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Abstract. In the past 30 years, there has been considerable progress in the
development of large-eddy simulation (LES) for turbulent flows, which has been
greatly facilitated by the substantial increase in computer power. In this paper,
we raise some fundamental questions concerning the conceptual foundations of
LES and about the methodologies and protocols used in its application. The
10 questions addressed are stated at the end of the introduction. Several of
these questions highlight the importance of recognizing the dependence of LES
calculations on the artificial parameter � (i.e. the filter width or, more generally,
the turbulence resolution length scale). The principle that LES predictions of
turbulence statistics should depend minimally on � provides an alternative
justification for the dynamic procedure.
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Introduction

There have been many and substantial advances in large-eddy simulation (LES) since the
pioneering works of Smagorinsky [1], Lilly [2], Deardorff [3], Schumann [4] and others.
Advances have been made in (i) modelling the unresolved processes; (ii) accurate numerical
methods on structured and unstructured grids; (iii) detailed comparison of LES calculations
with DNS and experimental data in canonical flows; (iv) extensions to include additional
phenomena, e.g. turbulent combustion; (v) and in computational power, which has increased by
about four orders of magnitude since the 1970s. Expositions on LES are provided by Pope [5] and
Sagaut [6]; and reviews at different stages of the development of LES are provided by Rogallo
and Moin [7], Galperin and Orszag [8], Lesieur and Métais [9], and Meneveau and Katz [10].

In spite of these advances, there remain fundamental questions about the conceptual
foundations of LES, and about the methodologies and protocols used in its application. The
purpose of this paper is to raise and to discuss some of these questions.

Before posing the questions to be addressed, it is necessary to introduce the terminology
used to describe LES. This needs to be done with some care to include existing divergent views
on LES, and to avoid pre-judging some of the questions raised. The fundamental quantity
considered in LES is a three-dimensional unsteady velocity field which is intended to represent
the larger-scale motions of the turbulent flow under consideration. We refer to this as the
resolved velocity field and denote it by W(x, t). As discussed at greater length in section 4,
we distinguish between physical LES and numerical LES. The prime example of physical LES
is the ‘filtering approach’ introduced by Leonard [11]. In this approach, W(x, t) is identified
as the filtered velocity field, denoted by U(x, t), obtained by applying a low-pass spatial filter
of characteristic width � to the underlying turbulent velocity field, U(x, t). The effects of
the sub-filter scales are modelled, and the resulting evolution equation for W(x, t) is solved
numerically on a mesh of spacing h. An example of numerical LES is the ‘MILES approach’
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advocated by Boris et al [12]. In this case, the Navier–Stokes equations are written for W(x, t)

and are solved on a mesh of spacing h which is insufficiently fine to resolve the smaller-scale
motions, using a numerical method designed to respond appropriately in regions of inadequate
spatial resolution. To accommodate all viewpoints we refer to W(x, t) as the resolved velocity
field, and to � as the turbulence-resolution length scale, which for numerical LES we define
as � = h. Turbulent motions that are not resolved are referred to as residual motions, and we
use the term residual stress for the quantity often referred to as the sub-grid scale (SGS) stress,
or the sub-filter scale stress.

For a complex flow, an unstructured mesh with non-uniform mesh spacing would normally
be used, so that h and � are non-uniform, and indeed these scalars provide an incomplete descrip-
tion of the mesh and of the turbulence resolution. For such cases we use h(x) and �(x), somewhat
imprecisely, to characterize the length scales of the numerical and turbulence resolutions.

In addition to introducing terminology, the above discussion draws out the fact that the
fundamental quantity in LES—namely the resolved velocity field W(x, t)—is an extremely
complex object. It is a three-dimensional, time-dependent random field, which has a fundamental
dependence on the artificial (i.e. non-physical) parameter �, and which (in some approaches)
depends also on the mesh spacing h and on the numerical method used. It is not surprising,
therefore, that LES raises non-trivial conceptual questions.

In the following sections we address in turn these 10 questions:

1. Is LES the right approach?

2. Can the resolution of all scales be made tractable?

3. Do we have sufficient computer power for LES?

4. Is LES a physical model, a numerical procedure or a combination of both?

5. How can LES be made complete?

6. What is the relationship between U and W?

7. How do predicted flow statistics depend on �?

8. What is the goal of an LES calculation?

9. How are different LES models to be appraised?

10. Why is the dynamic procedure successful?

The main purpose of this paper is to raise conceptual questions concerning LES which
warrant further consideration by the research community. While we offer some answers, they
are not intended to be definitive or complete, but rather the primary intention is to stimulate
further debate of these questions.

1. Is LES the right approach?

The first point to be made in response to this question is that, given the broad range of turbulent
flow problems, it is valuable to have a broad range of approaches that can be applied to study
them. There is not one ‘right’ approach. As discussed more fully elsewhere [5, 13], while the
use of LES in engineering applications will certainly increase in the future, the use of simpler
Reynolds-averaged Navier–Stokes (RANS) models will be prevalent for some time to come. It
is valuable, therefore, to continue to seek improvements to the full range of useful turbulence
modelling approaches.
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Perhaps the most compelling case for LES can be made for momentum, heat and mass
transfer in free shear flows at high Reynolds numbers. For this case, the transport processes of
interest are effected by the resolved, large-scale motions; and (in the Richardson–Kolmogorov
view at least) there is a cascade of energy, dominantly from the resolved large scales, to the
statistically isotropic and universal small scales. There are, therefore, strong reasons to expect
LES to be successful, primarily because both the quantities of interest and the rate-controlling
processes are determined by the resolved large scales.

In other applications the picture can be quite different. For example, in turbulent combustion
at high Reynolds number and Damkohler number, the essential rate-controlling processes of
molecular mixing and chemical reaction occur at the smallest scales. In some combustion
regimes, these coupled processes occur in reactive–diffusion layers that are much thinner than
the resolved scales [14]. Hence the rate-controlling processes do not occur in the resolved large
scales, but instead have to be modelled. For such cases, the argument that LES is the ‘right’
approach is less convincing. While LES may provide a more reliable turbulence model than
RANS (especially if there are large-scale unsteady motions) nevertheless the rate-controlling
combustion processes require the same modelling as in RANS; indeed, most LES combustion
models are derived from RANS models.

A second example is high Reynolds number near-wall flows, the simplest specific case
being the turbulent boundary layer on a smooth wall. The wall shear stress—all-important in
aerodynamic applications—arises from momentum transfer from the outer flow through the
boundary layer to the wall. In the viscous near-wall region, the momentum transfer is effected
by the near-wall structures, the length scale of which scales with the tiny viscous length scale.
As Bradshaw has succinctly put it: in the viscous near-wall region there are no large eddies.
But, as has been appreciated at least since Chapman [15], the near-wall motions cannot be
resolved in high-Reynolds number LES, but must instead be modelled (to avoid impracticable
computational requirements that increase as a power of Reynolds number, as in DNS).

In summary, the arguments in favour of LES are compelling for flows (e.g. free shear
flows) in which the rate-controlling processes occur in the resolved large scales. There is the
reasonable expectation of LES predictions being accurate and reliable, and of being insensitive
to the details of the modelling (provided that � is not too large). But for flows in which rate-
controlling processes occur below the resolved scales the case is weaker. The rate-controlling
processes have to be modelled, and the LES predictions can be expected to have a first-order
dependence on these models.

2. Can the resolution of all scales be made tractable?

Following on from the conclusions of the previous section, for flows in which the rate-controlling
processes are not confined to the large scales, it is natural to seek methods that resolve all
scales in a way that is computationally tractable at high Reynolds number. Is this possible?

Based on the known spacing of near-wall streaks, it can be estimated that there are of
order 108 streaks on the wings of a Boeing 777 during cruise. In a (hypothetical) DNS of
this flow, all 108 streaks are resolved, leading to computational intractability, whereas in LES
none of the streaks is resolved, so that all of the shear stress at the wall arises from modelled
processes. Observations such as these prompt the question raised here. Is it really necessary
to represent and resolve all 108 streaks? Is it not possible to devise a methodology in which
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only a statistically representative sample of these streaks is resolved? Could this be done in
such a way that the computation cost increases weakly with Reynolds number, e.g. as ln(Re)?
Perhaps the holy grail of turbulence is the statistical resolution of all scales—a methodology in
which representative samples of motions and processes on all scales are resolved and combined
(without empiricism) in a way that remains computationally tractable at large Reynolds number.

Some steps have been made in this direction: we cite two examples.
For simulating homogeneous isotropic turbulence in wavenumber space, Meneguzzi et al

[16] introduced sparse-mode methods. Based on the wavenumber κE characteristic of the energy-
containing motions, the wavenumber space is partitioned into shells 2m−1κE � |κ| < 2mκE, for
m = 1, 2, . . . . In the mth shell, only a fraction 2−3m of the Fourier modes are represented. As
a consequence, the total number of modes represented increases just as ln(Re).

The second example we cite is the linear eddy model (LEM) [17] and one-dimensional
turbulence (ODT) [18], which can be used as SGS models in LES (e.g. [19, 20]). These models
fall short of the ideal in that they involve empirical prescriptions, and the computational
work increases as a power of Reynolds number (albeit a smaller power than in DNS).
Nevertheless, these methods embody the notion of resolving all scales, but only for a small sample
of the flow.

These steps notwithstanding, the methodology of the statistical resolution of all scales as
described above faces a formidable obstacle: in turbulence there are interactions between the
continuous range of length scales—there is no scale separation.

3. Do we have sufficient computer power for LES?

Whatever the situation is today, it is clear that in the early days of LES the available computer
power was insufficient for the purpose. It is equally clear that at some time there will be
ample computer power. This is an inevitable consequence of the sustained exponential increase
of computer power with time, combined with the advances in numerical and computational
algorithms, which can yield comparable gains. As sketched in figure 1, there is an inevitable
cross-over time after which the available computer power exceeds that needed for LES. When
this cross-over occurs depends on the particular flow problem being studied and the computer
resources available. The cross-over time (whenever it occurs) divides the development and
the use of LES into two eras: the era of insufficient computer power, followed by the era of
sufficient computer power. All of this is clear and obvious. The important point to appreciate
is that attitudes and practices can be radically different in the two eras.

When there is insufficient computer power, compromise is inevitable, especially on
numerical accuracy, the range of scales resolved and testing for numerical and physical
accuracies. There is a natural tendency to use all of the available computer power to perform
the largest simulation possible. It is generally the case that comprehensive testing requires
orders of magnitude more computer time than a single simulation. For example, halving the
grid spacing h typically increases the required memory and CPU time by factors of 8 and 16,
respectively. Hence, such testing is precluded by the decision to perform the largest simulation
possible.

Much of the discussion in the subsequent sections pertains to the second era, when there
is ample computer power; and the primary consideration is the best way to perform LES, not
what can be afforded.
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Figure 1. Sketch of the computer power available and that needed for LES as a
function of time. The cross-over time is the transition from the era of insufficient
computer power to the era of sufficient computer power.

Do we now have sufficient computer power for LES? Arguably we do for simple flows,
and for more complex flows that time is fast approaching. Many of the attitudes and practices
in the field come from the era of insufficient computer power. In looking to the future of LES,
we need to shed these attitudes and practices to realize the greater possibilities that ample
computer power offers.

The above notwithstanding, it is inevitable that LES will be applied to ever more challenging
flows, with an increased range of length scales to be resolved, and increased complexity of the
physical processes (e.g. sprays and granular flows). Hence, for a considerable time to come,
there will be insufficient computer power for these most challenging applications of LES.

4. Is LES a physical model, a numerical procedure or a combination of both?

Different approaches to LES provide different answers to this question.
The prevailing opinion expressed by the Stanford/Ames CTR group (see e.g. [21]) is that

LES is a physical model. The effects of the residual motions are explicitly modelled, so that
the resulting LES model consists of a set of partial differential equations (PDEs), involving
�, which is sufficient to determine the resolved velocity field W(x, t). For specified �, these
PDEs are then solved by a numerical method using a mesh spacing h which is sufficiently
small to yield numerically accurate solutions. We refer to this as physical LES and make the
following three observations.

1. Good numerical accuracy comes at a high price. With the numerical methods usually
employed, halving the grid spacing increases the computational cost by about a factor
of 24 = 16.

2. To show that this approach is indeed being followed, it is necessary to demonstrate that the
LES solutions are grid-independent. This is seldom done, the studies of Vreman et al [22]
and Meyers et al [23] being welcome exceptions.
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3. For an LES of fixed computational cost (i.e. fixed h), one can consider the optimal value of
�. A large value of �/h corresponds to excellent numerical accuracy, whereas a smaller
value corresponds to resolving a greater range of turbulent motions, but with less numerical
accuracy. The optimal value depends on the approach and models used; however, by the
criteria for comparing models introduced in section 9, it is probable that the optimal value
of �/h corresponds to non-negligible numerical error. The results of Vreman et al [22] and
Meyers et al [23] support this view.

In view of these considerations, we refine our terminology and define pure physical LES to
be LES performed with explicit models for the effects of the residual motions and negligible
numerical error, whereas in physical LES some numerical error may be present.

At the opposite end of the spectrum is numerical LES, in which the description of the
resolved velocity field W(x, t) and its evolution is fundamentally linked to the numerical method.
The representation of W(x, t) is intrinsically discrete—in terms of node, cell or basis-function
values—and there is no notion of convergence to the solution of a PDE. Examples of numerical
LES are MILES [12], optimal LES [24] and LES using projection onto local basis functions
[25]. In MILES, the Navier–Stokes equations are solved numerically on a grid of spacing h

which is too large to resolve all of the scales of motion. The numerical method is especially
constructed to be stable (and non-oscillatory) in regions of inadequate spatial resolution [12].
In MILES, there is no explicit model for the effects of the residual motions, whereas there is,
for example, in optimal LES. Even when there is no explicit model, it should be appreciated
that in numerical LES the computed flow fields depend both on the mesh and on the numerical
method: the often-used terminology ‘no model’ is an inadequate description. Indeed, even in
physical LES with non-negligible numerical errors, as demonstrated by Vreman et al [22] and
Kravchenko and Moin [26], the LES results depend on the numerical method used (in addition
to h and �).

We take the view that pure physical LES, physical LES and numerical LES are all valid
approaches, which can be compared as discussed in section 9. When this is done, it seems
unlikely that pure physical LES will be advantageous: a non-negligible amount of numerical
error is likely to be optimal. In some of the considerations that follow it is necessary to take
into account the fact that, except in pure physical LES, the computed LES fields depend on
the numerical method and on the grid employed.

5. How can LES be made complete?

A model for turbulent flows is deemed complete if its constituent equations are free from flow-
dependent specifications [5]. One flow is distinguished from another solely by the specification
of material properties and of initial and boundary conditions. For example, the k–ε model is
complete whereas the mixing length model is incomplete, because the mixing length must
be specified (as a function of position and time). If two competent practitioners make two
independent mixing-length calculation of the same complex flow, the results are bound to
differ, because different choices would be made for the specification of the mixing length.
Clearly, completeness is highly desirable.

It is important to appreciate that, as generally practised, LES is incomplete. The general
practice is to generate a computational grid with spacing characterized by h(x), say, and then to
specify �(x) to be proportional (locally) to h(x). The turbulence resolution length scale �(x) is
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a significant parameter in the LES equations, yet it is specified in a flow-dependent, subjective
manner. Given this fact, it is regrettable that evaluating the dependence of LES calculations on
the value of �(x) is not a generally accepted part of LES practice.

LES can be made complete through the use of solution-adaptive gridding: we refer
to this as adaptive LES. To illustrate this idea, we introduce the following three related
quantities:

1. a measure M(x, t) of the turbulence resolution,
2. the turbulence-resolution length scale �(x, t) and
3. a specified turbulence-resolution tolerance εM .

A conceptually simple measure of turbulence resolution is the fraction of the turbulent
kinetic energy in the resolved motions. The evaluation of M(x, t) requires the determination
(locally in space and time) of the turbulent kinetic energy of the resolved motions
K(x, t) ≡ 1

2〈(W − 〈W〉) · (W − 〈W〉)〉, and that of the residual motions kr(x, t). Then
we define

M(x, t) ≡ kr(x, t)

K(x, t) + kr(x, t)
. (1)

Thus the value of M is between 0 and 1: M = 0 corresponds to DNS and M = 1 to RANS.
Smaller values of M correspond to the resolution of more of the turbulent motions. (Although
this definition of M is conceptually simple, in LES, the approximation of means, denoted here
by angled brackets 〈 〉, is non-trivial and a methodology to estimate kr is required.)

The turbulence resolution length scale �(x, t) can also be viewed as the turbulence
resolution control parameter. The smaller the value of �, the greater the fraction of the energy
that is resolved and, hence, the smaller the value of M. Thus, the value of M can be controlled
by varying �. (To some extent this control is non-local: M(x, t) is affected by the value of � at
other locations and at earlier times.) If the ratio h/� is fixed, then varying � is accomplished
by varying the mesh spacing h(x).

In adaptive LES, a value of the turbulence-resolution tolerance εM is specified, e.g. εM = 0.2
corresponds to the resolution of 80% of the kinetic energy. The LES is then performed with
adaptive gridding (i.e. the adjustment of �(x, t) via h(x, t)) to maintain

M(x, t) � εM. (2)

In regions where M exceeds εM the grid is refined; where M is much smaller than εM the grid
is coarsened.

For a given flow, the turbulence statistics computed by adaptive LES should be assumed to
depend on εM , until the contrary is demonstrated. Consequently, εM is part of the model
specification. While different implementations of adaptive LES using different numerical
methods may produce somewhat different results (for the same value of εM), nevertheless,
this approach goes a good way towards removing the subjectivity and incompleteness of the
standard approach.

Needless to say, even though solution-adaptive gridding is increasingly available in
computational fluid dynamics (CFD) codes, there are several implementation challenges to
be overcome to implement adaptive LES. However, only by a methodology such as this can
LES be made complete.
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6. What is the relationship between U and W?

To clarify the question posed in the heading, we recall that U(x, t) denotes the velocity field
in the turbulent flow under consideration, and W(x, t) denotes the ‘resolved velocity field’
obtained from LES. It is easier to say what the relationship between U and W is not than to
say what it is! As explained below, the conventional view that W(x, t) is the spatially filtered
value of U(x, t) is not sustainable.

To clarify the issues involved, it is necessary to introduce a more precise notation than is
conventionally used. First, it is essential to distinguish between physical and modelled quantities.
We illustrate this in the simpler context of the k–ε model. The turbulent kinetic energy is
defined as

k(x, t) ≡ 1
2〈ui(x, t)ui(x, t)〉, (3)

where

u(x, t) ≡ U(x, t) − 〈U(x, t)〉 (4)

is the fluctuating velocity field, and the dissipation is defined by

ε ≡ 2ν〈sijsij〉, (5)

with ν the kinematic viscosity and

sij ≡ 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (6)

the fluctuating rate of strain. We denote by km(x, t) and εm(x, t) the quantities considered in
the k–ε model. It is important to appreciate that km and εm are not defined by equations (3) and
(5): instead, they are defined as the solutions to the k–ε model equations (with the appropriate
initial and boundary conditions). As is well accepted, the k–ε model is far from perfect, and so
km does not equal k, and εm does not equal ε. Instead, km is a model for k. At the same time,
these considerations identify the goal for turbulence modelling in this context: a perfect k–ε

model (if one exists) yields solutions km and εm which are equal to k and ε.
In the LES context, it should be appreciated that fundamentally W(x, t) is defined as the

solution to the LES equations, not as the spatially filtered value of U(x, t), which we denote
by U(x, t).

However, we may ask, is it possible (in principle) to have a perfect LES model such that
W(x, t) equals U(x, t)? The answer is no; the reason being that U(x, t) is a random field,
whose future evolution is not determined by its current state. Thus, while we may impose
W(x, 0) = U(x, 0) as an initial condition, for t > 0, U(x, t) has a statistical distribution, and
hence there is no value of W(x, t) which equals U(x, t). This argument is developed more fully
in section 13.5.6 of Pope [5].

Clearly, therefore, the relationship between U and W can only be statistical. Hence,
among other consequences, a priori testing as it is usually practiced is highly dubious,
since it compares LES quantities with the corresponding quantities obtained from a particular
realization of U(x, t). Similar arguments and conclusions are given by Lesieur [27], Langford and
Moser [24] and Sagaut [6].
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From the statistical viewpoint which is appropriate to these considerations, an LES
procedure consists of the following components:

(i) A set of model evolution equations for the resolved velocity field W(x, t) and possibly
also for some statistics of the residual motions, denoted by R(x, t), such as the residual
kinetic energy or stresses. In physical LES these equations involve �(x, t).

(ii) For a given flow, a specification of �(x, t) and a stochastic procedure for specifying initial
and boundary conditions on W and R.

(iii) A procedure for generating, from W and R, estimates of statistics of the velocity field
U(x, t).

To expand on the last component, let Q denote a statistic of U(x, t) that is of interest, and let
Q denote the operation performed on U(x, t) to obtain it, i.e.

Q = Q{U(x, t)}. (7)

For example, for the two-point (one-time) velocity correlation, we would have

Qij(x, t, r) = 〈Ui(x, t)Uj(x + r, t)〉. (8)

In the last of the three components of the LES, there is a procedure or operation, denoted by
Qm(W , R, �), which yields an estimate Qm for the statistic Q. It is useful to decompose the
model as

Qm = Qw + Qr, (9)

where Qw is a component determined solely by W , whereas Qr is a model for the residual
contribution which may depend on W , R and �. (This decomposition may not be unique.)
Thus, for the example of the two-point correlation, the contribution from the resolved
velocity is

Qw
ij(x, t, r) = 〈Wi(x, t)Wj(x + r, t)〉N, (10)

where 〈 〉N denotes an ensemble average over N LES simulations. (For flows in which it
is possible, time and spatial averaging can be used in place of, or in addition to, ensemble
averaging. It should be noted that, even with averaging, Qw, Qr and Qm are random variables
used to estimate the value of the non-random statistic Q.)

The ‘perfect’ LES procedure is therefore one in which, for all statistics Q of interest, the
LES estimates Qm (or at least 〈Qm〉) are equal to Q. Hence, our answer to the question ‘What
is the relationship between U and W?’ is that it can only be statistical: for the statistics of
interest, the estimates Qm obtained from W and R are models for the corresponding statistics
Q of the turbulent velocity field.

Another possible answer to the question—one frequently given—is that the statistics of
W model the statistics of the filtered velocity field U. While this is a tenable position, we make
the following observations.

1. U is a non-physical quantity, dependent on the filter type and filter width.
2. In applications it is the statistics of U that are relevant: a knowledge of the statistics of U

is not necessarily sufficient.
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3. Component (iii) (the estimation of statistics of U) is an important ingredient in an LES
procedure, which arguably has not received the attention it deserves, because it is not needed
if attention is confined to statistics of W and U.

4. For an LES methodology to model successfully the statistics of U, it is not necessary for
the statistics of W to correspond to those of U.

In the filtering approach and in optimal LES, the aim of the modelling is to yield resolved
fields W(x, t) whose statistics correspond to those of U(x, t). But in other approaches (e.g.
MILES) as stated above, requiring such a correspondence is not necessary, and may not be
useful.

7. How do predicted flow statistics depend on �?

As in the previous section, we consider a general statistic of the turbulent flow (denoted by
Q), and the corresponding estimate of Q (denoted by Qm) obtained from the LES. The value
of Qm depends on two artificial parameters; the turbulence resolution length scale � and the
numerical resolution h. These are artificial parameters in the sense that, while they affect Qm,
they have no impact on the underlying velocity field U(x, t), and hence they have no effect
upon Q.

We focus attention on the influence of � by considering the ratio h/� to be fixed. In pure
physical LES, provided that h/� is sufficiently small, the solutions are numerically accurate
and hence the dependence on h is negligible. (Test calculations by Vreman et al [28] and Chow
and Moin [29] show that this requirement is h/� � 1

4 for a scheme with second-order spatial
accuracy, and h/� � 1

2 for sixth-order accuracy.) For numerical LES, the eddy resolution is
determined directly by the grid: the parameter � does not appear explicitly in the equations, and
hence we can simply define � = h, yielding h/� = 1. Physical LES involving some numerical
error is generally performed with h/� = 1 or h/� = 1

2 . Thus, we treat h/� as a secondary
parameter, which is fixed for the sake of the current discussion.

We consider the simplest case of a free shear flow in which the energy-containing motions
are characterized by an integral length scale L, and the Reynolds number is extremely large so
that the Kolmogorov scale η (which characterizes the smallest motions) is very small compared
with L. The statistic obtained from the LES is denoted by Qm(�) to show explicitly its
dependence on �—and it is this dependence which is examined in this section. Essentially, the
same considerations apply to the dependence of Qm on εM in adaptive LES.

For generality we consider a statistic Q which has contributions from both the energy-
containing and dissipative scales, and we speculate that Qm(�) varies with � as depicted
qualitatively in figure 2. (Such a statistic can be formed, for example, as the sum of a statistic
dominated by the energy-containing range and a statistic dominated by the dissipation range.) In
addition to L and η, the figure shows the length scales �EI and �DI which demarcate the inertial
subrange from the energy-containing range and from the dissipation range, respectively. As �

is reduced from order L to �EI , more and more of the energy-containing motions are resolved.
Hence, more of the energy-containing contribution to Q is represented directly through W , and
less is modelled. As � is further decreased towards �DI , an intermediate asymptote, denoted
by Qm

I , is approached. This corresponds to � being in the inertial subrange. Nearly all of
the energy-containing contribution to Q is represented directly in terms of W , whereas nearly
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Figure 2. Variation of the model Qm for that statistic Q as a function of the
turbulence resolution length scale � (on a log scale): Qm

0 is the DNS limit as
� tends to zero; Qm

I is the intermediate asymptote in the inertial subrange.

all of the dissipation-range contribution is modelled. As � is further reduced, eventually the
DNS asymptote Qm

0 is reached in which Qm(�) tends to Q as all of the scales are resolved.
The achievement of this asymptote depends on the LES model appropriately reverting to the
Navier–Stokes equations as � tends to zero—which we assume to be the case for all models
considered here.

It is emphasized that the existence of this intermediate asymptote is a hypothesis, in
need of testing for different statistics, and its existence certainly depends upon the LES model
being consistent with inertial-range scaling. If other processes are involved (e.g. combustion
or mixing at large or small Schmidt number), then transitions may occur around the values of
� corresponding to the resolution of those processes.

To expand on this picture, figure 3 shows the two contributions to Qm, i.e. the contribution
Qw solely from W and the model Qr for the residual contribution (which depends on W , R

and �; see equation (9)). The behaviour of Qw is simple: as � decreases from � ≈ L, the
resolved contribution Qw increases until it approaches the asymptote Qw

I (around � ≈ �EI),
corresponding to the contribution to Q from the energy-containing motions, which are well
resolved for � � �EI . As � decreases through the inertial sub-range from �EI to �DI , Qw

changes little, since it contains essentially all of the contributions from the energy-containing
motions, but none from the dissipative motions. However as � decreases beyond �DI towards
η and towards zero, more and more of the dissipative contribution is directly resolved by Qw,
which tends to Qm

0 .
The behaviour of Qr is a little more complicated. For � ≈ L, Qr models both the

contribution to Q from the dissipative scales, and also the contribution from the unresolved
large-scale motions. As � decreases towards �EI , this latter contribution decreases towards
zero. In the inertial subrange, Qr models the contribution from the dissipation scales, and its
value is essentially constant. In this range, W and R vary with �, and hence the constancy
of Qr depends on the model satisfying the correct inertial-range scaling. As � decreases from
�DI to zero, all of the dissipative motions become resolved, and hence any reasonable model
ensures that Qr tends to zero.
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Figure 3. The contributions to the modelled statistic Qm from the resolved
motions Qw and from the residual model Qr as a function of the turbulence
resolution length scale �. In the inertial subrange, Qw and Qr approach the
intermediate asymptotes, Qw

I and Qr
I .

This idealized picture calls for several qualifications, but also leads to important
conclusions.

(i) Figures 2 and 3 pertain to unrealistically high Reynolds number at which the intermediate
asymptote is clear. At moderate Reynolds numbers, the intermediate asymptote may not
be discernible.

(ii) The computational cost of the LES varies approximately as (L/�)4, and hence it is not
feasible to perform simulations with � � �EI . With � ≈ η, the computational cost is
comparable with DNS, and hence is not feasible beyond moderate Reynolds numbers.

(iii) If the statistic Q in question contains a significant contribution from the dissipative scales
(as assumed in figures 2 and 3), then it is important to recognize

(a) that the convergence for � in the inertial subrange (�DI < � < �EI) is to the
intermediate asymptote Qm

I , not to the true value of Q;
(b) for practical values of � (e.g. � � �EI) the LES prediction Qm(�) has an order-one

contribution from the modelled term Qr.

(iv) In contrast with the previous case, if the statistic Q in question and the processes affecting
it pertain solely to the energy-containing range, then it is reasonable to suppose that there
is a single asymptote (i.e. Qm

I = Q), and hence Qm(�) converges to Q as �/�EI becomes
small. This situation is depicted in figure 4. Since the earliest days, this has been the
promise of LES.

Note that, in item (iv) above, the qualification ‘ . . . and processes affecting it . . . ’ is
necessary. Consider, for example, a statistic Q pertaining to the large scales of the composition
field in turbulent combustion. Even though the statistic pertains to the large scales, the rate-
controlling processes of molecular mixing and chemical reaction occur on the smallest scales.
Hence, Qm(�) cannot be assumed to converge to Q unless these small scales are resolved. So
the picture remains that of figure 2 with Qm

I �= Q.
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Figure 4. The modelled statistic Qm and its components Qw and Qr against
the turbulence resolution length scale � for the case in which the statistic
Q and the processes affecting it are confined to the energy-containing
scales.

We have considered here Qm as a function of �. For adaptive LES (as described in
section 5), Qm can be considered as a function of the turbulence resolution tolerance εm, and
the picture is essentially the same for Qm(εm) as it is for Qm(�).

8. What is the goal of an LES calculation?

For a given flow and a given LES model, what is the goal of the calculations performed? This
superficially naive question is prompted by the fact that, as discussed above, statistics Qm(�)

obtained from LES depend on the artificial parameter �. It is intrinsically unsatisfactory to
accept Qm(�) (for some value of �) as a prediction for Q—for Qm(2�) or Qm( 1

2�), for
example, may yield substantially different predictions.

A more satisfactory answer can be provided in the idealized case (considered in the previous
section) of very high Reynolds number free shear flow. The goal of the LES calculation can
be to estimate the intermediate asymptotic value Qm

I (see figure 2), which is independent of
�. This can be achieved by performing LES with several (at least three) different values of �,
so that the intermediate asymptote can be estimated by extrapolation to � = 0.

At moderate Reynolds number, and in more complex flows, a completely satisfactory
answer is more elusive. However it should surely be an essential part of the LES methodology
to perform simulations over a range of � to assess the sensitivity of Qm(�) to �. If the
sensitivity is large over the whole range investigated, what can be concluded about the flow
statistic Q?

9. How are different LES models to be appraised?

Given two LES models, which we refer to as model A and model B, what criteria are
to be used to assess their relative merits? In the broader context of turbulence modelling
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Figure 5. The predictions QmA(�) and QmB(�) of the statistic Q obtained
from LES models A and B as functions of the turbulence resolution length scale
� for the case in which Q has contributions from both energy-containing and
dissipative scales.

(including LES), Pope [5] suggests five criteria:

(i) level of description

(ii) completeness

(iii) cost and ease of use

(iv) range of applicability, and

(v) accuracy.

Completeness is the topic of section 5. Here we first discuss accuracy, and then cost (in conjuction
with accuracy). For LES, an additional criterion, which we assume to be satisfied by the models
considered, is convergence to DNS in the limit at �/η tends to zero.

Considering again the very high-Reynolds number flow of the previous two sections,
figure 5 is a sketch of Qm(�) given by models A and B. It shows that the two models have
different intermediate asymptotes, denoted by QmA

I and QmB
I , respectively. Recalling that the

ideal goal of an LES calculation is to estimate this intermediate asymptote, for the case depicted
in figure 5, model A clearly has superior accuracy, since QmA

I is closer to Q than is QmB
I . Note

that if LES calculations were performed at the single value � = �∗ then the contrary conclusion
would incorrectly be drawn.

Figure 6 depicts the situation in which the statistic Q of interest pertains solely to
the energy-containing motions and both models asymptote to Q (for �/�EI � 1). As a
consequence, each model becomes as accurate as desired as �/�EI decreases, and the criterion
of accuracy alone does not favour one model over the other.

The second criterion to consider is the computational cost, most simply measured in CPU
time, T , and most simply approximated as TA = cA(L/�)4 and TB = cB(L/�)4, for models A
and B respectively, where cA and cB are model-dependent constants. Obviously the CPU time
increases as � decreases. Figure 7 is a sketch of Qm(�) as a function of CPU time for the
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Figure 6. The predictions QmA(�) and QmB(�) of the statistic Q obtained
from LES models A and B as functions of the turbulence resolution length scale
� for the case in which Q and the processes affecting it are confined to the
energy-containing range.

Figure 7. For the case depicted in figure 6, QmA and QmB plotted against CPU
time T . The horizontal dashed lines show the interval of acceptable accuracy.

two models for the same case as is shown in figure 6. An error tolerance εQ is specified so that
the calculation Qm(�) is acceptably accurate if it lies in the range [Q − εQ, Q + εQ]. For the
case depicted in figure 7, model B is superior since it achieves the required accuracy in time
T ∗

B which is less than T ∗
A.

Evidently, for this case, cA is much larger than cB, i.e. for given �/L, method A is much
more expensive. From figure 6 it is evident that, compared with method A, method B requires
a smaller value of � to achieve acceptable accuracy, yet it requires less CPU time (figure 7).
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Thus, the principal criteria to appraise LES models are (intermediate) asymptotic accuracy,
and computational cost to achieve acceptable accuracy. It is important to appreciate that such an
appraisal cannot be made without characterizing the � dependence of the models. In particular,
comparing models based on calculations with a single value of � can be extremely misleading.

10. Why is the dynamic model successful?

The dynamic model was proposed by Germano et al [30], with important modifications and
extensions provided by Lilly [31] and Meneveau et al [32]. The model has proved quite
successful, and the same procedure has been applied in several other contexts.

The dynamic model is usually motivated by notions of scale similarity, although this
rationale is not explicitly stated in the original paper. If the turbulent motions possess scale
similarity, then a model that respects this scale similarity should be applicable at different
scales (i.e. for different values of �); and this principle can be used to determine the numerical
coefficients in the model. The most well-known application is to the Smagorinsky model, in
which the dynamic procedure is used to determine the appropriate value of the Smagorinsky
coefficient cs.

Several observations cast doubt on this rationale for the dynamic Smagorinsky model:

(i) Turbulence at high Reynolds number can reasonably be assumed to possess scale similarity,
but only over length scales corresponding to the inertial subrange. In the inertial subrange,
the Smagorinsky model is, by construction, consistent with the known inertial-range scaling
laws, and the appropriate value of the Smagorinsky coefficient is uniquely determined (for
given filter type) by the analysis developed by Lilly [2]. In this circumstance there is,
therefore, neither need for nor benefit from the dynamic model.

(ii) It is reasonable to suppose that the Smagorinsky model yields accurate predictions of
energy-containing statistics in high Reynolds number free flows, provided that � is well
within the inertial subrange. These statistics will be insensitive to a further reduction in
�. In the Smagorinsky model, the coefficient cs appears only in the product cs�

2: hence
decreasing � is equivalent to decreasing cs. If energy-containing statistics are insensitive
to �, they are, therefore, also insensitive to cs, again negating the value of the dynamic
procedure.

(iii) The dynamic procedure has been most successful in remedying the standard Smagorinsky
model’s serious deficiencies in laminar flows, transitional flows and in the viscous near-wall
region. In none of these circumstances is scale similarity plausible.

(iv) Based on similar considerations, Jiménez and Moser [33] conclude that ‘the physical basis
for the good a posteriori performance of the dynamic-Smagorinsky subgrid models in
LES . . . appears to be only weakly related to their ability to correctly represent the subgrid
physics’.

Since the dynamic model does appear to be successful, it is natural to ask: why? The
behaviour of the dynamic Smagorinsky model has been studied by Meneveau and Lund [34]
for the case in which � approaches η, and hence scale similarity does not hold. At the other
limit, Porté-Agel et al [35] introduce a refined dynamic procedure to produce scale-dependent
coefficients for the case in which � approaches L. In the remainder of this section, we offer
an alternative principle to motivate both the standard and refined dynamic procedures.
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As discussed in section 7, the LES prediction Qm(�) of a turbulent-flow statistic Q

pertaining to the energy-containing range (in a high-Reynolds number free flow) can be supposed
to vary with � as illustrated in figure 6. The figure shows Qm(�) given by two different models,
A and B, both of which converge to Q as �/�EI tends to zero. If the computational cost (at
fixed �) is the same for both models, then clearly model A is superior, since it approaches the
asymptote, Q, sooner as � decreases.

Another view of the same observation is provided by the identity

Qm(�) − Q = [Qm(�I) − Q] +
∫ �

�I

dQm(�)

d�
d�, (11)

which follows from the fundamental theorem of calculus (for any differentiable function Qm(�)).
The left-hand side represents the error in the LES prediction as a function of �, which we require
it to be as small as possible (in magnitude). The first term on the right-hand side represents
the error in the prediction for � = �I , and we take �I to be sufficiently small for this error
to be negligible. Thus the error (at scale �) is essentially given by the last term; and, roughly
speaking, the smaller the derivative |dQm(�)/d�|, the smaller the error. As may be seen from
figure 6, the derivative |dQm(�)/d�| is smaller for method A compared with method B.

Based on this observation, it is natural to seek an LES model which has the following
properties (with respect to statistics Qm(�) of interest pertaining to the energy-containing
motions in a high-Reynolds number flow):

(a) for � = �I well within the inertial subrange, the LES predictions are accurate,

(b) for � > �I , the predicted statistics vary as weakly as possible with �.

We suppose that (a) is satisfied by any reasonable model that has the correct inertial-range
scaling (e.g. the Smagorinsky model), and so we focus on property (b).

The dynamic model is based on filtering. Specifically, it is based on quantities filtered with
respect to one filter of width �, and a second filter of somewhat larger width �̃. Quantities so

filtered are denoted by, for example, U and Ũ, respectively. The LES model Qm for the statistic
Q of interest can be evaluated based on U and �, i.e.

Qm(�) = Qw(U) + Qr(U, �), (12)

where Qw denotes the contribution from the resolved motions (determined solely from U), and
Qr is the model for the contribution from the residual motions. For the same statistic Q, the
LES model can also be applied based on Ũ and �̃, i.e.

Qm(�̃) = Qw(Ũ) + Qr(Ũ, �̃). (13)

To fulfil condition (b), we introduce the following principle: the LES model coefficients

should be chosen to minimize the difference between Qm(�) and Qm(�̃).
As depicted in figure 4, as � decreases from � ≈ L, Qw increases, whereas Qr decreases.

The magnitude of Qr is typically proportional to a model constant, cQ, say. An interpretation
of the above principle is that cQ should be chosen so that the decrease in Qr(�) as � decreases

from �̃ to � should be balanced by the corresponding increase in Qw(�). Figure 8 illustrates
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Figure 8. For the given model A, and the dynamic model D, a sketch of the
resolved contribution Qw(�) and of the modelled residual contributions QrA(�)

and QrD(�) to the model predictions QmA(�) and QmD(�) of a large-scale
statistic Q. The dynamic model selects the model coefficient cQ so that QmD(�̃)

equals QmD(�).

these ideas for a model denoted by A with a fixed value of cQ, and for the dynamic model
denoted by D. (For simplicity, the resolved contribution Qw is taken to be the same for both
models.) As may be seen from the figure, for model A, the decrease in Qr, i.e. QrA(�̃) − QrA(�)

is less than the increase in Qw, i.e. Qw(�) − Qw(�̃), and consequently the model prediction
QmA(�̃) is less than QmA(�). According to the above principle, the value of cQ is too small

in model A. The dynamic procedure selects cQ so that QmD(�) equals QmD(�̃).
We now apply this principle to the Smagorinsky model and show that it yields essentially

the same specification for the Smagorinsky coefficient cs as the dynamic procedure. The LES
equations incorporating the Smagorinsky model are solved with � = �. The resolved velocity
field W(x, t) is deemed to model the filtered velocity field U(x, t).

The LES field W is filtered with a filter of width �̃, so that W̃ corresponds to the doubly

filtered velocity field Ũ. The filter width �̃ is that corresponding to filtering by � and then by
�̃: for a Gaussian filter the relation is �̃ = [�2 + �̃2]1/2. Thus, it is assumed (as in the standard
dynamic model) that the statistics of the LES fields W and W̃ are the same as those of the

filtered fields U and Ũ.
We consider the quantity

Qij(x, t, �) ≡ UiUj − 1
3UkUkδij, (14)

defined at the � filter level. The corresponding quantity at the �̃ filter level is consistently
defined by

Qij(�̃) ≡ ŨiUj − 1
3ŨkUkδij, (15)
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where the dependence on x and t is no longer shown explicitly. It is readily observed that these
two quantities are related by

Qij(�̃) = Q̃ij(�). (16)

The Smagorinsky model for Qij(�), denoted by Qm
ij (�), can be written as

Qm
ij (�) = Qw

ij(�) + Qr
ij(�), (17)

where

Qw
ij(�) ≡ UiUj − 1

3UkUkδij (18)

is the contribution that is known from the resolved field, and

Qr
ij(�) ≡ −2cs(�)�2S Sij (19)

is the Smagorinsky model for the residual contribution. Here cs(�) is the Smagorinsky coefficient
at scale �; Sij is the filtered rate of strain

Sij ≡ 1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
, (20)

and S is the filtered rate-of-strain invariant

S ≡ [2SijSij]
1/2. (21)

The same model applied at the �̃ filter level is

Qm
ij (�̃) = Qw

ij(�̃) + Qr
ij(�̃), (22)

where Qw
ij(�̃) and Qr

ij(�̃) are defined analogously to equations (18) and (19), with the latter

involving the coefficient cs(�̃).
In view of the identity, equation (16), these model equations provide two estimates of

Qij(�̃): the first is directly in terms of Ũ from equation (22); the second is from filtering
equation (17) which is based on U, i.e.

Q̃m
ij (�) = Q̃w

ij (�) + Q̃r
ij(�). (23)

We are now in a position to state, in this context, the alternative principle that leads to
the dynamic model. This principle is: the model coefficient cs should be chosen to minimize

the mean-square difference between the model’s prediction of Qij(�̃) based on Ũ, equation
(22), and that based on U , equation (23). Note that there is no appeal to the scale similarity.
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Rather, the aim is to select cs so that the statistics predicted at a single filter level (i.e. Qij(�̃))

depend as little as possible on the level of the filtered velocity field (i.e. U or Ũ) on which the
prediction is based.

The difference to be minimized is

δQm
ij ≡ Q̃m

ij (�) − Qm
ij (�̃). (24)

This is obtained by subtracting equation (23) from equation (22), and in the notation of Pope
[5] the result is

δQm
ij = Ld

ij − cs(�̃)Mij, (25)

with the definitions

Ld
ij ≡ (Ũi Uj − 1

3Ũk Ukδij) − (Ũi Ũj − 1
3Ũk Ũkδij), (26)

Mij ≡ 2γ�2S̃ Sij − 2�̃2S̃ S̃ij (27)

and

γ ≡ cs(�)/cs(�̃). (28)

(As in the usual derivation of the dynamic model, equation (25) involves the approximation
that, when equation (19) is filtered, cs(�) is taken to be spatially uniform.)

The unknown parameter γ is unity if scale similarity prevails, and is close to unity otherwise.
For the usual case (�̃)/� = 2, the second term in equation (27) is approximately 4 times the
first term, and hence the value of cs(�̃) is insensitive to γ . Thus, the standard practice of setting
γ = 1 is a reasonable first approximation, even when scale similarity does not hold.

The mean-square difference between the two predictions of Qm
ij (�̃) is

χ ≡ 〈δQm
ij δQ

m
ij 〉. (29)

It follows simply from equation (25) that the value of cs(�̃) which minimizes χ is

c∗
s ≡ 〈Ld

ijMij〉/〈MijMij〉. (30)

This is just the standard formula for cs used in the dynamic model, except that some practical
form of averaging is used, rather than using expectations.

As observed by Porté-Agel et al [35], this dynamic procedure yields (to a first
approximation) the value of the Smagorinsky coefficient cs(�̃) at the scale �̃, whereas, to
perform the LES, the value of cs(�) is required. Hence a refined procedure, such as that
advanced by Porté-Agel et al [35], provides an estimate of γ to be used in equation (27), and,
more importantly, so that cs at the required scale is obtained as cs(�) = γcs(�̃).

For the simplest case of high-Reynolds number homogenous isotropic turbulence, the
dynamic procedure can be applied to determine c∗

s as a function of �̃ (for fixed �̃/�). For �̃
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in the inertial subrange, one expects c∗
s to be independent of �̃, and equal to the value given by

the Lilly analysis. But as �̃ increases beyond �EI towards the integral scale L, the expectation
is that c∗

s decreases. Thus, in the inertial subrange the Smagorinsky length scale �s, defined

by �2
s ≡ c∗

s �̃
2, varies as �̃ in accord with inertial range scaling; however, for larger values of

�̃, �s increases more slowly than �̃ (as c∗
s decreases).

In summary, it has been shown that both the standard and refined dynamic procedures
can be derived from the principle that the model coefficients should be chosen (as functions
of �) to minimize the dependence of relevant turbulence statistics on �. In particular, for the
Smagorinsky model, the coefficient cs(�̃) is chosen to minimize the difference between Qij(�̃),

equation (15), evaluated based on U and on Ũ. If scale similarity holds then γ is unity, and
the procedure yields the standard result for cs(�) = cs(�̃). If scale similarity does not hold,
then (setting γ = 1), the procedure yields a reasonable approximation to cs(�̃). In a refined
procedure, the value of γ is estimated so as to provide an improved estimate of cs(�̃) and,
more importantly, of cs(�) = cs(�̃).

11. Conclusions

As we enter the era in which there is sufficient computer power for LES, it is useful to re-
examine both the conceptual foundations of the approach and the methodologies and protocols
generally employed.

For flows in which rate-controlling processes occur below the resolved scales (e.g. near-
wall flows and combustion), LES calculations have a first-order dependence on the modelling
of these processes. Approaches that include a statistical resolution of all scales provide a more
fundamental description of the rate-controlling processes; however, it remains a challenge to
devise such approaches that are computationally tractable and free of empiricism.

The relationship between the resolved LES velocity field W(x, t) and the turbulent velocity
field U(x, t) can only be statistical. Corresponding to a turbulence statistic Q, the LES provides
a model Qm for Q of the form

Qm = Qw + Qr, (31)

where Qw is the contribution from the resolved motions (which is obtained directly from W )
and Qr is the modelled contribution from the residual motions.

In LES, the turbulence resolution length scale �(x) is an artificial parameter of prime
importance. As a rule, as � decreases, Qw increases and Qr decreases. Unless demonstrated
otherwise, there is every reason to suppose that LES predictions Qm depend (maybe strongly)
on �. As a consequence, characterizing the dependence of predictions on � must be part of
the overall LES methodology.

As currently practised, LES is incomplete because the turbulence resolution length scale
�(x) is specified subjectively in a flow-dependent manner. It can be made complete through
adaptive LES. The variation of �(x, t) is controlled (by grid adaption) so that a measure M(x, t)

of turbulence resolution (e.g. the fraction of the turbulent kinetic energy in the resolved motions)
is everywhere below a specified tolerance εM .
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In a high-Reynolds-number turbulent flow, as � is decreased into the inertial subrange,
it can be supposed that Qw and Qr approach an intermediate asymptote (provided that the
model is consistent with inertial-range scaling). As � is decreased through the dissipation
range, Qm approaches the correct value Q (provided that the model appropriately reverts to the
Navier–Stokes equations in this limit). The most that an LES calculation can hope to achieve,
is to obtain an accurate estimate of the intermediate asymptote Qm

I . This asymptote may or
may not be equal to Q depending upon whether or not Q and the processes affecting it depend
solely on the energy-containing scales.

With respect to the criteria ‘accuracy’and ‘cost’, the relative merits of different LES models
can be appraised only when the dependence of their predictions on � has been characterized.
If the intermediate asymptote Qm

I differs from the turbulence statistic Q, then the model whose
value of Qm

I is closest to Q is to be preferred, based on the criterion of accuracy. If several
models have Q as their intermediate asymptote, then the model which achieves acceptable
accuracy with the least computational cost is to be preferred. By this criterion, it is highly
probable that the optimal model contains non-negligible numerical errors.

An alternative principle is advanced to justify the dynamic procedure, namely, the LES
model coefficients should be chosen to minimize the difference between Qm(�) and Qm(�̃)

(where � is the value of � used in the LES and �̃ is somewhat larger). It is shown that
this principle applied to the Smagorinsky model results in essentially the same formula for
the coefficient cs (i.e. equation (30)) as the standard dynamic model. As previously observed
by Porté-Agel et al [35], if scale similarity does not hold, then the coefficient obtained is an
approximation to the appropriate value at scale �̃, not at the required scale �.
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