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Abstract. We have analysed available optical data for Au in the mid-infrared
range which is important for a precise prediction of the Casimir force. Significant
variation of the data demonstrates genuine sample dependence of the dielectric
function. We demonstrate that the Casimir force is largely determined by the
material properties in the low frequency domain and argue that therefore the
precise values of the Drude parameters are crucial for an accurate evaluation of
the force. These parameters can be estimated by two different methods, either by
fitting real and imaginary parts of the dielectric function at low frequencies, or via
a Kramers–Kronig analysis based on the imaginary part of the dielectric function
in the extended frequency range. Both methods lead to very similar results.
We show that the variation of the Casimir force calculated with the use of different
optical data can be as large as 5% and at any rate cannot be ignored. To have a
reliable prediction of the force with a precision of 1%, one has to measure the
optical properties of metallic films used for the force measurement.
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1. Introduction

The Casimir force [1] between uncharged metallic plates attracts considerable attention as a
macroscopic manifestation of the quantum vacuum [2]–[6]. With the development of micro-
technologies, which routinely control the separation between bodies smaller than 1 µm, the force
became a subject of systematic experimental investigation. Modern precision experiments have
been performed using different techniques such as torsion pendulum [7], atomic force microscope
(AFM) [8, 9], microelectromechanical systems (MEMS) [10], [11]–[15] and different
geometrical configurations: sphere–plate [7, 9, 12], plate–plate [16] and crossed cylinders
[17]. The relative experimental precision of the most precise of these experiments is
estimated to be about 0.5% for the recent MEMS measurement [13] and 1% for the AFM
experiments [9, 10].

In order to come to a valuable comparison between the experiments and the theoretical
predictions, one has to calculate the force with a precision comparable to the experimental
accuracy. This is a real challenge to the theory because the force is material, surface, geometry
and temperature dependent. Here, we will only focus on the material dependence, which is easy
to treat on a level of some percent precision but which will turn out difficult to tackle on a high
level of precision since different uncontrolled factors are involved.

In its original form, the Casimir force per unit surface [1]

Fc (a) = − π2

240

h̄c

L4
(1)

was calculated between ideal metals. It depends only on the fundamental constants and the
distance between the plates L. The force between real materials differs significantly from (1) for
mirror separations smaller than 1 µm.

For mirrors of arbitrary material, which can be described by reflection coefficients, the force
per unit area can be written as [18]:

F = 2
∑

µ

∫
d2k
4π2

∫ ∞

0

dζ

2π
h̄κ

rµ[iζ, k]2 e−2κL

1 − rµ[iζ, k]2 e−2κL
κ =

√
k2 +

ζ2

c2
(2)
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where rµ = (rs, rp) denotes the Reflection amplitude for a given polarization µ = s, p

rs = −

√
k2 + ε (iζ)

ζ2

c2
− cκ√

k2 + ε (iζ)
ζ2

c2
+ cκ

rp =

√
k2 + ε (iζ)

ζ2

c2
− cκε (iζ)√

k2 + ε (iζ)
ζ2

c2
+ cκε (iζ)

(3)

The force between dielectric materials had first been derived by Lifshitz [19, 20]. The material
properties enter these formulae via the dielectric function ε (iζ) at angular imaginary frequencies
ω = iζ, which is related to the physical quantity ε′′ (ω) = Im (ε (ω)) with the help of the
dispersion relation

ε (iζ) − 1 = 2

π

∫ ∞

0
dω

ωε′′ (ω)

ω2 + ζ2
. (4)

For metals ε′′ (ω) is large at low frequencies, thus the main contribution to the
integral in equation (4) comes from the low frequencies even if ζ corresponds to the
visible frequency range. For this reason the low frequency behaviour of ε(ω) is of primary
importance.

The Casimir force is often calculated using the optical data taken from [21], which provides
real and imaginary parts of the dielectric function within some frequency range, typically
between 0.1 and 104 eV for the most commonly used metals, Au, Cu and Al, corresponding to a
frequency interval (1.519 × 1014, 1.519 × 1019) rad s−1 (1 eV = 1.519 × 1015 rad s−1).4 When
the two plates are separated by a distance L, one may introduce a characteristic imaginary
frequency ζch = c/2L of electromagnetic field fluctuations in the gap. Fluctuations of frequency
ζ ∼ ζch give the dominant contribution to the Casimir force. For example, for a plate separation
of L = 100 nm the characteristic imaginary frequency is ζch = 0.988 eV. Comparison with the
frequency interval where optical data is available shows that the high frequency data exceeds
the characteristic frequency by three orders of magnitude, which is sufficient for the calculation
of the Casimir force. However, in the low frequency domain, optical data exists only down
to frequencies which are one order of magnitude below the characteristic frequency, which is
not sufficient to evaluate the Casimir force. Therefore for frequencies lower than the lowest
tabulated frequency, ωc, the data has to be extrapolated. This is typically done by a Drude
dielectric function

ε (ω) = 1 − ω2
p

ω (ω + iωτ)
, (5)

which is determined by two parameters, the plasma frequency ωp and the relaxation
frequency ωτ .

Different procedures to get the Drude parameters have been discussed in the literature. They
may be estimated, for example, from information in solid state physics or extracted form the
optical data at the lowest accessible frequencies. The exact values of the Drude parameters are

4 In [18], a conversion factor 1.537 × 1015 rad s−1 was used, leading however to a negligible difference in the
Casimir force (well below 1%).
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very important for the precise evaluation of the force. Lambrecht and Reynaud [18] fixed the
plasma frequency using the relation

ω2
p = Ne2

ε0m∗
e

, (6)

where N is the number of conduction electrons per unit volume, e is the charge and m∗
e is the

effective mass of electron. The plasma frequency was evaluated using the bulk density of Au,
assuming that each atom gives one conduction electron and that the effective mass coincides
with the mass of the free electron. The optical data at the lowest frequencies were then used to
estimate ωτ with the help of equation (5). In this way, the plasma frequency ωp = 9.0 eV and the
relaxation frequency ωτ = 0.035 eV have been found. This procedure was largely adopted in the
following [9]–[11]. However, on the example of Cu, it was stressed in [18] that the optical data
may vary from one reference to another and a different choice of parameters for the extrapolation
procedure to low frequencies can influence the Casimir force significantly.

Bosträom and Sernelius [22], and Svetovoy and Lokhanin [23] extracted the low frequency
optical data by fitting them with equation (5). For one set of data from [24], the result [25] was
close to that found by the first approach, but using different sources for the optical data collected
in [24], an appreciable difference was found [23, 25]. This difference was attributed to the defects
in the metallic films which appear as the result of the deposition process. It was indicated that the
density of the deposited films is typically smaller and the resistivity larger than the corresponding
values for the bulk material. The dependence of optical properties of Au films on the details of
the deposition process, annealing, voids in the films, and grain size was already discussed in the
literature [26].

In this paper, we analyse the optical data for Au from several available sources, where the
mid-infrared frequency range was investigated. The purpose is to establish the variation range of
the Drude parameters and calculate the uncertainty of the Casimir force due to the variation of
existing optical data. This uncertainty is of great importance in view of the recent precise Casimir
force measurement [13, 27] which have been performed with high experimental accuracy. On
the other hand, sophisticated theoretical calculations predict the Casimir force at the level of
1% or better. These results illustrate the considerable progress achieved in the field in only one
decade. In order to assure a comparison between theory and experiment at the same level of
precision, one has to make sure that the theoretical calculation considers precisely the same
system investigated in the experiment. This is the key point we want to address in our paper.
With our current investigation, we find an intrinsic force uncertainty of the order of 5% coming
from the fact that the Drude parameters are not precisely known. These parameters may vary
from one sample to another, depending on many details of the preparation conditions. In order to
assure a comparison at the level of 1% or better between theoretical predictions and experimental
results for the Casimir force, the optical properties of the mirrors have to be measured in the
experiment.

The paper is organized as follows. In section 2, we explain and discuss the importance of
the precise values of the Drude parameters. In section 3, the existing optical data for gold are
reviewed and analysed. The Drude parameters are extracted from the data by fitting both real and
imaginary parts of the dielectric function at low frequencies in section 4. In section 5, the Drude
parameters are estimated by a different method using Kramers–Kronig analysis. The uncertainty
in the Casimir force due to the sample dependence is evaluated in section 6 and we present our
conclusions in section 7.

New Journal of Physics 8 (2006) 238 (http://www.njp.org/)

http://www.njp.org/


5 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

10
–2

10
–1

10
0

10
1

10
2

10
–2

10
0

10
2

10
4

10
6

ω (eV)

ε′
′(

ω
)

ω
p
=9.0 eV 

ω
τ
=0.035 eV 

ω
c
 ω

0
 

1 2 3 

10
–2

10
–1

10
0

10
1

10
–2

10
0

10
2

10
4

10
6

ζ (eV)

ε
(iζ

)

ε 

ε
1
 

ε
2

ε
3

Figure 1. Left panel: Palik’s Handbook data for Au [21] (solid line) extrapolated
to low frequencies (dotted line) with the Drude parameters indicated in the corner.
Right panel: contributions of different real frequency domains to the dielectric
function on the imaginary axis ε(iζ).

2. Importance of the values of the Drude parameters

In figure 1 (left panel) we present, a typical plot of the imaginary part of the dielectric function,
which comprises Palik’s Handbook data for gold [21]. The solid line shows the actual data
taken from two original sources: the points to the right of the arrow are those by Thèye [28]
and to the left by Dold and Mecke [29]. No data is available for frequencies smaller than the
cutoff frequency ωc (0.125 eV for this data set) and ε′′ (ω) has to be extrapolated into the region
ω < ωc. The dotted line shows the Drude extrapolation with the parameters ωp = 9.0 eV and
ωτ = 0.035 eV obtained in [18].

One can separate three frequency regions in figure 1 (left panel). The region marked as 1
corresponds to the frequencies smaller than ωc. The region 2 defining the Drude parameters
extends from the cutoff frequency to the edge of the interband absorption ω0. The high energy
domain ω > ω0 is denoted by 3.

We may now deduce the dielectric function at imaginary frequencies (4) using the Kramers–
Kronig relation

ε (iζ) = 1 + ε1 (iζ) + ε2 (iζ) + ε3 (iζ), (7)

where the indices 1, 2 and 3 indicate respectively the integration ranges 0 � ω < ωc,
ωc � ω < ω0 and ω0 � ω < ∞. ε1 can be derived using the Drude model (5) leading to

ε1 (iζ) = 2

π

ω2
p

ζ2 − ω2
τ

[
tan−1

(
ωc

ωτ

)
− ωτ

ζ
tan−1

(
ωc

ζ

)]
. (8)

The two other functions ε2 and ε3 have to be calculated numerically. The results for all three
functions as well as for ε (iζ) are shown in figure 1 (right panel). One can clearly see that
ε1 (iζ) dominates the dielectric function at imaginary frequencies up to ζ ≈ 5 eV. ε2 (iζ) gives
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a perceptible contribution to ε (iζ), while ε3 (iζ) produces minor contribution negligible for
ζ < 0.5 eV.

As mentioned in the Introduction section, we may introduce a characteristic imaginary
frequency ζch = c/2L of field fluctuations which give the dominant contribution to the
Casimir force between two plates at a distance L. For a plate separation of L = 100 nm, the
characteristic imaginary frequency is ζch = 0.988 eV. At this frequency, the contributions of
different frequency domains to ε (iζch) are ε1 = 68.42, ε2 = 15.65, and ε3 = 5.45. This means
that for all experimentally investigated situations, L � 100 nm, region 1, corresponding to the
extrapolated optical data, gives the main contribution to ε (iζ). It is therefore important to know
precisely the Drude parameters.

3. Analysis of different optical data for gold

The optical properties of gold were extensively investigated in 1950–1970s. In many of those
works the importance of sample preparation methods was recognized and carefully discussed.
A complete bibliography of the publications up to 1981 can be found in [30]. Regrettably the
contemporary studies of gold nanoclusters produce data inappropriate for our purposes. Among
recent experiments let us mention the measurement of normal reflectance for evaporated gold
films [31], which was performed in the wide wavelength range 0.3–50 µm, but unfortunately
does not permit to evaluate independently both real and imaginary parts of the dielectric
function. In contrast, the use of new ellipsometric techniques [32, 33] has produced data for
the real and imaginary part of the dielectric function for energy intervals 1.5–4.5 eV [34]
and 1.5–3.5 eV [35].

A significant amount of data in the interband absorption region (domain 3) has been obtained
by different methods under different conditions [28], [34]–[39]. Though this frequency band is
not very important for the Casimir force, it provides information on how the data may vary from
one sample to another. On the contrary there are only a few sources where optical data was
collected in the mid-infrared (domain 2) and from which the dielectric function can be extracted.
The data available for ε′ (ω) and ε′′ (ω) in the range ω < 1.5 eV and interband absorption domain
3 are presented respectively in the left- and right-hand side graph of figure 2. These data sets
demonstrate considerable variations of the dielectric function from one sample to another.

Let us briefly discuss the sets of data [21, 30, 40, 41] used in our analysis and the
corresponding samples. The commonly used Handbook of Optical Constants of Solids [21]
comprises the optical data covering the region from 0.125 to 9184 eV (dots in figure 2).
The experimental points are assembled from several sources. For ω < 1 eV, they are reported
by Dold and Mecke [29]. For higher frequencies up to 6 eV, they correspond to the Thèye
data [28]. Dold and Mecke give only little information about the sample preparation, reporting
that the films were evaporated on to a polished glass substrate and measured in air by using
an ellipsometric technique [29]. Annealing of the samples was not reported.

Thèye [28] described her films very carefully. The samples were semitransparent Au films
with a thickness of 100–250 Å evaporated in ultrahigh vacuum on supersmooth fused silica.
The substrate was kept in most cases at room temperature. After the deposition, the films were
annealed in the same vacuum at 100–150◦C. The structure of the films was investigated by x-ray
and transmission-electron-microscopy methods. The dc resistivity of the films was found to be
very sensitive to the preparation conditions. The errors in the optical characteristics of the films
were estimated on the level of a few percents.
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Figure 2. Left panel: Available optical data in the mid-infrared region. The dots
represent the Dold and Mecke data for ω < 1 eV [29] and Thèye data [28] for
higher frequencies. The squares denote the Weaver data [30]. The circles stand
for the data from [40]. The triangles represent the data [41]. �, • and � are
used to mark ε′′ (ω), while the open symbols are used for ε′ (ω). Right panel:
ε′′(ω) in the interband region for different samples. The solid line represents the
data measured with the well annealed bulk-like film by Thèye [28]. The dots are
the data by Johnson and Christy [37] found for unannealed films. The dashed
and dash-dotted lines are recent data sets by Wang et al [34] for unannealed
films. They correspond to films deposited with e-beam and thermal evaporation
methods, respectively.

The handbook [30] embraces the optical data from 0.1 to 28.6 eV (marked with squares
in figure 2). The data in the domain ω < 4 eV is provided by Weaver et al [30]. The values of
ε(ω) were found for the electropolished bulk Au(110) sample. Originally the reflectance was
measured in a broad interval 0.1 � ω � 30 eV and then the dielectric function was determined
by a Kramers–Kronig analysis. Due to indirect determination of ε, the recommended accuracy
of these data sets is only 10%.

The optical data of Motulevich and Shubin [40] for Au films is marked with circles in
figure 2. In this paper, the films were carefully described. Gold was evaporated on polished
glass at a pressure of ∼10−6 Torr. The investigated films were 0.5–1 µm thick. The samples
were annealed in the same vacuum at 400◦C for more than 3 h. The optical constants n and
k (n + ik = √

ε) were measured by polarization methods in the spectral range 1–12 µm. The
errors in n and k were estimated as 2–3 and 0.5–1%, respectively.

Finally, the triangles represent Padalka and Shklyarevskii data [41] for unannealed Au films
evaporated on to glass.

The variation of the data points from different sources cannot be explained by experimental
errors. The observed deviation is the result of different preparation procedures and reflects
genuine difference between samples. The deposition method, type of the substrate, its
temperature, quality and the deposition rate influence the optical properties. When we are
speaking about a precise comparison between theory and experiment for the Casimir force
at the level of 1% or better, there is no such material as gold in general any more. There is only
a gold sample prepared under definite conditions.
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4. Evaluation of the Drude parameters through extrapolation

We will now use the available data in the mid-infrared region to extrapolate into the low frequency
range. If the transition between inter- and intraband absorption in gold is sharp, the data below
ω0 should be well described by the Drude function

ε′ (ω) = 1 − ω2
p

ω2 + ω2
τ

, ε′′ (ω) = ω2
pωτ

ω
(
ω2 + ω2

τ

) . (9)

for ω � ωτ , the data on the log–log plot should fit straight lines with the slopes −2 and −3 for
ε′ and ε′′, respectively, shifted along the ordinate due to variation of the parameters for different
samples. The data points in the right-hand side graph of figure 2 are in general agreement with
these expectations. The onset values for ε′′, ln(ω2

pωτ), vary more significantly due to a significant
change in ωτ for different samples, but the Casimir force is in general not very sensitive to
the relaxation parameter [18]. The onset values for −ε′, ln(ω2

p), vary less but this variation is
more important for the Casimir force, which is particularly sensitive to the value of the plasma
frequency ωp. The Drude parameters can be found by fitting both ε′ and ε′′ with the functions (9).
This procedure is discussed below.

The dielectric function for low frequencies, ω < ωc, is found by the extrapolation of the
optical data from the mid-infrared domain, ωc < ω < ω0. The real and imaginary parts of ε

follow from equation (9) with an additional polarization term P in ε′:

ε′ (ω) = P − ω2
p

ω2 + ω2
τ

, ε′′ (ω) = ω2
pωτ

ω
(
ω2 + ω2

τ

) . (10)

The polarization term appears here due to the following reason. The total dielectric function
ε = ε(c) + ε(i) includes contributions due to conduction electrons ε(c) and the interband transitions
ε(i). The polarization term consists of the atomic polarizability and polarization due to the
interband transitions ε′

(i)

P = 1 +
Naα

ε0
+ ε′

(i) (ω) , (11)

where α is the atomic polarizability and Na the concentration of atoms. If the transition
from intra- to interband absorption is sharp, the polarization can be considered as constant,
because the interband transitions have a threshold behaviour with an onset frequency ω0 and the
Kramers–Kronig relation allows one to express ε′

(i) as

ε′
(i) (ω) = 2

π

∫ ∞

ω0

dx
xε′′

(i) (x)

x2 − ω2
. (12)

for ω 	 ω0, this integral does not depend on ω, leading to a constant ε′
(i) (ω). In reality, the

situation is more complicated because the transition is not sharp and many factors can influence
the transition region. We will assume here that P is a constant but the fitting procedure will be
shifted to frequencies where the transition tail is not very important. In practice equation (10)
can be applied for ω < 1 eV.
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Table 1. The Drude parameters found by fitting the available infrared data for
ε′ (ω) and ε′′ (ω) with equation (10). The error is statistical.

N ωp (eV) ωτ · 102 (eV) P

1 7.50 ± 0.02 6.1 ± 0.07 −27.67 ± 5.79 Palik, 66 points, ·
2 8.41 ± 0.002 2.0 ± 0.005 7.15 ± 0.035 Weaver, 20 points, �, �
3 8.84 ± 0.03 4.2 ± 0.06 12.94 ± 16.81 Motulevich, 11 points, • ,◦
4 6.85 ± 0.02 3.6 ± 0.05 −12.33 ± 9.13 Padalka 11 points, �, �

Our purpose is now to establish the magnitude of the force change due to reasonable variation
of the optical properties. To this end, the available low-frequency data for ε′ (ω) and ε′′ (ω)

presented in the left-hand side graph of figure 2 were fitted with equation (10). The results
together with the expected errors are collected in table 1.

The error in table 1 is the statistical uncertainty. It was found using a χ2 criterion for joint
estimation of three parameters [42]. For a given parameter, the error corresponds to the change
	χ2 = 1 when two other parameters are kept constant. The parameter P enters (10) as an additive
constant and in the considered frequency range its value is smaller than 1% of ε′ (ω). That is
why the present fitting procedure cannot resolve it with reasonable errors.

As mentioned before, in the case of the Weaver data [30] the recommended precision in ε′

and ε′′ is 10%, while Motulevich and Shubin [40] reported 2–3 and 0.5–1% errors in n and k.
We did not take these errors explicitly into account as we do not know if they are of statistical or
systematic nature or a combination of both. But to illustrate their possible influence let us just
mention that if we interpret them as systematic errors, we can propagate the errors in ε or n, k

to the values of ωp and ωτ , leading to an additional error in ωp of about 5% for the Weaver data
and 1% for the Motulevich data and twice as large in ωτ .

Significant variation of the plasma frequency, well above the errors, is a distinctive feature
of the table. The bulk and annealed samples (rows 2 and 3) demonstrate larger values of ωp. The
rows 1 and 4 corresponding to the evaporated unannealed films give rise to considerably smaller
plasma frequencies ωp. Note that our calculations are in agreement with the one given by the
authors [29, 41] themselves.

To have an idea of the quality of the fitting procedure, we show in figure 3 the experimental
points and the best fitting curves for Dold and Mecke data [21, 29] (• and solid lines) and
Motulevich and Shubin data [40] (◦ and dashed lines). Only 25% of the points from [21] are
shown for clarity. One can see that for ε′′ at high frequencies, the dots lie above the solid line
demonstrating presence of a wide transition between inter- and intraband absorption. Coincidence
of the solid and dashed lines for ε′′ is accidental. The fits for ε′ are nearly perfect for both
data sets.

It is interesting to see on the same figure how well the parameters ωp = 9.0 eV, ωτ =
0.035 eV agree with the data in the mid-infrared range. The curves corresponding to this set
of parameters are shown in figure 3 as dotted lines. One can see that the dotted line, which
describes ε′′ is very close to the solid line. However, the dotted line for ε′ does not describe
well the handbook data (•). It agrees much better with Motulevich and Shubin data [40] (◦).
The reason for this is that ωp = 9.0 eV is the maximal plasma frequency for Au. Any real film
may contain voids leading to smaller density of electrons and, therefore, to smaller ωp. Motulevich
and Shubin [40] annealed their films which reduced the number of defects and made the plasma
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Figure 3. The infrared optical data by Dold and Mecke [29] (•) and by Motulevich
and Shubin [40] (◦) together with the best Drude fits given by the solid and
dashed lines, respectively. The dotted lines present the fit with ωp = 9 eV and
ωτ = 35 meV which agrees better with the Motulevich and Shubin data (◦) than
with the handbook data (•).

frequency close to its maximum. A plasma frequency ωp = 9.0 eV was also reported in [43],
where the authors checked the validity of the Drude theory by measuring reflectivity of carefully
prepared gold films in ultrahigh vacuum in the spectral range 0.04 < ω < 0.6 eV. Therefore,
this value is good if one disposes of well-prepared samples.

5. The Drude parameters from Kramers–Kronig analysis

Because the values of the Drude parameters are crucial for a reliable prediction of the Casimir
force, it is important to assess that different methods to determine the parameters give the same
results. Alternatively to the extrapolation procedure of the previous section, we will now discuss
a procedure based on a Kramers–Kronig analysis. To this aim, we will extrapolate only the
imaginary part of the dielectric function to low frequencies ω < ωc. The dispersion relation
between ε′ and ε′′

ε′(ω) − 1 = 2

π
P

∫ ∞

0
dx

xε′′ (x)

x2 − ω2
(13)

can then be used to predict the behaviour of ε′(ω) and compare it with the one observed in the
experiments. From this comparison, the Drude parameters can be extracted.

The low frequency behaviour of ε′′(ω) is important for the prediction of ε′ because for metals
ε′′(ω) � 1 in the low frequency range. Therefore, at ω < ωc we are using ε′′(ω) from equation
(9). At higher frequencies, the experimental data from different sources [21, 30, 40, 41] are used.
The data in [40, 41] must be extended to high frequencies starting from ω = 1.25 eV. We do this
using the handbook data [21].

New Journal of Physics 8 (2006) 238 (http://www.njp.org/)

http://www.njp.org/


11 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

10
–1

10
0

10
1

10
–2

10
0

10
2

10
4

ω (eV)

|ε
′|

ω
p
=8.40 eV 

ω
τ
=0.020 eV 

Figure 4. |ε′| as a function of ω for bulk gold. Dots are the experimental data
[30]. The solid line is the prediction according to equation (13) with the Drude
parameters ωp = 8.40 eV, ωτ = 0.02 eV.

Let us start from the data for bulk Au(110) [30]. This data set is given in the interval
0.1 < ω < 30 eV. Below ω = 0.1 eV, we use the Drude model for ε′′ and above ω = 30 eV the
cubic extrapolation C/ω3. The Drude parameters are practically insensitive to the high frequency
extrapolation. The data set was divided into overlapping segments containing 12 points. Each
segment was fitted with a polynomial of forth order in frequency. The first segment, were ε′′(ω)

increases very fast, was fitted with the polynomial in 1/ω. Then, in the range of overlap (4 points)
a new polynomial smoothly connecting two segments was chosen. In this way, we have fitted
the experimental data with a function which is smooth up to the first derivative.

The real part of the dielectric function ε′(ω) is predicted by equation (13) as a function of
the Drude parameters ωp and ωτ . These parameters are chosen such as to minimize the difference
between observed and predicted values of ε′(ω), leading to ωp = 8.40 eV and ωτ = 0.020 eV.
These parameters are in reasonable agreement with the ones indicated in table 1. In figure 4, the
experimental data (dots) and |ε′(ω)| found from equation (13) (solid line) are plotted, showing
perfect agreement at low frequencies, while at high frequencies ω > 2.6 eV the agreement is
not very good. This may be fixed by choosing an appropriate high frequency extrapolation. We
do not give these details here as this extrapolation has practically no influence on the Drude
parameters.

When applying the same procedure to the handbook data [21], we find ωp = 7.54 eV
and ωτ = 0.051 eV, again in agreement with the parameters indicated in table 1. Figure 5
shows a plot of ε′(ω) predicted with these parameters. At low frequencies the agreement with
the experimental data is good but it becomes worse when the interband data [29] joins the
intraband (high frequency) data [28]. These two data sets correspond to samples with different
optical properties. In this case, the dispersion relation (13) is not necessarily very well satisfied.
In contrast with the previous case, high frequency extrapolation cannot improve the situation; it
influences the curve only marginally.
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Figure 5. |ε′| as a function of ω for handbook data [21] (dots). The solid line
is found from Kramers–Kronig relation. The Drude parameters correspond to
minimal deviations between experimental data and calculations.
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Figure 6. |ε′| as a function of ω for Motulevich and Shubin data [40] extended
by the handbook data [21] for ω > 1.25 eV (dots). The solid line is found from
Kramers–Kronig relation.

Following the same procedure for the Motulevich and Shubin data [40], we find the
Drude parameters ωp = 8.81 eV, ωτ = 0.044 eV which are close to the values in table 1. The
experimental data and calculated function |ε′(ω)| are shown in figure 6. There is good agreement
for frequencies ω < 4 eV as the data in [40] matches very well the Thèye data [28]. Deviations
at higher frequencies are again quite sensitive to high-frequency extrapolation as already
noted before.
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Similar calculations done for the Padalka and Shklyarevskii data [41] give the Drude
parameters ωp = 6.88 eV and ωτ = 0.033 eV, producing good agreement only in the range
ω < 1.3 eV because this data set matches only poorly the Thèye data [28].

Using the Kramers–Kronig analysis for the determination of the Drude parameters leads
essentially to the same parameters for all four sets of the experimental data. Experimental and
calculated curves for ε′(ω) are in very good agreement at low frequencies.At high frequencies the
agreement is not so good for two different reasons. First, at high frequencies the calculated curve
is sensitive to the high-frequency extrapolation and thus a better choice of this extrapolation can
significantly reduce high frequency deviations. The other reason is that one has to combine the
data from different sources to make a Kramers–Kronig analysis possible. These data sets do not
always match each other well as it is for example the case of the Dold and Mecke data and the
Thèye data. In this case, significant errors might be introduced in the dispersion relation. Indeed
the Kramers–Kronig analysis is a valuable tool only for data taken from the same sample.

6. Uncertainty in the Casimir force due to variation of optical properties

We will now assess how the values of the Casimir force are influenced by the different values of
the Drude parameters. As an example, we consider as input the optical data for Au from [21].

Instead of calculating the absolute value of the Casimir force, we will give the factor which
measures the reduction of the Casimir force with respect to the ideal Casimir force between
perfect mirrors as introduced in [18]

ηF = 120L4

cπ4

∫ ∞

0
dκ κ2

∫ κ

0
dζ

∑
µ

r2
µ

e2κ − r2
µ

, (14)

The dielectric function at imaginary frequencies ε(iζ) is calculated using the Kramers–Kronig
relation (4) and the integration region is divided in two parts

∫ ∞

0

xε′′(x)

x2 + ω2
dx →

{∫ xc

0
+

∫ xmax

xc

}
xε′′(x)

x2 + ω2
dx = I1 + I2. (15)

We assume that for x < xc, the Drude model (9) is applicable. Then the integration in I1 may
be carried out explicitly, see (8). In I2 we integrate from xc = 0.125 eV to xmax = 9000 eV
(corresponding to the range of available optical data in [21]).

For the calculation of the reduction factor (14), the integration range was chosen as
10−4–103 eV. We also varied the integration range by half an order of magnitude, which changed
the result by less than 0.1%. The results of the numerical integration are collected in table 2.

The first four rows of the table present the reduction factors for four pairs of the Drude
parameters that were obtained by fitting the optical data from different sources. The next row
shows the result obtained for ωp = 9 eV and ωτ = 35 meV. The last two rows show the variation
of the reduction factor if the plasma frequency ωp or the relaxation parameter ωτ are varied by
±15 and ±30%, respectively. The upper (lower) line corresponds here to the upper (lower) sign.

The variation of the optical data and the associated Drude parameters introduces a variation
in the Casimir force ranging from 5.5% at short distances (100 nm) to 1.5% at long distances
(3 µm). The distance dependence is of course related to the fact that the material properties
influence the Casimir force much more at short than at long plate separation. The strongest
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Table 2. The reduction factors at different plate separations calculated with the
different pairs of values of the Drude parameters corresponding to different data.
The last two rows show the variation of the reduction factor when either the
plasma frequency or the relaxation parameter is varied.

ωp, ωτ(eV) \L(µm) 0.1 0.3 0.5 1.0 3.0

1. ωp = 7.50, ωτ = 0.061 0.43 0.66 0.75 0.85 0.93
2. ωp = 8.41, ωτ = 0.02 0.45 0.69 0.79 0.88 0.95
3. ωp = 8.84, ωτ = 0.0422 0.46 0.69 0.78 0.87 0.94
4. ωp = 6.85, ωτ = 0.0357 0.42 0.65 0.75 0.84 0.93
5. ωp = 9.00, ωτ = 0.035 0.47 0.71 0.79 0.88 0.95
6. ωp = 7.50 ± 15% 0.45 0.68 0.77 0.86 0.94

ωτ = 0.061 0.41 0.63 0.73 0.83 0.92
7. ωp = 7.50 0.42 0.65 0.74 0.84 0.92

ωτ = 0.061 ± 30% 0.44 0.67 0.76 0.86 0.93

variation of 5.5% gives an indication of the genuine sample dependence of the Casimir force. For
this reason, it is necessary to measure theoptical properties of the plates used in the Casimir force
measurement if a precision of the order 1% or better in the comparison between experimental
values and theoretical predictions is aimed at. Incidentally let us notice that the plasma frequency
ωp = 7.5 eV, which is found here to fit best Palik’s handbook data [21], is basically the same
as the one proposed alternatively in [18] for Cu, which has very similar optical properties to Au
concerning the Casimir force [44]. For Cu, the variation of the plasma frequency from ωp = 9 eV
to ωp = 7.5 eV introduced a variation of the Casimir force up to 5% [18].

In order to asses more quantitatively the role of the two Drude parameters, we show in the last
two rows of table 2 the variation of the reduction factor when either the plasma frequency or the
relaxation parameter is varied with the other parameter kept constant. One can see that the increase
(decrease) of the relaxation parameter by δωτ = 30% lowers (increases) the reduction factor ηF

at L = 0.1 µm by only δηF = 1.6%. However, the 15% variation of the plasma frequency leads
to 4.2% change in the reduction factor. Thus the Casimir force is much more sensitive to the
variation of the plasma frequency, basically as the plasma frequency determines the reflection
quality of the plates (an infinite plasma frequency corresponds to perfectly reflecting mirrors).

7. Conclusions

In this paper, we have performed the first systematic and detailed analysis of optical data for
Casmir force measurements. We have studied the relative importance of the different frequency
regions for the Casimir force as a function of the plate separation and established the critical role
of the Drude parameters in particular for short distance measurements. We have then analysed and
compared four different sets of optical data. For each set, we have extracted the corresponding
plasma frequency and relaxation parameter either by fitting real and imaginary part of the
dielectric function at low frequencies or by using a detailed Kramers–Kronig analysis. Both
methods lead essentially to the same results. The Kramers–Kronig analysis reveals itself to be
a powerful tool for the estimation of the low frequency Drude parameters for data coming from
the same sample.

New Journal of Physics 8 (2006) 238 (http://www.njp.org/)

http://www.njp.org/


15 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

A variation of the values of the Casimir force up to 5.5% is found for different optical
data sets. This gives an intrinsic unknown parameter for the Casimir force calculations and
demonstrates the genuine sample dependence of the Casimir force. The today existing numerical
and analytical calculations of the Casimir force in themselves are very precise. In the same way,
measurements of the Casimir force have achieved high accuracy over the last decade. In order
to compare the results of the achievements in theory and experiment at a level of 1% precision
or better, the crucial point is to make sure that calculations and experiments are performed for
the same physical sample. One therefore has to know the optical and material properties of the
sample used in the experiment. These properties must be measured for frequencies as low as
possible. In practice, the material properties have to be known over an interval of about four
orders of magnitude around the characteristic frequency ζch = c/2L. For a plate separation of
L = 100 nm, this means an interval (10 meV, 100 eV). If measurements at low frequencies are
not possible, the low frequency Drude parameters should be extracted from the measured data,
by one of the two methods discussed here.
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