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Abstract. We point out that theories describing s-wave collisions of bosonic
atoms confined in one-dimensional (1D) or two-dimensional (2D) geometries
can be extended to much tighter confinements than previously thought. This is
achieved by replacing the scattering length by an energy-dependent scattering
length which was already introduced for the calculation of energy levels under 3D
confinement. This replacement accurately predicts the position of confinement-
induced resonances in strongly confined geometries.

Many experiments investigating the properties of cold atomic gases and Bose–Einstein
condensates are now performed in tightly confining traps, such as tight optical lattices, leading
to systems of reduced dimensionality [1]–[4]. There are many uses for such confinements.
In spectroscopic measurements, they eliminate unwanted Doppler and recoil effects [5, 6].
They can also be used to create tunable analogues of condensed matter systems, and give the
possibility to investigate remarkable many-body regimes in low dimensions such as the Tonks–
Girardeau gas [7]–[10]. The theory of s-wave atomic collisions in strongly confined systems has
been established in [7, 11] for one-dimensional (1D) and two-dimensional (2D) confinement,
respectively. Both predict a confinement-induced resonance of the effective 1D or 2D interaction
strength. These predictions rely on a description of the atomic interaction in terms of the scattering
length only. However, in 3D confined systems, it was shown that a more refined description
is needed for very tight confinement [12, 13]. Similarly, in 2D confined systems, numerical
calculations in [14] showed that the scattering length description of [7] may be insufficient.
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In this paper, we present an accurate analytical description for scattering in 1D and 2D geometries
based on the findings of [13, 14].

We consider a gas of bosonic atoms in an optical lattice and assume that there is little
tunnelling between the lattice cells, so that each cell is independent. The atoms in a cell
are confined by a trapping potential which will be assumed harmonic (which is true near the
centre of the cell). Let us consider a pair of atoms in such a cell. For a harmonic potential,
the centre-of-mass motion decouples from the relative motion and the stationary Schrödinger
equation for the relative motion wave function ψ(�r) reads

[
− h̄2

2µ
∇2

r + U(r) + V(�r)
]

ψ(�r) = Eψ(�r). (1)

Here, �r = (x, y, z) is the relative coordinate with separation r, µ the reduced mass, U(r) the
isotropic atom–atom interaction potential, V(�r) the trapping potential, and E the relative energy.

For 2D confinement (tube or wave guide geometry), the atoms are strongly confined in the
xy-directions and (almost) free to move in the z-direction, therefore we set

V(�r) ≡ V2D(�r) = 1
2µω2ρ2,

where ρ = ‖�ρ‖ and �ρ is the projection of �r on the xy-plane. For 1D confinement ( pancake
geometry), the atoms are strongly confined in the z-direction and (almost) free to move in the
xy-directions

V(�r) ≡ V1D(�r) = 1
2µω2z2.

Here, ω is the trapping frequency at the centre of the cell and we define σ = √
h̄/(2µω) as the

typical length scale associated to the trap in the confined directions.
Any scattering solution ψ(�r) of equation (1) is composed of an incident wave and a scattered

wave. A plane wave basis can be used for the incident wave, and the scattered wave can be
expressed with the noninteracting Green’s function G(�r, �r′) of the system for U(r) = 0. Namely,
for 2D confinement, one has

ψ(�r ) = φnm( �ρ) eiqnmz −
∫

G2D(�r, �r′)U(r′)ψ(�r′) d3�r′, (2)

where φnm( �ρ) denotes the unit-normalized 2D isotropic harmonic oscillator eigen-
state of principal quantum number n and angular quantum number m, and qnm =√

(2µ/h̄2)E − (2n + 1 + |m|)/σ2 is the wavenumber of the incident plane wave. The Green’s
function reads

G2D(�r, �r′) =
∑
ν,µ

φνµ( �ρ)φνµ( �ρ)
eiqνµ|z−z′|

2iqνµ

.

For 1D confinement, one has

ψ(�r) = ϕn(z) ei�qn· �ρ −
∫

G1D(�r, �r′)U(r′)ψ(�r′) d3�r′, (3)
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where ϕn(z) denotes the unit-normalized 1D harmonic oscillator eigenstate of vibrational
index n, and �qn is the wavevector of the incident plane wave with norm qn =√

(2µ/h̄2)E − (n + (1/2))/σ2. The Green’s function reads

G1D(�r, �r′) =
∑

ν

ϕν(z)ϕν(z
′)

i

4
H

(1)
0 (qν|ρ − ρ′|)

where H(1)
α is the first Hankel function.

We first assume that the interaction potential U(r) has a finite range rb. This means that there
is a separation r0 � rb beyond which the wavefunction is essentially a solution of equation (1)
with U(r) = 0, that is to say a solution of the noninteracting problem. This is indeed the case
for typical atomic interactions which drop off as −C6/r6 van der Waals potentials. Because of
this fast drop-off, the wavefunction (at sufficiently low energy) reaches its noninteracting form
for r4 � (1/20)β4

6, where β6 = (2µC6/h̄
2)1/4 [16]. The separation r0 is therefore on the order

of β6, which ranges typically from 2 to 5 nm.
We further assume that the interaction potential U scatters only s-waves. The scattering

of partial waves of arbitrary order under cylindrical confinement was treated in detail in [17].
Retaining only s-wave scattering is valid in the absence of shape resonances and if the cold-
collision condition kr0 < 1 is satisfied, where h̄k = √

2µE/h̄ is the collisional momentum
(see appendix).

Under these two assumptions, the noninteracting form of equations (2) and (3) is obtained
by first taking the limit r � r′ of the Green’s function (since r > r0 � rb ∼ r′) and then approx-
imating the remaining integral over �r′ by φν,µ(0) (or ϕν(0)) times a quantity 4πA which does
not depend on the indices ν or µ appearing inside the Green’s function (taking into account the
dependence on ν, µ would introduce higher-order partial wave scattering [17] — see appendix).
These two steps are formally equivalent to taking the Green’s function out of the integral in
equations (2) and (3) and evaluate it at r′ = 0. Note that this can be achieved at any r by replacing
the potential U(r) by a regularized contact interaction [18]. For 2D confinement, one finds [19]

ψ(�r ) =
r>r0

φnm( �ρ) eiqnmz − 4πAnm

∑
ν,µ

φνµ( �ρ)φνµ(0)
eiqνµ|z|

2iqνµ

(4)

and for 1D confinement [7],

ψ(�r ) =
r>r0

ϕn(z) ei�qn×�ρ − 4πAn

∑
ν

ϕν(z)ϕν(0)
i

4
H

(1)
0 (qνρ), (5)

where the factors Amn and An are to be determined.
The wavefunction ψ can also be expanded in spherical partial waves

ψ(�r ) =
∞∑

�=0

�∑
m=−�

ψ�,m(r)Y�,m(θ, ϕ), (6)

where Y�,m are the spherical harmonics and θ the angle between �r and the z-axis, ϕ the angle
between �ρ and the x-axis. At short separations, the confining potential V(�r) is negligible, so one
can expect that within a certain range r1 related to the confinement length σ (see appendix),
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the wavefunction is close to a solution of equation (1) with V(�r) = 0, that is to say, a solution
of the free-space scattering problem. Beyond r0, the partial waves of this solution reach their
noninteracting form which is known to be a combination of regular and irregular spherical Bessel
functions. Consistent with the s-wave approximation, there is no irregular Bessel function for
� 
= 0, i.e. no scattered partial wave. For the s-wave (� = 0), we have

ψ00(r) = η

(
sin kr

kr
− a(k)

cos kr

r

)
for r0 < r < r1, (7)

where η is a normalization factor to be determined and a(k) = − tan δk/k is the energy-dependent
s-wave scattering length introduced in [13, 15] (δk is the usual s-wave phase shift, related to
the s-wave component of the reactance matrix Ks(k) = − tan δk). This energy-dependent
scattering length contains all the effects of the interaction on the wavefunction in the region
r0 < r < r1, and for any collisional energy E. For moderately tight traps σ � r0 leading to small
collisional energies, there is a range of r for which equation (7) simplifies to

ψ(r) = η
(

1 − a

r

)
, (8)

where a = limk→0 a(k) is the scattering length of the potential. However, for very tight lattices,
σ may be close to r0 and only equation (7) holds.

The essence of the method used in [7, 19] is to assume that σ � r0 and match the
noninteracting expressions (4) and (5), respectively, with the free-space expression (8) in the
region r0 < r < r1 where they both are valid. (In [7], this is implicitly achieved by use of a 3D
regularized contact interaction.) By performing the matching procedure up to zeroth order in
the asymptotic expansion in r/σ near r = 0, they obtain two relations yielding the two unknown
factors η and Anm (or An). From that knowledge, they deduce the effective 1D and 2D interaction
strengths in the quasi-1D or 2D regime (qn, qnm � k)

g1D = h̄2

µσ

(
σ

a
+

ζ(1/2)√
2

)−1

, (9)

g2D = 4π
h̄2

µ

(√
2πσ

a
+ ln

(
B

πq2
0σ

2

))−1

, (10)

with B ≈ 0.915 and ζ(1/2)/
√

2 ≈ −1.033, where ζ is the Riemann zeta function. The singularity
in these expressions as a function a, σ, or q0 corresponds to the confinement-induced resonance.
Note, however, that these analytical formulae are valid only when σ is large with respect to r0.

We stress here that the method can be extended by matching the s-wave component of
the noninteracting expressions (4) or (5) with the more general free-space expression (7). It is
straightforward to see that a matching to zeroth order in r/σ results in the same conditions as
those of [7, 19], but with the scattering length a being replaced by the energy-dependent a(k)

in all the formulae. In particular, a is replaced by a(k) in the expressions for η, Anm, An and
equations (9) and (10). Surprisingly, we find that once the two unknown factors η and Anm

(or An) are determined this way, the expression (4) or (5) match the expression (7) up to second
order in r/σ, i.e. the next two orders automatically match without the need for extra parameters.
This was checked numerically both in 2D and 1D confinement, and we give in the appendix

New Journal of Physics 9 (2007) 19 (http://www.njp.org/)

http://www.njp.org/


5 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0 1 2 3 4 5 6

Interatomic separation z along the weak direction (units of β
6
) Interatomic separation ρ along the weak direction (units of β

6
)

–0.5

0.0

0.5

1

–0.5

0.0

0.5

1

W
av

e 
fu

nc
tio

n 
(a

rb
itr

ar
y 

un
its

)

W
av

e 
fu

nc
tio

n 
(a

rb
itr

ar
y 

un
its

)

β6 σ a

3D Collision
core

3D Collision
core

Noninteracting region Noninteracting region

Tube geometry

β6
 

2 σ a

Pancake geometry

1
       k
– ≅

1
       k
– ≅ √

0 1 2 3 4 5 6

Figure 1. Cut through the function rψ(�r ) in a confined geometry for a van der
Waals interaction with scattering length a = 3 β6, where β6 = (2µC6/h̄

2)1/4 is
the van der Waals length. We have chosen a = 3β6 as an illustrative value; for
comparison, a ≈ 0.6 β6 for 87Rb, a ≈ −10 β6 for 133Cs, and a > 4 β6 for 86Sr.
Left panel: function zψ(ρ = 0, z) as a function of z for 2D confinement (tube)
with σ = 1.95 β6. Right panel: function ρψ(ρ, z = 0) as a function of ρ for 1D
confinement (pancake) with σ = 1.18 β6. In both panels, the s-wave component
of the solution to the free-space scattering problem at energy E = h̄2k2/2µ

is represented as a thin black line. For r > β6 it has the asymptotic form
corresponding to equation (7). The thick black line represents the 1D or 2D
wavefunction in the noninteracting region obtained from equation (4) or (5). It is
determined by a matching procedure with the free-space scattering wavefunction,
as explained in the text. The previous theories [7, 11] were based on a matching
with the solution to free-space scattering at zero energy (dotted line), which
has the asymptotic form corresponding to equation (8) for r > β6. The resulting
noninteracting 1D and 2D wave functions are represented by thick grey lines. They
do not connect to the zero-energy wave function for the considered confinements.
The lengths β6, a and 1/k are indicated by arrows.

an analytical derivation of this result for 2D confinement, based on mathematical assumptions
which we checked numerically. As a result, the expressions (4) or (5) and (7) can be matched
within less than 1% for σ � r0. In figure 1, we illustrate the matching of the wavefunctions for
a confinement σ close to r0, in the case of a van der Waals interaction U(r) = −C6

r6 , for which
r0 ≈ β6, as stated earlier. The figure shows both the s-wave component of the solution to the
3D free-space problem (which is highly oscillatory for r < r0, and has the asymptotic form (7)
for r > r0) and the noninteracting wavefunction along either the z- or ρ-directions. For better
comparison, we should plot only the s-wave component of the noninteracting wavefunction, but
this happens to be very slowly converging numerically. The inclusion of higher-order partial
waves thus induces a second-order difference (because ψ2,m(r) ∝ r2 for small r), but one can
still appreciate the very good matching of the two functions even at these extreme confinements.
In contrast, the two functions calculated from the original theory do not match.

The fact that we can gain two orders in the matching procedure by using the free-space
expression (7) implies that the replacement a → a(k) greatly improves the accuracy and the
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range of validity of the original theory. Although we do not have an estimation of the accuracy
on g1 and g2, we expect the extended theory to give reasonably good predictions for σ � r0.
This improvement brought by the simple replacement a → a(k) is not so surprising in view of
the results reported in [13, 15, 21–23], which have shown the relevance of energy-dependent
scattering lengths for the accurate calculation of energy levels in 3D confined geometries.
It has been long known in other contexts that contact interaction models are significantly
improved when the coupling constants are proportional to the energy-dependent scattering
length (or reactance matrix) [24]. Similar extensions of (9) and (10) were considered in [25]–
[27] in order to take into account the energy dependence due to a scattering resonance at low
energy. In [27], a renormalized contact interaction was used, leading to the replacement of a by
the quantity (2µ/4πh̄2)T(k), where T(k) = (4πh̄2/2µ)a(k)(1 + ika(k))−1 is the T -matrix. This
complex quantity is equivalent to the real a(k) at low energy. Here, we focus on the energy
dependence for strong confinement even in the absence of any resonance.

In the quasi-1D (qnm � k) or quasi-2D (qn � k) regimes, the collisional energy is set
by the confinement length σ and can be relatively high, although the effective collisions in
the weak directions are cold. An interesting consequence of the extended theory is that if the
confinement is strong enough, the collisional energy can probe the energy-dependence of a(k).
For a standard contact potential [18], a(k) is constant and equal to a. However, a more realistic
a(k) has some energy dependence. For instance, in the effective-range approximation, a(k) has the
resonant form:

a(k) ≈ a

1 − (1/2)k2are
, (11)

where re is the effective range of the potential [28]. This approximation works well for short-
range interactions with a large scattering length a � re. In the case of van der Waals interactions,
the effective range re is a simple function of a and β6 [29, 30]

re = 2

3

β2
6

ā

((
ā

a

)2

+

(
ā

a
− 1

)2
)

(12)

where ā = 2πβ6/�(1/4)2. More elaborate analytical expressions of a(k) valid for any a have
been derived for van der Waals interactions [30]. The interest of equations (10) and (11) is that
they give a simple two-parameter description of the collisions for a wide range of energies.

To illustrate these ideas, we calculated the 1D interaction strength g1D for a van der Waals
interaction consistent with the Lennard-Jones parameters of the numerical calculation reported
in [14]. The authors observed a difference between their numerical calculation and the analytic
formula (9) where a is taken as the zero-energy scattering length. They suggested that this
difference comes the fact that the confinement-induced resonance in g1D results from a Feshbach
resonance with a trap bound state, whose binding energy is not predicted accurately by a
pseudopotential based only on the scattering length. As a result, the formula (9) does not predict
the resonance at the right location. However, we show in figure 2 that the same formula used in
conjunction with the replacement a → a(k) in the effective range approximation reproduces
the numerical calculations very well. This is because the effective range approximation is
able to reproduce the binding energy of the last bound state accurately. The only region where
the effective range approximation fails is for small scattering lengths a � β6, where it predicts
a spurious resonance, as visible in figure 2.

New Journal of Physics 9 (2007) 19 (http://www.njp.org/)

http://www.njp.org/


7 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

– 3 – 2 – 1 0 1 2
a/σ

– 3 – 2 – 1 0 1 2
a/σ

–4

–2

0

2

4

6

Tube geometry

– 4

Tube geometry

g 1
D

×
2

µ
σ

   2

√ h

g 2
D

×
µ  

2
π 

h

–4

–2

0

2

4

Figure 2. The 1D interaction strength (left panel) and the 2D interaction strength
(right panel) in dimensionless units as a function of the ratio of the 3D scattering
length a over the confinement dimension σ (a is varied and σ is fixed). As in
figure 1, σ = 1.95 β6 in the left panel and σ = 1.18 β6 in the right panel. The
dots are obtained by numerically solving the problem of two atoms interacting
through a Lennard-Jones potential in a 3D cylindrically-symmetric trap; dots in
the left panel (tube geometry) were taken from [14] and confirmed by us, while
we calculated the dots in right panel (pancake geometry) using the adaptive grid
refinement method of [20]. The dashed curves correspond to the formulae (9) and
(10) with the zero-energy scattering length a, and the solid curves corresponds to
the same formulae using the energy-dependent scattering length a(k) instead of a.
Here, a(k) has been calculated in the effective-range approximation, equation
(11), which is valid almost everywhere except for small positive scattering lengths
where the approximation causes a spurious resonance.

We also calculated the 2D interaction strength and checked that a similar situation occurs
in the pancake configuration. Using the adaptive grid refinement method of [20], we solved
the Schrödinger equation (1) for a Lennard-Jones interaction U(r) = (C12/r

12) − (C6/r
6) and a

cylindrical harmonic trap. The tight pancake limit is obtained by setting the ratio of axial and
radial frequencies to 400 (thus leading to a spatial aspect ratio of 1/20), and the tight confinement
scale is set to σ = 1.18 β6. The parameter C12 is adjusted to set the number of bound states
supported by the interaction and the scattering length. From this calculation, we obtained the
eigenenergies and then used equation (21) of [31] to extract the 2D scattering length. We found
that it shows very little dependence on the number of bound states, which can be as low as 2,
saving computational efforts. Using equation (7) of [19] (or equation (15) of [32]), we could
then relate the 2D scattering length to the interaction strength g2D for any q0—we chose a q0

given by the zero-point momentum in the weak direction. Figure (2) compares this numerical g2D

with the analytical formula (9) for the same q0. Again, the position of the confinement-induced
resonance for negative scattering lengths [11] is correctly predicted by (9) provided the energy-
dependent scattering length is used. As previously, the effective range approximation works well,
except for small scattering lengths. These results also suggest that the observation of the resonance
may provide useful information about the effective range of the interaction.

In summary, we have shown that the effective 1D or 2D interactions of ultracold bosons in
strongly confined systems are governed by 3D collisions at a relatively high energy determined
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by the confinement. The effect of these high-energy collisions can be well described by a single
quantity, the energy-dependent scattering length, up to extremely tight confinements. For van
der Waals interactions, this quantity itself can be expressed in the effective range approximation
in terms of the zero-energy scattering length and the van der Waals length. This parametrized
energy-dependent scattering length leads to an accurate analytic prediction of the confinement-
induced resonance both in 1D and 2D confinements.

Appendix

In this appendix, we show that for 2D confinement the matching procedure is effective up
to second order in the expansion in r/σ near r = 0. Without loss of generality, we take
the wavefunction to be symmetric around the z-axis (i.e. m = 0 in equation (4)), so that
equation (6) can be written as

ψ(�r ) =
∞∑

�=0

ψ�(r)i
�(2� + 1)P�(cos θ), (A.1)

where P�(x) is the Legendre polynomial. The basic approximation is to assume that the
components ψ� are proportional to those of the free-space solution. With the assumption that
only the s-wave component is scattered by the potential, we set

ψ0(r) =
r>r0

η0φn0(0)[j0(kr) + ka(k)y0(kr)] (A.2)

ψ�
=0(r) =
r>r0

η�φn0(0)j�(kr), (A.3)

where j� and y� are the spherical Bessel functions, and η� are factors to be determined. (Note
that with this definition, η in equation (7) is equal to η0φn0(0).) Since only components of even
� are coupled to the s-wave component by the trapping potential V(�r), we can discard odd-�
components (they do not play a role in the scattering process). An expansion near r = 0 of
equation (A.1) therefore reads

φn0(0)

[
η0

(
−ka(k)

kr
+ 1

)
+

(
η0

ka(k)

2

)
kr −

(
η0

6
+

η2

3
P2(cos θ)

)
(kr)2

−
(

η0
ka(k)

24

)
(kr)3 + · · ·

]
. (A.4)

This is to be matched with equation (4). Using the explicit form of the harmonic oscillator
solutions φn0, it can be written as

φn0(0)ϒn

[
ρ√
2σ

,
z√
2σ

, −1

2
q2

00σ
2

]
, (A.5)

with

ϒn [u, v, ε] = e(−u2/2)Ln(u
2) cosh (2v

√
n + ε) − An0√

2σ
� [u, v, ε] ,

� [u, v, ε] =
∞∑

ν=0

e−2v
√

ν+ε

√
ν + ε

e(−u2/2)Lν(v
2),
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where the Lν is the Laguerre polynomial. For equation (A.5) a partial wave expansion appears
not feasible, so we resort to evaluating the expressions along the ρ and z-axes. Along the z-axis
(ρ = 0), we find the following expansion

�[0, v, ε] = 1

v
+ ζ( 1

2 , ε) + (2ε − 1)v + 2ζ(− 1
2 , ε)v

2 + 1
6[(2ε − 1)2 − 1

3 ]v3 + · · · . (A.6)

Along the ρ-axis (z = 0), we find the following expansion

�[u, 0, ε] = 1

u
+ ζ( 1

2 , ε) + (2ε − 1)u + [1
2(2ε − 1)ζ( 1

2 , ε) − ζ(− 1
2 , ε)]u

2

+ 1
6[(2ε − 1)2 + 2

3]u3 + · · · . (A.7)

In these expansions, ζ refers to the Hurwitz zeta function which we define as follows

ζ(s, ε) = lim
N→∞

N∑
n=0

1

(n + ε)s
− (N + ε + 1/2)−s+1

−s + 1

for −1 < s < 1, generalizing the definition given in [14, 33]. The first expansion (A.6) was
found using the counter-term method explained in these references with the refined counter term∫ N+(1/2)+ε

0
exp(−2

√
sx)√

s
ds. The second expansion (A.7) was guessed from the expected result (A.4),

and checked numerically. Because of the very slow convergence of the sum in �[u, 0, ε], we
could not check the terms directly. Instead, we noted that the Laplace transform of � with respect
to the argument u is related to the Lerch transcendent � [34]∫ ∞

0
e−su�[u, 0, ε] du = 1

s + 1/2
�

(
s − 1/2

s + 1/2
,

1

2
, ε

)
,

and assumed there is a direct correspondence between the Laplace transform of the terms in
(A.7) and the terms in the asymptotic expansion of the Laplace transform near s → ∞.

Matching the expressions (A.4) and (A.5) along the z-direction leads to the following
relations for each order of the expansion

η0a(k) = An0, (A.8)

η0 = 1 − An0√
2σ

ζ(1/2, ε), (A.9)

η0
k2a(k)

2
= An0

2σ2
(k2σ2), (A.10)

(η0

6
+

η2

3

)
k2 = k2

2
− 1 + 2n

2σ2
+

An0√
2σ3

ζ(−(1/2), ε), (A.11)

η0
ka(k)

24
k3 = An0

24σ4

(
k4σ4 − 1

3

)
, (A.12)
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while, matching along the ρ-direction leads to the following relations

η0a(k) = An0, (A.13)

η0 = 1 − An0√
2σ

ζ(1/2, ε), (A.14)

η0
k2a(k)

2
= −An0

2σ2
(k2σ2), (A.15)

(η0

6
− η2

6

)
k2 = 1 + 2n

4σ2
− An0

2
√

2σ3

[
k2σ2

2
ζ(1/2, ε) + ζ(−(1/2), ε),

]
(A.16)

η0
ka(k)

24
k3 = An0

24σ4
(k4σ4 + 2/3), (A.17)

where we make use of 2ε − 1 = −k2σ2. Relations (A.8) and (A.9) and (A.13) and (A.14) are the
same and determine An0 and the s-wave factor

η0 = 1

1 + [a(k)/
√

2σ]ζ[(1/2), −(q2
00σ

22)]
(A.18)

Relations (A.10) and (A.15) are the same and are both satisfied with the previous
determination of An0 and η0. Relations (A.11) and (A.16) are consistent and give the same
determination of the d-wave factor

η2 = η0

(
3a(k)√
2k2σ3

ζ

(
1

2
, −q2

00σ
2

2

)
− 1

2

)
+

3

2

q2
n0

k2
. (A.19)

However, neither relation (A.12) or (A.17) are satisfied with the previous determination of
An0 and η0 (because of the terms −1/3 and 2/3), which means that the free-space approximation
(A.2) and (A.3) is valid up to order r2. The error is φn0(0)|η0a(k)| 1

24σ4 r
3. The range of r for

which this error is negligible determines the range [r0, r1] where a matching is possible. Since
the error increases with r, we can define r1 as the r for which the ratio between the error and
the wavefunction (A.4) is equal to a certain tolerance α. In the limit of large scattering lengths,
one finds

r1 = (24α)1/4σ.

The range [r0, r1] where the two functions can be matched to within the tolerance α exists
as long as r1 > r0, i.e.

σ > (24α)−1/4r0. (A.20)
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For instance, for α = 1%, one gets σ > 1.43r0. This indicates that the method works even
for a confinement length σ on the order of the range r0.

We can also check that this is consistent with our assumption that only s-waves are scattered.
Higher-order partial wave scattering arises if we take into account the dependence of An0 on ν.
The first correction is An0 → An0 + (ν + 1/2)Bn0, and leads to the term Bn0σ

2/z3 along the
z-axis. This term is to be matched with the leading-order term of the scattered d-wave term
(−K2)η2φn0(0)y2(kz)(−5)P2(cos 0), where K2 is the d-wave reactance matrix element. In the
absence of shape resonance, K2 is purely determined by the long-range van der Waals behaviour
of the interaction, K2 ≈ − 1

100(kβ6)
4—see equation (8) of [30]. This leads to

Bn0 = −η2
σ

20

(kβ6)
4

(kσ)3
.

d-wave scattering is negligible if |Bn0| � |An0|. In the quasi-1D regime (qn0 � k and k ∼ 1/σ),
and using the value of η2 (A.19), one finds

σ4 � (
1

40 |1 − σ/a(k)|) β4
6,

which for a wide range of scattering lengths is consistent with the condition (A.20) and the cold
collision condition kr0 < 1 given in the text.
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