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Abstract. Superfluid to Mott-insulator transitions in atomic Bose—Einstein
condensates (BEC) in optical lattices are investigated for the case of number
of atoms per site larger than one. To account for mean field repulsion between
the atoms in each well, we construct an orthogonal set of Wannier functions. The
resulting hopping amplitude and on-site interaction may be substantially different
from those calculated with single-atom Wannier functions. As illustrations of
the approach, we consider lattices of various dimensionality and different mean
occupations. We find that in three-dimensional optical lattices the correction to
the critical lattice depth is significant enough to be measured experimentally even
for a small number of atoms. Finally, we discuss the validity of the single-band
model.
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1. Introduction

Numerous many-body phenomena have been recently demonstrated with Bose—Einstein
condensates (BEC) in optical lattices [1]-[3]. Number squeezing has been observed with 8’Rb
atoms in a one-dimensional lattice of pancake-shaped wells [1], and superfluid to Mott-insulator
transitions have been witnessed with such atoms in three-dimensional and one-dimensional
optical lattices [2]. Such transitions were predicted by theoretical studies based on the Bose—
Hubbard model [4] and by microscopic calculations of the model parameters for BEC in optical
lattices [5, 6].

A very important question is: is it possible to observe superfluid to Mott-insulator transitions
for the mean occupation number n larger or even much larger than one? The phenomenological
single-band Bose—Hubbard model indeed predicts such transitions. Previous calculations of the
model parameters J, hopping amplitude, and U, on-site interaction, were based on the lowest
band Wannier functions for a single atom in an optical lattice. Repulsive interaction between
the atoms for n > 1 may cause the wavefunction in each well to expand in all directions, not
only affecting the on-site interaction U [7] but also strongly enhancing tunnelling J between
neighbouring wells. This is especially significant in lower dimensional lattices with transverse
potential bigger than the lattice wells where large occupations can be achieved without substantial
three-body collisional loss. In order to provide theoretical guidance for experimental observation
of Mott transitions in such systems, it is very important to obtain accurate critical parameters of
the lattice potential for lattice occupations beyond unity.

Here, we show how to construct an orthogonal basis of Wannier functions with mean-field
atomic interactions taken into account. We use it to obtain renormalized values of parameters J
and U, from which critical depth of the potential V is calculated for various lattices of different
dimensionality and mean occupation. For the cubic optical lattice with n = 2 or larger, our result
is noticeably larger than that calculated without taking interaction into account. This increase is
more pronounced for the anisotropic cases with stronger lattice potentials in one or two directions.
For the case of one-dimensional lattice of pancake-shaped wells [1] or two-dimensional lattice
of tubes [3], our results are several times larger than critical values calculated from one-atom
Wannier functions. This is in agreement with the experimental findings that much higher lattice
potentials are needed to reach the transition point in such cases.
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Kohn developed a variational approach to calculate electronic Wannier functions in
crystals [8]. We modify this procedure by minimizing on-site energy self-consistently taking
into account interaction between atoms.

In the section 4, we address validity of the single-band Bose—Hubbard model constructed
with variational Wannier functions. The conditions for the model to be valid need to be modified
from those for a single particle case since the interaction between the particles alters the band
structure substantially [9]. For the model to be valid, two conditions have to be fulfilled: (i) when
the number of particles in a well changes by one the variational Wannier function should not
change significantly and (ii) collective excitations of the atoms within each well should be less
energetically favourable than atom hopping between the wells.

2. Bose-Hubbard model and Wannier functions

For bosonic atoms located in the lattice potential V(r) and described by boson field operators
Y¥(r), the Hamiltonian field operator is

. [ s ] 1 4ma i’
H= [ o' [~ v+ v lpw + 5

/ dr ¥ ()Y ()Y@ Y(r), (1

where q; is the atoms’ scattering length and m is the mass. To illustrate our methods we use as
an example an isotropic cubic lattice. We assume that the boson field operator may be expanded
as ¥(r) = ). b;W(r — r;), where b; is the annihilation operator for an atom in the Wannier state
of site r;. Substituting this expansion into the Hamiltonian, we obtain the problem of lattice
bosons. We consider the case when the number of atoms per site n; fluctuates around the average
number 7. This results in the standard Bose—Hubbard Hamiltonian

H_—JZbTb +— Zn(n,—1)+ZnI 2)
(i)

where the effective on-site repulsion U, the hopping amplitude J and the on-site single-atom
energy / are defined by

82 f
) 3
hz
= /dr W*(r) [——V2 + V(r):|W(r +a), 4)
2m
h2
[ = / dr W*(r) [—2—v2 + V(r)] W(r), (5)
m
where g = 4mai’/m and a is the lattice vector. On-site energy f is defined as
f=nl+Upnmn—1)/2, (6)
with the bare on-site interaction U,
Uo = g/der(r)|4- (7)
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We assume that the Wannier function does not change much for small fluctuations of the number
of atoms. Off-site interactions are also neglected.

In case of more than one atom per site, the presence of other atoms does modify the Wannier
function of an atom. Below we describe our strategy for its self-consistent calculation. We start
with a trial wavefunction localized in each well, g(r — r;). A Wannier function corresponding to
the lowest Bloch band may be constructed according to Kohn’s transformation

dk elkr
W(r) = c;gr —r;), ¢ = fp—— 8
(r) Z g(r —r;) oy JES (®)
where the integral is over the first Brillouin zone and
Gk) =) f dr g(r)g(r — ;) cos(k - ;). ©)

For an odd Wannier function, the cosine function should be replaced by the sine function. One can
show that such Wannier functions are normalized and are orthogonal to each other for different
wells. We vary the trial function to minimize the on-site energy f°.

We note that another method to calculate the Wannier functions including interaction effects
self-consistently may be used for small interactions. Starting with nonlinear time-independent
Gross—Pitaevskii equation

47th’ay )
(Y@1Y () + V) () = wk)p(r), (10)

m

h2
— Vi) +
2m
one may calculate periodic Bloch states uy (r) defined as
Yi(r) = e“Tuy (1) /VN (1)

by expanding them in Fourier series

e (x) = Y Akeme (12)

and solving nonlinear system of equations. Then, a set of Wannier wavefunctions for the band
in question is defined by

Wo(r —a) = L™ i —a) = L7 ) "9, ()™, (13)
BZ BZ

This procedure fails for large interactions because the bands develop loops and cease to be
single-valued [9].

3 According to Kohn [8], minimization of the on-site energy for non-interacting particles does indeed give the
correct Wannier functions for the lowest band, provided one starts with a sufficiently localized trial wavefunction
of the correct symmetry.
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3. Superfluid to Mott-insulator transitions

We consider three optical lattice systems which are relevant to experiments: (i) isotropic three-
dimensional optical lattices, (ii) anisotropic three-dimensional lattices, and (iii) the situation
when the lattice potential is present only in one or two directions and confinement in other
directions is provided by a relatively weak harmonic trap. Following standard practice, we will
use the lattice period 7/ k, atomic mass m and recoil energy E, = /*k?/2m as the basic units.

Three pairs of counter-propagating laser beams with wavelength 27/ k propagating along
three perpendicular directions create a potential

V(r) = V,sin?(kx) + V, sin(ky) + V, sin®(kz). (14)

Isotropic cubic lattices are created by beams of equal intensity. In this case V,=V,=V,=V,.

Anisotropic cubic lattices can be created by choosing the intensity of one or two beams
to be much larger than that of the others. Inthiscase V, =V, =V, > V., =Vyor V., =V, >
V,=V,=V,. Below we study the case when hiw, > u, where u is the chemical potential of
the atoms; thus the weak optical lattice is effectively one-dimensional or two-dimensional and
transverse motion is frozen to the ground state of the transverse confinement.

Transverse motion can also be decoupled in the experimentally relevant case when the lattice
potential is present only in one or two directions and atoms are confined in other directions by
a relatively weak harmonic trap: V7(ry) = sma?ri.

According to existing experiments, in our calculations throughout this work, we choose the
87Rb atomsin F = 2, m = 2 state with scattering length a, = 5.8 nm and the laser wavelength of
852 nm for the three- and two-dimensional lattices and 840 nm for the one-dimensional lattice.
All numerical results are obtained using 21 lattice wells in each direction with periodic boundary
condition. Convergence has been checked using 41 wells for some of the key results.

In each case, we calculate parameters of the Bose—Hubbard model based on the variational
approach described in the section 2. The critical condition for superfluid to Mott-insulator
transition has been found approximately as

U/zJ=2n+1+2ynn+1), (15)

where z is the number of nearest-neighbour sites [10]. By substituting the parameters into the
critical condition, we can map out the critical potential strength as a function of mean occupation.

In the following, we report our findings for isotropic and anisotropic three-dimensional
lattices, one-dimensional lattice of pancake wells and two-dimensional lattice of tubes.

3.1. Isotropic cubic lattice

In the case of the isotropic cubic lattice, we choose the variational trial function to be in the form
_ . _ 2 7142/0'2 . .

g(r) =gx)g(y)g(z), with g(u) = (1 +au*)e , where o and o are variational parameters.

Then the Wannier function must also be of the product form W(r) = w(x)w(y)w(z), with the

one-dimensional functions w(u) and g(u) related by the one-dimensional version of Kohn’s

transformation. All the three-dimensional integrals in equations (2)—(15) can then be reduced to

one-dimensional ones, greatly simplifying the calculations.
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Figure 1. Dependence of various interaction parameters on number of atoms
for V =35E,. U and U, are defined by (3) and (7) respectively. The derivative
in (3) is calculated by Chebyshev fitting to function f. Interaction parameter
Ups calculated with single particle Wannier function is defined as Uy =
g f dr |Wy(r)|*, where Wy (r) is a single-atom Wannier function.
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Figure 2. Hopping elements calculated with single particle Wannier function,
Jos = [ dr Wi (r)[=h*V?/2m + V(r)]Wy(r + a), and with the variational proce-
dure described in the text, J. Depth of the lattice is V = 35E,.

Our calculations proceed as follows. For a given V) and n, we start with certain initial
parameters « and o to obtain a trial Wannier function through Kohn’s transformation and calculate
the on-site energy f. The procedure is repeated by varying the parameters until the on-site energy
f is minimized. The resulting variational Wannier function will depend on both n and Vj. If only
the on-site single-atom energy / is minimized, one obtains the single-atom Wannier function
Wy (r) which only depends on V{. We find that interaction broadens the Wannier functions; as
a result Uyg is always larger than U, (figure 1), and J is always larger than Jyg (figure 2), but
we also notice that the effective interaction U can be larger than U (see figure 1). So the phase
transition is more complex than we expected.

Once the Wannier function is determined, we can calculate the Bose-Hubbard parameters
U and J. In figure 3, we depict the ratio U/zJ (z = 6) as a function of the mean occupation n for
several values of the potential strength Vj. The decreasing trend can be understood as follows.
The total interaction energy increases with n, making the Wannier function broader; hence the
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U/zJ

Figure 3. The ratio U/zJ versus mean occupation n calculated from the varia-
tional Wannier functions for isotropic cubic lattice. For each given parameter Vj,
intersection with the solid line yields the mean occupation number for which the
given Vj is critical—the condition in equation (15).

interaction parameter U becomes smaller, J proportional to the overlap between neighbouring
Wannier functions becomes larger, and as a result the ratio decreases. The intersection with the
line of critical condition (in figure 3 the line with positive slope obtained from equation (15))
then yields the mean occupation for which these potentials are critical. For n = 1, 2, 3 and 4,
we find the critical potentials to be V., = 11.95, 14.32, 16.25 and 18.15 respectively. A similar
calculation can be done by using the single-atom Wannier function. The critical potentials become
11.85, 13.47,14.61 and 15.43 for the first four mean occupations. For n = 1, the two results
agree with each other within numerical uncertainty®, and are also consistent with experimentally
determined range for the critical potential [2]. For n > 1, the mean field repulsion makes the
critical potential noticeably higher. Starting from n = 3, the correction to the critical depth of
the lattice has to be clearly observable experimentally and effects of interaction have to be taken
into consideration.

3.2. Anisotropic cubic lattices

Our procedure can also be applied to the case of an anisotropic lattice. We model the system as
a lower dimensional problem with the reduced interaction parameter g, obtained by multiplying
g by the integral of |y, |*, where ¥, is the single-atom ground state wavefunction in a well
of the transverse potential [5]. In the harmonic approximation, the wavefunction can be found
exactly, and the reduced interaction parameter is given by g, = (gm/2)/V, for the quasi-one-
dimensional lattice and g, = g\/g{‘/V_L for the quasi-two-dimensional lattice. In the calculations
discussed below, we take V, = 80F..

To find the Wannier functions for the lower dimensional lattices, we use these reduced
interaction parameters in our procedure, replacing all the three-dimensional integrals in
equations (4), (5) and (7) by lower dimensional ones. The critical lattice potential V. calculated
using such variational Wannier functions is depicted in figure 4 for the one- and two-dimensional

® The numerical errors come from optimizing the Wannier function, resulting in uncertainty of ~0.15 in V. The
result forn = 1 is slightly lower than that reported in [2] based on single-atom Wannier function obtained from band
structure calculations. In principle, our calculation can be made more precise by using more variational parameters
in the trial functions (see [8]).
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181
161
144
12

104

Figure 4. The critical lattice potential V, calculated from the variational and
single-atom Wannier functions for anisotropic cubic lattices. The lines are guides
to eyes. The dashed lines are for the quasi-one-dimensional and the solid lines
are for quasi-two-dimensional cases. The triangles correspond to the variational
and the circles to the single-particle calculations.

models. For comparison, we also include results calculated using the one-atom Wannier function.
The increase of critical potential due to mean-field repulsion on the Wannier functions is
somewhat larger in the lower dimensional cases.

3.3. Lattices in one or two directions

BECs in a one-dimensional lattice of pancake-shaped wells and two-dimensional lattice of tube-
shaped wells have been studied in experiments [ 1, 3]. Because of the large transverse dimensions
of such wells, many atoms can be held in a well without suffering too much three-atom collisional
loss, opening the possibility of studying the superfluid to Mott-insulator transition for relatively
large n [7, 11]. In a theoretical investigation, van Oosten et al [ 7] considered the interaction effect
by using a transverse wavefunction in the Thomas—Fermi approximation without modifying
the single-atom Wannier function in the lattice direction(s). Here, we extend their work by
considering the interaction effect on the Wannier functions as well.

For the pancake-like BEC array, the transverse wavefunctions are approximated by the
Thomas—Fermi wavefunction ¢r(r ) of the BEC within the pancake plane, which is defined by

lpre(r)I? = (ng1) ' — Vr(ry)l, (16)

foru > Vr(ry) = %mwiri and vanishes otherwise. According to the experimental data, we take
w, =19 x 2ws™.

We begin by writing the Wannier function in the form, W(r) = w(r,)¢(r, ), where ¢ is
the wavefunction for the transverse direction(s) and w is the Wannier function in the lattice
direction(s), both to be determined variationally by minimizing the on-site energy. The part of
the on-site energy involving ¢ is just the n-particle Gross—Pitaevskii energy in the transverse
potential and with the interaction parameter g modified into g; by multiplying the integral
of |w(ry)|*. In the Thomas—Fermi approximation, this ‘transverse energy’ is given by f| =

(2n — 1/3)/nmaw? g, /7 for the one-dimensional case and f; = (5n — 2/10)(9mw? n*g3)'/3
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Figure 5. The critical lattice potential V. in dependence on mean occupation
n calculated from the variational (triangle) and single-atom (circle) Wannier
functions for: (a) the one-dimensional lattice with w, = 27 x 19s~! (dashed
line) and w, = 27 x 120s~! (solid line), and (b) two-dimensional lattice with
w, =2 x 24s~!. The lines are guides to the eye.

for the two-dimensional case. The total on-site energy is the sum of this ‘transverse energy’ and
n times of the single-atom energy of the lattice Wannier function:

2

h
f=f+n / dr; w*(ry) [—%VZ + V(rL)] w(ry). (17)

The lattice Wannier function, obtained by the procedure of Kohn’s transformation and
minimization of the on-site energy, will be affected by the interaction because the ‘transverse
energy’ depends on it through the reduced interaction parameter g,. After w(ry) is determined
variationally, the Bose—Hubbard parameters J and U can be calculated immediately. In
figure 5(a), we show the critical potential V. for the case of one-dimensional lattice with transverse
trap frequency w, /27 = 19 and 120s~!.

For comparison, we also show the corresponding results obtained using the single-atom
Wannier function of the lattice and the Thomas—Fermi transverse wavefunction. It is clear that
V. is raised dramatically due to the broadening of the Wannier function. In the experiment
of [1], the magnetic trap potential is 19s~!. The transverse trap frequency is enhanced to
120 s~ if the optical confining potential with Vi, = 50, is turned on, and the mean occupation
number is n ~ 50. Evidence from Bragg interference pattern shows that the critical value of the
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Figure 6. The energy associated with hopping (process 1) has to be smaller than
the energy to excite the many-body state in well (process 2). Many-body excitation
is schematically depicted as a single-atom excitation.

lattice potential should be somewhat larger than 44 E,. This observation is contradictory to the
prediction based on the single-atom Wannier function, but is consistent with our result based on
the variational Wannier function.

In the case of the two-dimensional lattice, our results for the critical lattice potential are
shown in figure 5(b) for w, /2w = 24 s~! whichis used in [3]. We predict V, ~ 33E, forn ~ 100,
while the single-atom Wannier function yields V, ~ 27E.. The largest lattice potential used in
the experiment was 12 E,, so further experiment is needed to verify the theoretical predictions.

4. Validity of the single-band model

In this section, we discuss the conditions for the single-band Bose—Hubbard model to be valid.
First, we make general remarks and then give quantitative examples relevant for the case of the
isotropic cubic lattice.

Assumption that the boson field operator may be expanded as ¥(r) =)  b;W(r —r;)
requires that the Wannier functions do not change substantially when the number of atoms
in a well changes by one. A good criterion for this condition to be fulfilled is that the interaction
energy calculated with the Wannier function does not change much when the number of particles
changes by one

|Un — Unsi

1. 18
Un + Un+1 < ( )

Note that the value of U can still be quite different from the one calculated with a single-particle
Wannier function.

When the condition is fulfilled, the second condition is that the excitations within the ansatz
have to be the least energetic. That is, the hopping of the atoms from well has to be more
energetically favourable than excitation of atoms in each well to the many-body excited state
(see figure 6). If we consider two neighbouring wells, the energy of the ground state is

Eo=2nl+Upmmn —1). (19)

The energy associated with hopping is

— ) —1 1
AE, = 2ml + U, =20 2)+”("+)—E0:UO. (20)
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Figure 7. Relative change in the interaction energy as number of atoms changes
by one determined by the change of the Wannier wavefunction.

0.02 r
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Figure 8. Ratio of the hopping energy to energy required to excite atoms in each
well to the lowest many-body excited state.

It has to be much smaller than the energy of the first excited many-body state that we denote A

Up < A. 21)

We plot the criteria from equation (18) for isotropic lattices on figure 7. It is much
smaller than unity. To estimate the effect of many-body excitation within a single well, we
neglect hopping amplitude J, since close to the Mott-insulator transition it is much smaller
than the atom’s interaction. Also for the experimentally relevant region of the potential depths
the potential can be well approximated by a harmonic potential. In the harmonic potential,
the lowest many-body excited mode is associated with the centre of mass motion—the Kohn
mode [12]. As a result A ~ hw. Since we neglect the tunnelling, we may start directly with
the variational form for the Wannier function in a well. We take W(x, y, z) = W(x)W(y)W(z),
where W(u) = C(1 + ﬁuz)e*””z. Similar to section 3, for a fixed V|, and n we minimize the on-site
energy f. From the results shown in figure 8, it is clear that the single-band model is applicable
in this case: the energy associated with the atom’s hopping is much smaller than the energy
required to excite the atoms inside the wells.

New Journal of Physics 8 (2006) 154 (http://www.njp.org/)


http://www.njp.org/

12 Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Acknowledgments

We thank Dan Heinzen, Yu-Peng Wang, Shi-Jie Yang and Li You for useful discussions. This
work was supported in part by the National Science Foundation of China, the National Science
Foundation (NSF) of USA, and the Welch Foundation of Texas.

References

[1] Orzel C, Tuchman A K, Fenselau M L, Yasuda M and Kasevich M A 2001 Science 291 2386
[2] Greiner M, Mandel O, Esslinger T, Hiansch T W and Bloch I 2002 Nature 415 39
Stoferle T, Moritz H, Schori C, Kohl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403
[3] Greiner M, Bloch I, Mandel O, Hansch T W and Esslinger T 2001 Phys. Rev. Lett. 87 160405
[4] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
[5] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[6] Javanainen J 1999 Phys. Rev. A 60 4902
[7] van Oosten D, van der Straten P and Stoof H T C 2003 Phys. Rev. A 67 033606
[8] Kohn W 1973 Phys. Rev. B 7 4388
[9] Wu B and Niu Q 2003 New J. Phys. 5 104
[10] Krauth W, Caffarel M and Bouchaud J-P 1992 Phys. Rev. B 45 3137
Sheshadri K ef al 1993 Europhys. Lett. 22 257
Freericks J K and Monien H 1994 Europhys. Lett. 26 545
[11] Polkovnikov A, Sachdev S and Girvin S M 2002 Phys. Rev. A 66 053607
Altman E and Auerbach A 2003 Phys. Rev. Lett. 89 250404
[12] Pethick CJand Smith H 2002 Bose—Einstein Condensation in Dilute Gases (Cambridge: Cambridge University
Press) chapter 7

New Journal of Physics 8 (2006) 154 (http://www.njp.org/)


http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevA.67.033606
http://dx.doi.org/10.1103/PhysRevB.7.4388
http://dx.doi.org/10.1088/1367-2630/5/1/104
http://dx.doi.org/10.1103/PhysRevB.45.3137
http://dx.doi.org/10.1103/PhysRevA.66.053607
http://dx.doi.org/10.1103/PhysRevLett.89.250404
http://www.njp.org/

	1. Introduction
	2. Bose--Hubbard model and Wannier functions
	3. Superfluid to Mott-insulator transitions
	3.1. Isotropic cubic lattice
	3.2. Anisotropic cubic lattices
	3.3. Lattices in one or two directions

	4. Validity of the single-band model
	Acknowledgments
	References

