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Abstract. We show that some of the Josephson couplings of junctions arranged
to form an inhomogeneous network undergo a non-perturbative renormalization
provided that the network’s connectivity is pertinently chosen. As a result, the
zero-voltage Josephson critical currents Ic turn out to be enhanced along directions
selected by the network’s topology. This renormalization effect is possible only on
graphs whose adjacency matrix admits a hidden spectrum (i.e. a set of localized
states disappearing in the thermodynamic limit). We provide a theoretical and
experimental study of this effect by comparing the superconducting behaviour of
a comb-shaped Josephson junction network and a linear chain made with the same
junctions: we show that the Josephson critical currents of the junctions located
on the comb’s backbone are bigger than those of the junctions located on the
chain. Our theoretical analysis, based on a discrete version of the Bogoliubov–de
Gennes equation, leads to results which are in good quantitative agreement with
experimental results.
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It is a common belief that Josephson junction networks (JJN) may be regarded as the prototype
of a complex physical system with a variety of interesting physical behaviours, adjustable acting
only on a few external parameters and, by means of modern fabrication technologies, also on
the building topology and geometry of the array (see for instance [1]). In complex systems ([2]
and related articles in the same issue), one expects both emergence, namely the generation of
new properties that do not pre-exist in a system’s constituents, and enhanced responses which,
as we shall show in the following, may be induced in a JJN by a pertinent choice of the network
topology. Furthermore, many of the results valid for JJNs are shared by cold atoms in optical
lattices [3] since, in these systems, bosonic Josephson junctions (JJs) and arrays may be rather
easily realized [4]; in addition, Josephson networks and devices pave a very promising avenue to
the quantum engineering of states of potential interest for their uses in quantum computing [5].

Inhomogeneous superconducting networks have been studied [6] mainly to provide a better
understanding of the properties of well-controlled disordered granular superconductors [7].
The appealing perspective to realize devices for the manipulation of quantum information
recently stimulated the analysis of inhomogeneous planar JJNs with non-conventional
connectivity [8], engineered to sustain a topologically ordered ground state [9]. Transport
measurements on superconducting wire networks evidenced—in a pure system with non-
dispersive eigenstates—interesting anomalies of the network critical current induced by the
interplay between the network’s geometry and topology and an externally applied magnetic
field [10]; more recently, the theoretical analysis of rhombi chains has evidenced the exciting
possibility of being able to detect 4e superconductivity through measurements of supercurrent
in the presence of a pertinent external magnetic field [11].

In this paper, we show that, even in absence of an externally applied magnetic field, a
JJN fabricated on a pertinent graph [12] may support anomalous behaviours of the Josephson
critical currents, which are induced by a non-perturbative renormalization of some of the
Josephson couplings of the array. Our analysis clearly evidences that this renormalization is
only attainable for the class of graphs whose adjacency matrix supports an hidden spectrum [12,
13]; thus, our findings are not generic to any inhomogeneous JJN. For instance, in absence of an
external magnetic field, the networks analysed in [6]–[8], [10, 11] should not give rise to any of
the anomalous behaviours of Ic discussed in this paper.

In the following, we provide a theoretical and experimental study of the behaviour of the
Josephson critical currents measurable in a comb-shaped JJN made of Nb grains located at the
vertices of a ‘comb’ graph and linked by JJs (see figure 1). We compare our results with those
obtained for a linear Josephson junction chain fabricated with the same junctions. Since one
may regard the backbone of a comb graph as a decorated chain, it appears natural to compare its
superconducting properties with those of a linear chain since the latter is the simplest network
with euclidean dimension one. The result of this comparison shows that the Josephson critical
currents of the junctions located on the comb’s backbone are appreciably bigger than the ones
of the junctions located on the chain.

Another way to look at a comb-shaped JJN is to regard it as a linear chain immersed
in an environment mimicked by the addition of the fingers [14]. As in many Josephson
devices one should then expect that the nominal value of the Josephson energy EJ of the
junctions in the array gets renormalized by the interaction with the environment. This situation
is often analysed using either the Caldeira–Leggett [15] or the electromagnetic environment
[16] models. In these approaches, one usually assumes that the effective boundary conditions
for the quantum fluctuations of the environment modes do not depend on the Josephson
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Figure 1. Schematic drawing of a comb array. The superconducting islands
(full box) are connected in series to each other through JJs. The finger arrays
are connected to each other only through JJs to the central islands forming the
backbone array.

couplings or on the network’s topology: while this assumption is perfectly legitimate for weak
environmental fluctuations, better care should be taken if these fluctuations are strong as may well
happen for one-dimensional (1D) JJNs. A simple paradigmatic example of a non-perturbative
renormalization of Josephson couplings is given by the simple inhomogeneous 1D array analysed
in [17, 18], where the source of inhomogeneity is given by putting on a site of the linear chain
a test junction with a different nominal value of the Josephson coupling EJ. In the following we
show that, for a comb-shaped JJN, the Josephson couplings on the backbone get renormalized.
Our explicit computation shows that this renormalization is indeed non-perturbative since the
peculiar connectivity of a comb modifies the spectrum of quantum modes living on linear chains
by the (obviously non-perturbative) addition of an infinite set of localized states, which disappear
in the thermodynamic limit (the hidden spectrum): adding the fingers to a backbone chain is, in
fact, a topological operation since it amounts to a non-trivial change of boundary conditions for
the Josephson linear chain. In a different context, the interplay between a hidden spectrum and
a change in boundary conditions has been recently used in [19].

We use the lattice Bogoliubov–de Gennes (LBdG) equations [20] to compare the properties
exhibited by Josephson linear chains and comb-shaped Josephson networks. Using the eigen-
functions of the LBdG equations, a self-consistent computation yields for both systems the
gap function, the chemical potential and the quasi-particle spectrum. We show that, for a linear
chain, the superconducting gap and critical temperature satisfy to the well-known BCS equations
and that, on the backbone of a comb JJN, the Bardeen–Cooper–Schrieffer (BCS) equations
are satisfied with a renormalized value of the Josephson energy. Then, we compute the zero-
voltage Josephson critical currents Ic on the comb’s backbone and compare our results for Ic

with the outcomes of experimental measurements: our computation not only confirms with good
accuracy the experimental results of [21], but is also in good agreement with new data—obtained
using the experimental apparatus and procedures described at length in [21]—determining Ic at
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Figure 2. Critical currents (in units of the critical current on the reference chain
at T = 1.2 K) as a function of T/Tc for the backbone and the chain. The solid lines
are the estimated critical currents for the backbone (top) and the chain (bottom).
Circles (squares): experimental values for the chain (backbone).

temperatures closer to the critical temperature for the onset of superconductivity in Nb grains.
The new data are shown in figure 2.

To obtain a discrete version of the BdG equations suitable to describe the JJNs fabricated in
[21], we make the ansatz that the eigenfunctions of the continuous BdG equations [20] may be
written in a tight binding form as uα(�r) = ∑

i uα(i)φi(�r) and vα(�r) = ∑
i vα(i)φi(�r); i labels the

position of a superconducting island while the contribution of the electronic states participating
to superconductivity in a given island is effectively described by a field φi(�r), whose specific
form depends only on the geometry of the islands and on the fabrication parameters of the
connecting junctions. The assumption that φi(�r) does not depend on α means that we account
only for contributions coming from electrons near the Fermi surface. The LBdG equations
then read

∈α uα(i) =
∑

j

εijuα(j) + �(i)vα(i), (1)

∈α vα(i) = −
∑

j

εijvα(j) + �∗(i)uα(i), (2)

where uα and vα satisfy to
∑

i[|uα(i)|2 + |vα(i)|2] = 1. The matrix εij is defined by εij =
−tAij + U(i)δij − µ̃δij, with Aij being the adjacency matrix of the network [22], µ̃ = µ

− ∫
d�rφi(�r)

(−h̄2∇2/2m
)
φi(�r) and t = − ∫

d�rφi(�r)[ − h̄2∇2/2m + U0(�r)]φj(�r) ≈ EJ. EJ =
(h̄/2e)Ic is the nominal value of the Josephson energy of all the junctions in the network,
while Ic is the unrenormalized zero-voltage Josephson critical current of each junction. U0(�r)
mimics the effects of the barrier between the superconducting islands. Self-consistency requires
�(i) = Ṽ

∑
α uα(i)v

∗
α(i) tanh

(
β

2 ∈α

)
and U(i) = −Ṽ

∑
α[|uα(i)|2fα + |vα(i)|2 (1 − fα)], where
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Ṽ ≡ Vφ2(�r = �ri) is assumed to be independent on i. Topology is encoded in the term −tAij

appearing in the definition of the matrix εij, while the specific values of t and Ṽ depend—as
a result of our ansatz on the form of the eigenfunctions of the BdG equations—only
on the φi(�r).

To justify the assumptions involved in the derivation of equations (1) and (2), we observe
that, for the JJNs described in [21], capacitive (inter islands and with a ground) effects are
negligible, that the total number of electrons on the island N is much larger than the number
of electrons tunnelling through the JJ and that all islands contain approximately the same N
(N (i) ≡ N ). Furthermore, the islands are big enough to support the same superconducting gap
of the Nb bulk material. As a result one may require φi(�r) to be position-independent on each
island except for a small region near the junction and to be the same on each island with a
normalization given by

∫
d�rφi(�r)φi(�r) = N (i) ≡ N and

∫
d�rφi(�r)φj(�r) ≈ 0 for i �= j. In our

derivations, we put N ≡ 1.
For a linear array, the LBdG may be readily solved leading to a uniform potential U(i) ≡ Uc

and an uniform pair potential �(i) ≡ �c. From the eigenvalue equation −EJ
∑

j Aijψk(j) =
ekψk(i), one gets ek = −2EJ cos k: it follows ∈k=

√
�2

c + E2
k with Ek = ek + Uc − µ̃. The BCS-

like behaviour is obtained when Ek = ek, which happens since Uc = 0 and µ = EF. When
�c/EJ � 1, for T = 0, one gets �c(T = 0) = 8EJe−2πEJ/Ṽ , while, for T = Tc (i.e., �c(T =
Tc) = 0), one obtains kBTc = CEJe−2πEJ/Ṽ , with C = 4.54. It is comforting that the assumptions
on which our approach is based lead, for the chain, to results having the same functional form of
the well-known BCS formulae for the gap at T = 0 (i.e., �(T = 0) = 2h̄ωDe−1/n(0)VBCS) and the
BCS critical temperature (i.e., kBTc = 1.14h̄ωDe−1/n(0)VBCS), provided that n(0)VBCS � 1 [20]:
in addition, one gets also �c(T = 0)/kBTc = 8/C ≈ 1.76.

Measurements on a chain made with Nb grains yield Tc ≈ 8.8 K and �c(T = 0) ≈
1.4 meV ≈ kB · 15.9 K; furthermore, in the experimental set-up described in [21] it is Ic ≈
18 µA. The parameters EJ and Ṽ , determined from the BCS equation yielding the chain’s critical
temperature, are then given by EJ ≈ kB · 430 K and Ṽ/EJ = 1.185. In figure 2, we plot for several
temperatures the measured Ic (circles) and the critical currents obtained inserting �c(T) in the
well-knownAmbegaokar–Baratoff expression [23] for the zero-voltage Josephson current (lower
solid curve): the agreement is excellent.

For a comb network with N × N islands (see figure 1), one finds a solution of the LBdG
equations (1) and (2) where both the Hartree–Fock potential U(i) and the gap function �(i) are
position dependent.We denote the islands by (x, y), x labelling the finger and |y| the distance from
the backbone, expressed in lattice units. The eigenvalue equation −EJ

∑
j Aijψα(j) = eαψα(i),

admits [22], in addition to a set of delocalized states with energies ranging from −2EJ to 2EJ,
a localized ground-state ψ0 = (C0/

√
N)e−y/ξ, corresponding to the eigenvalue e0 = −2

√
2EJ

(C2
0 = 1/

√
2 and ξ given by sinh (1/ξ) = 1) and an hidden spectrum made of other eigenstates

localized around the backbone [22]. For a crude analytical estimate, one may require that, away
from the backbone, the fingers may be regarded as a linear chain with uniform potentials (i.e.,
�(i) = �c and U(i) = Uc). To get then coupled equations for �b, �c, Ub, and Uc, one writes the
LBdG equations (1) and (2) on a backbone’s grain i.We set uα(i) = Uαψα(i) and vα(i) = Vαψα(i),
withU2

α + V 2
α = 1. The self-consistency equation forU implies that, atT = 0,Ub ≈ Uc − ṼC2

0/2;
upon requiring µ̃ ≈ Ub one immediately sees that, due to the localized modes in the fermionic
spectrum, the chemical potential on the comb’s backbone is smaller than the one measured on
the chain.
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By substituting the wavefunctions of the eigenstates of the hidden spectrum [22] in equations
(1) and (2) and using µ̃ ≈ Ub one gets

�b = �c +
�bṼ
π

∫ π/2

0
dk

cos k

∈k

√
1 + cos2 k

tanh

(
β

2
∈k

)
, (3)

where ∈k =
√

�2
b + 4E2

J (1 + cos2 k). The hidden spectrum eigenstates contribute to the gap
function �b through the second term in the right-hand side of equation (3): without them, �b

equals �c.
When EJ 
 �b, �c, equation (3), at T = 0, yields �b(T = 0)/�c(T = 0) =

1/(1 − (ηcṼ/2πEJ)) ≡ K where ηc ≡ (1/
√

2) log (1 +
√

2). Furthermore, at low temper-
atures, �b(T)/�c(T) ≈ �b(T = 0)/�c(T = 0). Using the parameters EJ and Ṽ obtained from
the measurements carried on the JJ chain, for a JJ comb one gets K ≈ 1.13.

Upon requiring that, as for the linear chain, the T = 0 backbone’s gap function has a BCS

like functional form, i.e. �b(T = 0) = 8ĒJe−2πĒJ/
¯̃V , with ĒJ and ¯̃V the renormalized Josephson

energy and the renormalized interaction term, one is able to estimate the renormalization of the
Josephson coupling within the LBdG approach. Namely, one has,

ĒJ = KEJ; ¯̃V = KṼ, (4)

which embodies the effects of the hidden spectrum on the Josephson couplings.
In figure 2 we plot, as a function of the normalized temperature, the values of Ic measured

with the methods described in [21] (squares) and the values of Ic obtained from the Ambegaokar–
Baratoff formula using both the renormalized coupling given by equation (4) and the gap
function along the backbone for the comb-like JJN studied in [21] (solid curve): the agreement
between theory and experiments is very good at low temperatures, while the theory gives a slight
overestimate at higher temperature.

In conclusion, we have shown that a non-perturbative (i.e. induced by the states of the
hidden spectrum) renormalization of some of the Josephson couplings of a comb-shaped JJN
is responsible for the observed enhancement of Ic of the Josephson junctions located along the
comb’s backbone. We used an effective theory based on the BdG equations since it allows for
a simple and rather intuitive derivation of equation (3) which very clearly evidences the crucial
role played by the hidden spectrum in determining the enhancement of the Josephson current
along the comb’s backbone. Furthermore, it allows us to clearly state the key assumptions made
in our derivation; namely, that the eigenfunctions of the BdG equations may be written in a tight
binding form and that only the fermions close to the Fermi surface contribute to determine EJ;
once these assumptions are made, one is able to derive equations (1) and (2) and to account
for all the dependence on the electronic states into the definition of the parameters EJ and Ṽ ,
which, in this paper, we determined from the measurements carried on the linear chain. Our
approach yields a value of the renormalized Josephson coupling of the junctions located on the
comb’s backbone in excellent agreement with the experimental results (see figure 2). We expect
that similar phenomena happen for the class [13] of JJNs fabricated on graphs whose adjacency
matrix supports a hidden spectrum.
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