [-2.8] [0.7] [0.02]
153.7 5.4 41.1 0.27
SKLCUOF, (214.6) (10.7) (99.5) (0.46) 46
[33.1] [0.4] [1.4] [0.04]
130.0 2.8 26.4 0.20
SLCuO,Cl, (182.0) (8.4) (62.8) (0.34) -
[26.2] [0.1] [0.2] [0.01]
146.7 4.9 26.3 0.18
CaCuQ,Cl, (196.6) (7.2) (60.0) (0.31) 28
[32.4] [-0.2] [1.4] [0.04]

3From [87), ° [71], ¢ [89].

support the arguments of Toadet al in their reply to Raymoncet al [84]. It is also worth
pointing out that the Fock-35 calculations predicts an AFRM- 8.8 meV again consistent with

the values provided by embedded cluster calculatid@s44, 77]. Hence, it will be of great
interest to repeat the fit in Toadet al experiments30] by using the present estimate of both

J and of Jq or, in a bottom up approach, use the present values for the three effective parameter
to check consistency with respect to experiment.

For CaCuO,Cl,, SLCuO,F, and SgCuO,Cl,, there are not previous theoretical or
experimental values for the amplitude of the ring exchange term. Present calculations predict
values for CaCuO,Cl, and SpCuO,Cl, that are slightly smaller than the corresponding ones in
La,Cu(y. This is consistent with larger NN and NNN distances in@z#0,Cl, and SgCuQ,Cl,
compared to LgCuQ, (3.87 and 3.97 versus 3.81A, for NN and5.47 and~ 5.62 versus
5.38 A for NNN distances). For SEuO,Cl, the agreement between the estimate of the NN
interaction J ~ 130 meV) and the experimental valuk£ 125+ 6 meV [85, 86]) is excellent,
the J4 coupling is also predicted to be AFM and the estimalgg/ J ratio ~ 0.20 is somewhat
smaller than that for L&CuQ, but still in a realistic range. For SEuO,F; the results are closer
to La,CuO, ones despite the differences in crystal structure (3.86 versus 3.81 A, for NN and
~ 5.45 and~ 5.62 versus 5.38 A for NNN distances).

Before closing this section it is interesting to note that the magnitude albne does
not discriminate SICUG,F, and CaCuQ,Cl, from LaCuO, (stoichiometric SYCuQ,Cl,
corresponds to a extremely stable structure and attempts to synthesize doped phases by cation
substitution of interstitial anion excess have been unsuccessful). Taking the reliable Fock-35
values, for LaCuQy T, =42K [87] and J=1401meV and, similarly, SICUGF, T, =
46K [71] but J =1537 meV whereas for GEUO,Cl, T, = 28K [88] but J = 1467 meV.

A larger J value does not correspond to a larger However, Ji,g points towards a different
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behavior sinceling = 358 meV for LeCuQ, and Jing =411 meV for SpCuG,F, whereas

Jing = 26.3meV for CaCuG,Cl,. This is in line with the results of Toad@&t al suggesting

that the Jing plays an important role in defining the properties of the superconducting phase.
We would like to point out that this is also in line with previous results indicating that a linear
relationship exists betweed/t and T, [41, 76]. This is because, a correct value dft also
indicates a correct value 6fU and hence ofling/J(~ (t/U)?, cf equation 22) and §45)).

4.2. Spin Hamiltonian parameters for tis&Cu0Os spin ladder compound

For the SrCwO;3 spin ladder, ten different magnetic solutions have been obtained from the spin
distributions shown in figur. Due to an excessive spin frustration between the ladders, the FM
solution becomes exceedingly high in energy and indeed physically meaningless. The short-
range intra-ladder repulsion forces the unpaired electron to be excessively delocalized on the
oxygen atoms. Therefore, the AElS solution is used as energy origin. For the remaining nine
broken-symmetry solutions with different magnetic orders, we derived a set of nine equations
which are shown in tabl&. These equations have been derived assuming that only five magnetic
interactions may have non-negligible amplitudes: these are NN interactions along thlg legs

or the rungsJ,, the NNN Jy interactions in the plaquettes, the interaction between legs of
different laddersJ;, and the four-body operataki,g amplitude. At variance from the above-
discussed cuprates, the resulting equations are linearly dependent, the system of equations is
overdetermined and a least-square procedure has been used to find the optimum set of values
for the five magnetic interactions considered. The optimum values are reported id.tdble
consistency of the set of equations is almost complete since the standard deviation between the
DF calculated energies and those obtained from the equations irBtabtéthe so-obtained set

of magnetic interactions is of 1.5 meV for the B3LYP results and even smaller for the Fock-35
set. This consistency indicates that all non-negligible interactions have been included in the spin
model Hamiltonian.

For all the methods the dominant interactions are the couplings across the J)raysd(
along the legsJ) which all methods predict to be nearly equal in magnitude—ig.J) ~ 1—
as expected from the similarity of the Cu—O—Cu exchange paths in agreement with previous two
magnetic sites cluster model calculatior¥§][although a moderate cluster size dependence
on the magnetic interaction along the leg has been obse®4d Nevertheless, enlarging
the cluster model by introducing a third copper atom belonging to the very close neighbor
ladder results again id;/J ~ 1 [71]. In any case, this dependence evidences the difficulty
of embedding finite clusters for certain types of materials and supports the present periodic
approach that does not depend on the cluster design used to represent the real material.

The accuracy of the present calculations can be judged from the amplitude predicted
for J; through the most realistic Fock-35 potential {55 meV) which is consistent with the
recent Raman response experimeff.[The estimatedy value is AFM as in the 2D cuprates
and a non-negligible interladder FM exchange~ —0.22J) is found and, consequently, one
should not consider this system as formed by non-interacting ladders. Regdsgjngoth
its amplitude and thel,q/J; ratio are larger than for 2D cuprates (tal2e but still close to
0.3 in agreement with various sets of experimental informati@ik-[24]. The agreement is
particularly good with the values reported by Schratal [35] although these authors do not
considerJ,. This neglect is probably the reason for the strong anisotropy in their fitting which
results in aJ/J; = 1.5 ratio, a value which is difficult to accept from the Cu—O—Cu distances.
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Figure 2. Schematic representation of the magnetic solutions calculated to
extract J, J, Jy, J and Ji,g parameters in the ladder cuprate SOl
Continuous (dashed) lines correspond to FM (AFM) alignments)fand J;

in the ladders. The gray zone defines the cell used for the symmetry-broken
solution.

Such large anisotropy betwednand J; is not supported from the present periodic calculations.
We also found that repeating the least square fitting of the energies ir2tabteneglecting the

terms involvingJing results in a larger anisotropy in the thiisand J, calculated values. These
results strongly suggest revising previous fittings using the present estimates as starting points.
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Table 3. Energy expressions per Cu atom (relative to AR)4 phase) for the
magnetic solutions calculated to extralt J,, Jy, J and Jing in the SrCyO;
ladder compound (for the definition of these interactions see se2fiorhese
correspond to the magnetic solutions given schematically in figuiiéhe last
column shows the corresponding calculated energy values (in meV) for the
Fock-35, (B3LYP), and [UHF] potentials.

Phase Energy expression Values in SIGQy
AFM9 Ji/6+J/6 —3J4/2 — 0.05Jing 44.98 (57.15) [10.79]
AFM8 J/4— Ja/4+J/8 31.92 (48.85) [6.86]
AFM7 J/2—Ja/2+ 3 /4 67.38 (96.23) [14.23]
AFM6 J/2—J4/2— /4 83.78 (114.37) [18.53]
AFM5 Ji/4+3/8— Jq/4— J/8—0.075)ing 57.68 (75.75) [13.35]
AFM4 J/4— Jg/2 38.87 (50.22) [8.14]
AFM3 Ji/4+3/8— J4/4— 0.075ing 53.43 (70.73) [12.24]
AFM2 J/8— Jy/4 16.20 (20.41) [4.07]
AFM1 Ji/8+J/16— Jy4/8 — 0.03750ing 26.68 (35.39) [6.15]
AFM_gs 0 0.0 (0.0) [0.0]

Table 4. Numerical values (in meV) for the two- and four-body exchange
amplitudes in SrC303 ladder compound obtained using the Fock-35, (B3LYP),
and [UHF] potentials. Available experimental data are discussed in sedtions

and4.

System J Jr Jq Ji Jring Jring/ Jr
153.1 155.6 2.7 —34.2 48.8 0.31

SrCu03 (216.3) (204.1) (5.4) (—36.0 (97.0) (0.47)
[32.7] [32.7] [0.1] [-8.8] [0.04] [<0.01]

4.3. Critical analysis of the results

Tables2 and 4 summarize the results for the effective spin Hamiltonian parameters of the
2D cuprates and the ladder compound, respectively, obtained by means of the UHF method,
B3LYP and Fock-35 hybrid potentials. Since the Fock-35 values are in agreement with available
experimental data it is clear that B3LYP values are overestimations. This result merits a further
deeper analysis. As well known, the NN magnetic couplirsgales as$?/U (cf equation 12)).
Previous works have shown thatvalues are not very sensitive to the exchange potential
[57, 77]. This suggests that the exceedingly lalhealue predicted by the B3LYP method
effectively implies a too smalll value and hence an insufficient on-site two-electron repulsion,

as discussed elsewhete/[ 80]. This incorrect description of electron—electron correlations in
the B3LYP functional has a much more dramatic consequence. In fact, it has been shown by
Malrieu and MaynauZ8] that Jiny Scales as*/U?3 (cf equation 22)) and, hence, a too small

value will result in an even larger overestimationJgfy as clearly shown in tablesand4. This
interpretation is supported by the results obtained from the UHF method. In this case the values
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Figure 3. Representation of atomic spin densities on centell)), defined
according to Mulliken population analysis, versus the number of opposed
spins on NN sitegnyng(1)) of the differentl magnetic ‘phases’ for the 2D
cuprates using UHF, Fock-35 and B3LYP methods. A linear fit, as suggested
by equation 21), is also shown.

of J are largely underestimated due to the lack of electronic correlation effects, a well-known
effect [39, 55, 56, 90, 91]. Therefore, one may conclude that UHF largely overestimates the
on site two-electron repulsion and, consequerilyy obtained at this level of theory must be
very small. This is indeed the case, the UHF estimat&;gfis vanishingly small. These results
are manifestations of the sensitivity df,q/J with respect to thét/U| ratio; this is Jing/J
scaling asgt/U 2. If J(calc)/J(exp) = A, thenJing(cald)/ Jing(exp) ~ A3. To conclude, the DFT
based approaches effectively include electronic correlation effects that lead to a decrease of
the effectiveU parameter which was severely overestimated by the mean-field Hartree—Fock
method. However, the B3LYP potential appears to lead to unphysical tod&Jlealues with
important consequences in the resulting physical description.

Scrutiny of the atomic spin densities, defined according to Mulliken population analysis,
brings consistent additional information. In order to check the validity of equafidy Wwe
report in figure3 the dependence of the spin densities on the metal centers as a function of
the number of opposed spins on NN sites. Notice that this information is extracted from the
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various magnetic ‘phases’ for each compound. As suggested by equaiora (@ood linear
dependence of the local spin density on the number of spin alternations is observed for each of
the Hamiltonians. This result evidences the different strengths of the electronic delocalization
in these three Hamiltonians and the slope of the correlation can be used to estimate the
ratio. For LaCuQy, thet /U estimated ratios are 0.044, 0.093 and 0.110 for UHF, Fock-35 and
B3LYP, respectively. These results nicely compare with previous estimates of this ratio from
finite cluster calculations: 0.080 and 0.120 for Fock-35 and B3LY¥R. [Also, these results
confirm the general trend discussed above, namely an excessive localization in UHF, resulting
in a too large unscreened effectilde and a slightly too strong delocalization in B3LYP with

a concomitant underestimation of the effectiveln the ladder compound, the analysis of the
correlation with respect to the number of spin alternations is not univocal since the bonds are
not identical and, therefore, is not carried out.

As mentioned in sectio, it is observed that some highly frustrated and high energy self-
consistent solutions provide local spin densities which deviate significantly from the behaviour
expected from equatior2). This is due to the physically meaningless strong metal-to-ligand
delocalization of the magnetic electrons. Hence, the spin density analysis provides a criterion
to eliminate these spurious solutions. This problem has been essentially observed in the ladder
where the] values are larger as a result of the shorter Cu—Cu distances and, also, due to the FM
interladder interaction. As a consequence, the total spin frustration becomes exceedingly costly.
Accordingly, we strongly recommend using a sufficiently large set of low energy solutions in
the fitting procedure.

5. Summary, conclusions and possible extensions

The extraction of NN spin couplings in magnetic lattices from symmetry-broken mean-field
calculations has been frequently performed on molecular systems and solidglfsead
references therein). The present work uses the benefit of the large multiplicity of symmetry-
broken periodic solutions and proposes a new, general and unbiased scheme to predict
the amplitude of the parameters defining a general spin Hamiltonian from DFT periodic
calculations. An important property of the present procedure is that one does not need to
make any assumption on the relative amplitude of these terms. Instead, it relies on a mapping
approach between the energy of pertinent magnetic solutions and the diagonal terms of the spin
Hamiltonian in a local representation. In addition, the overdetermined set of equations provides
a test for the completeness of the interactions considered in the spin model. It has also been
shown that the spin densities of the symmetry-broken solutions may be rationalized and they
furnish additional information on thtg'U ratio through equatior2Q). Hence, the analysis of the

spin density distributions of these various solutions provides useful and consistent information
on thet/U (or J/t) ratio and, hence, on the electronic delocalization. As a corollary one can
point out that the observed correlation betwé@lgrat optimal doping and thd/t ratio [41,

76] can be formulated as well as a correlation wiflJ ratio that brings in a more physically
intuitive description. Finally, this work also points out the extreme sensitivity of the four-body
operators amplitudes to the choice of the density functional and especially to the ratio of Fock
exchange. For the time being the use of a 35% ratio has led to consistent results for cuprates and
other transition metal compounds. The question of the transferability of this parametric quantity
to other magnetic ions remains open.
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A very important outcome of the present work concerns the prediction of the four-body
cyclic operators in the general spin Hamiltonian in equat®)nThe application of the general
procedure discussed at length in sectioto a series of compounds provides an independent
confirmation of the importance of four-body terms in these materials. In particular, fGuiCy
the present results provide further support to the conclusions by Teddar[30] based
on the analysis of neutron diffraction experiments. Moreover, we supply reliable values for
spin Hamiltonian parameters of other key compounds such a&uCaCl,, SL,CuG,F, and
SrL,CuQ,Cl,. These permit us to conclude that the importance of four-body terms is likely to be
similar for most of the HTCS related cuprates and even more important in ladder compounds,
in agreement with the recent experiments of Schretdil [35]. Likewise, it is also suggested
that the fit to neutron scattering data should be revised by considering alternative values for both
J and J; magnetic coupling terms. In addition, the present study provides further evidence that
the four-body term and the FM inter-ladder exchange introducing spin frustration between legs
in the SrCyO; ladder should not be neglected.

To conclude this study, it is worth mentioning some possible generalizations of the
procedure presented in secti@ One may, for instance, wonder whether the six-body
spin operators would have significant amplitudes in such lattices. The cyclic circulation of
electrons in six-member rings—related to the so-called chemical aromaticity—is responsible
for the appearance of such operators at the sixth-order of perturbation theory. It has been
demonstrated8] that while the four-body operator results in a coupling

v oy A

A

HY

AN B R

the six-body matrix element resulting in a rotation of six spins is given by

t b f
( ] ) = 504 /U5
A B A B

H
The large prefactor is due to the huge number of processes leading to a full permutation of
spins in a six-membered ring. Now, notice that a set of two fused plaquettes defines such a six-
membered ring. It would be worth checking whether, despite the smallness pfuheatio,
such many-body operators are negligible in cuprate lattices. From the perturbative arguments
above, and in view of the calculatedU ratio, one expects the ratidx-ring/ Jrour-ring ~ 0.1.
Consequently, this question has not been addressed in the present study.

Yet another generalization would concern lattices with 1/2 magnetic sites such as
Ni(d®) ions, NiO being the paradigm of these materials. The same strategy is applicable
to evaluate not only the NN interactions but four-body exchange amplitudes as well. This
will be considered in further work which will also show that one may, in principle,
use symmetry-broken solutions to evaluate the possible importance of biquadratic spin
exchange terms.

<

) =40 /U3

o
PSR -
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