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Abstract. Intracellular Ca2+ dynamics allows for the observation of wave
formation from elemental release events to the global phenomenon. It shows
propagating waves with deterministic features and at the same time probabilistic
behaviour like variable periods. Formulation and analysis of deterministic wave
models sheds new light on experimental observations and contributes to the
theory of nonlinear propagating waves by exhibiting new instabilities. That
is demonstrated with the example of Ca2+ waves with energized mitochondria.
Stochastic models can describe spatio-temporal structures from localized puffs
to propagating waves. They explain the origin of long timescales in Xenopus
oocytes and wave generation. The implications of the results of both approaches
for the theory of intracellular Ca2+ dynamics is discussed.
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Calcium is a ubiquitous second messenger which regulates multiple cellular functions. It is
involved in processes as different as muscle contraction and synaptic transmission [1, 51]. Ca2+

has a crucial role at the beginning of life in the activation of eggs after fusion of the sperm [71]
and controls cell differentiation later on in development [37]. It was called the ‘life and death
signal’ by Berridge et al [6] because of this paramount importance in the regulation of cells.

The Ca2+ signal employed by such a variety of cells and processes is a transient increase of
the intracellular concentration. This Ca2+ increase is due to influx through the cell membrane or to
Ca2+ release from internal stores. The release from internal stores like the endoplasmic reticulum
(ER) or the sarcoplasmic reticulum into the cytosol is a nonlinear process. It leads in many cells
to the formation of spatio-temporal signals in the form of waves of high Ca2+ concentration
travelling across the cell. Intracellular calcium waves were first observed in medaka eggs [76]
and later on in Xenopus oocytes (frog eggs) [33, 57], hepatocytes [70], articular chondrocytes [18]
and cardiac myocytes [72, 101].

The opening and closing of Ca2+ channels controls the release. These channels are closely
packed into clusters on the ER membrane [63, 64, 92, 96]. The maximal number of channels in
a cluster is not known but is estimated to be in the range of 20–30 [10, 26, 92]. The clusters
are randomly distributed. Areas with high cluster density are called focal sites [11, 57, 66]. The
average distance of clusters outside focal sites in Xenopus oocytes has been determined as 7.3 µm
and inside focal sites as 5 µm [66]. Channels open and close stochastically. Stochastic behaviour
manifests itself as spontaneous release events through single channels or several channels in a
cluster [7, 11, 66, 92, 97].

A channel type present in the ER membrane of many cells is the inositol 1,4,5-trisphosphate
(IP3) receptor channel (IP3R). The open probability of the IP3R depends on the calcium
concentration on the cytosolic side of the channel and the IP3 concentration (see [74, 95] for a
review). It increases nonlinearly with the IP3 concentration and the Ca2+ concentration. Hence,
Ca2+ released by one channel increases the open probability for neighbouring channels. That
provides a self-amplifying release mechanism. Very high Ca2+ concentration inhibits the channel
and terminates release.

It has been suggested that the Ca2+ content of the ER may regulate the IP3R open
probability [14, 69]. However, that could only be observed if the store was less than 30%
full [73]. The Ca2+ binding site on the lumenal face of the IP3R has too low an affinity to serve
as a sensor [87]. Many effects attributed to lumenal Ca2+ can be explained as being exerted by
released Ca2+ on the cytosolic side as well [95] and several studies come to the conclusion that
regulation by lumenal ER Ca2+ is not an essential component of the release control [43, 44, 95].
Hence, especially since we will not consider release emptying stores to less than 30% of their
content, we assume that lumenal Ca2+ does not control IP3 receptor channel open probability.

Another element of intracellular Ca2+ handling are buffers. Buffers are proteins binding
most of the Ca2+ in a cell (up to 99%). They are present in the cytosol as well as the ER. Buffers
are considered as mobile or immobile depending on their diffusion characteristics. The rate
constants of Ca2+ binding and dissociation allow for a distinction between slow and fast buffers.

The dependence of the open probability of the release channels on cytosolic Ca2+ creates
communication between channels and allows for the formation of spatio-temporal patterns of
intracellular Ca2+ release. These patterns show a hierarchy of phenomena. The smallest event is
the opening of a single channel, called a blip. The next larger event is a puff and is the opening of
several closely packed channels. Puffs can cooperate to set off a wave travelling through the cell.
Waves would appear as an elevation of the Ca2+ concentration engulfing the whole volume in
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Figure 1. Spiral wave in a Xenopus oocyte. Bright areas indicate high Ca2+.
The wave was observed under conditions of increased SERCA density (figure
from [30]). See animation.

cells smaller than the wavelength. If waves occur periodically, they appear as global oscillations.
The type of the dominant pattern depends on the IP3 concentration with puffs at low and waves
and oscillations at high values.

Mitochondria are involved in energy-yielding metabolism. They contain many enzymes
that together catalyze the oxidation of organic nutrients by molecular oxygen. The energy gain
from oxidation is used for ATP synthesis. The transport of different chemical species involved in
that process across the mitochondrial membrane and the dynamics of the membrane voltage was
described in comprehensive models by Magnus et al and Selivanov et al [59, 60, 61, 84]. In the
course of these processes, mitochondria take up and release Ca2+ and thus modulate intracellular
Ca2+ signals [9, 20, 22, 30, 34, 40, 41, 45, 48, 68, 77]. Especially (but not only) Friel pointed out
that modulation occurs in two ways: a buffer-like action due to Ca2+ uptake and a slowing of the
decay of cytosolic transients due to mitochondrial release [15, 16, 34].

Most of the theoretical research has focused on deterministic models of intracellular Ca2+

waves [3, 23]–[25, 29, 89, 90, 99, 100]. Only recently, the stochastic nature of intracellular Ca2+

release has been considered [27, 28, 32, 52, 85]. This development of research reflects the
character of Ca2+ dynamics with its stochastic and deterministic features. The elemental release
events can be observed as puffs occurring spontaneously and with an exponential distribution
for the interval between puffs. At slightly different parameters, these puffs build up waves with
constant velocity and smooth wavefront and -back (see figure 1). The single puffs can still
be observed if the observation zooms in and a wave travels through the area of interest [66].
This possibility to observe the elemental events building global phenomena is one of the most
fascinating features of intracellular Ca2+ dynamics.

We discuss an example from deterministic modelling dealing with waves under conditions
of energized mitochondria. That example was chosen so as to illustrate basic features of the
modelling and because it explains surprising experimental results while revealing a phenomenon
new to the theory of pattern formation as well: a gap in the dispersion relation. Then, we look at
stochastic modelling, how long timescales can arise from stochasticity and the impact of channel
numbers on wave characteristics. In the concluding section we discuss the relation between the
models and current problems.
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1. Mitochondria shape waves

Jouaville et al [48] carried out experiments investigating the role of mitochondria in pattern
formation in Xenopus oocytes. Energization of mitochondria by injection of pyruvate/malate
abolished spiral patterns but not waves in general. The waves forming the pattern under these
conditions showed longer periods, higher amplitudes and higher velocities. Spiral waves could
be restored when pump density was increased by overexpression of SERCAs [30, 48].

Energization of mitochondria results in an increase of the mitochondrial effective membrane
potential from −92 to about −120 mV. The mitochondrial matrix is negative relative to the
surrounding cytosol. That leads to increased Ca2+ uptake through the uniporter. Intuitively, we
would expect a decrease of amplitudes and wave velocities upon energization of mitochondria.
Indeed, that is what was observed in rat cortical astrocytes [22]. The wave velocity and
amplitude increased upon collapsing the mitochondrial membrane potential and thus abolishing
mitochondrial Ca2+ uptake. This action of mitochondria corresponds to their behaviour
analogous to buffers. However, we will see that in the experiments in Xenopus oocytes the
other characteristic modulation of cytosolic Ca2+ transients by mitochondria—the biphasic
decay [16]—comes into play.

The model by Falcke et al [30] focuses on Ca2+ uptake and release of mitochondria only
to obtain a simple model explaining the impact of increased mitochondrial activity on Ca2+

wave patterns in Xenopus oocytes. The model neglects the mitochondrial membrane potential
dynamics. That can be justified by the results of Magnus and Keizer [59]–[61] who simulated
membrane potential dynamics with a more detailed model and found that it changes by about
2% only under normal conditions. Furthermore, Friel et al [16] were able to fit experimental
results of mitochondrial fluxes with excellent agreement to expressions for the currents neglecting
membrane potential as well.

We extend the Othmer–Tang model [94] to incorporate the mechanisms of mitochondrial
Ca2+ cycling by adding a third equation governing the uptake and release of mitochondrial Ca2+

(denoted m) and a corresponding term in the differential equation for cytosolic Ca2+ (c) [30].
The first term of the m-dynamics is Ca2+ uptake through the uniporter, the second one release
through the Na+/Ca2+ exchanger [30]. These terms appear again in the cytosolic dynamics. The
variable c denotes the cytosolic Ca2+ concentration. The cytosolic dynamics includes diffusion,
a leak flux, the c-dependent channel flux and removal of Ca2+ from the cytosol by pumps. The
first rhs term in equation (1) models Ca2+ diffusion in the cytosol. The second term describes
Ca2+ release from the ER by leak flux (P leak) and channel flux (Pchan) controlled by the fraction
of inhibited channels (1 − n) and the fraction of channels with activating Ca2+ and IP3 bound
(c/(c +β1(1 +β0(I ))). The Othmer–Tang model assumes that the receptor channel has a binding
site for IP3, an activating binding site for Ca2+ and an inhibiting binding site for Ca2+. The channel
opens upon binding of IP3 and Ca2+ to the activating site. Inhibition is provided by a second Ca2+

binding site. If Ca2+ is bound to the inhibiting site, the channel is closed. Binding to the inhibiting
site occurs on a slower timescale and with lower affinity. Hence, an adiabatic elimination of the
activating Ca2+ and IP3 binding processes can be applied leading to the dependence of the channel
flux on Ca2+ and IP3 given above. The third term (Pmax) models the uptake of Ca2+ into the ER
by ATPases (see [58]). The fourth and fifth terms are the contribution of mitochondria. The
dynamics of the fraction of inhibited channels n is a relaxation to its Ca2+-dependent asymptotic
value:
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Parameters are explained in table 1. The equation for mitochondrial dynamics essentially follows
the data presented in the experimental review by Gunter and Pfeiffer [39]. Measured values of
the half-maximum value Kd for the uniporter from 1 to 189 µM are reported in this review.
Values at the upper end of this range would not allow the uniporter to transport Ca2+ during
physiological Ca2+ transients. Physiological evidence in many cell types shows that mitochondria
respond to physiological Ca2+ transients [2, 4, 5, 15, 17, 34, 36, 38, 42, 48, 75, 78, 80, 82, 88, 93].
That suggests Kd values in the range of concentrations occurring during cytosolic Ca2+ transients
to apply in this situation as explicitly stated in [75]. Alternatively, mitochondria might experience
Ca2+ concentrations much larger than the average bulk concentration. There is morphological
evidence [21, 36, 41, 79, 83, 88] showing mitochondria in close proximity to the ER, where they
experience Ca2+ concentrations considerably higher than those in bulk cytoplasm. Rizzuto et al
[78, 80] estimated that the uptake of Ca2+ released from internal stores was an order of magnitude
faster than that resulting from the average bulk concentration of Ca2+. Such a difference to bulk
concentration can be included into a model by assuming the concentration at the mitochondrial
uniporter always to be by a fixed factor larger than the bulk concentration. That results in
re-scaling of Kd by this factor. Either way leads to a small half-maximum value of Kd for
mitochondrial Ca2+ uptake in the model. Similar conclusions were drawn by Sneyd et al [91].
Mitochondria in Xenopus oocytes have an average distance from release sites of 2.3 µm, which
is not very close in terms of the diffusion length of free Ca2+ in the cytosol and the argument
of close proximity does not apply [67]. On the other hand, puff sites spaced less than 2.2 µm
apart showed high correlation in their activity [102]. That means mitochondria are within the
length scale of Ca2+ increases at least sufficient to set off a puff. The other parameter of the
uniporter dynamics, V (1)

max, is varied to model the increase in membrane potential due to injection
of pyruvate/malate.

The buffer-like action of mitochondria can best be observed for solitary waves since their
velocity is not influenced by the dispersion relation, unlike waves in a periodic wave train.
Increasing mitochondrial uptake slows down propagation of solitary waves and decreases wave
amplitude (figure 2). That is analogous to the effect of buffers on wave speed [46, 89, 99]. Waves
in astrocytes showed an increase of wave velocity and amplitude when the mitochondrial potential
was collapsed (using antimycin A1 with oligomycin) corresponding to a decrease of V (1)

max from
some positive value to 0 in our terms [22]. This observation is compatible with the results shown
in figure 2. Similarly, the observation of mitochondria limiting spatial spread of release activity
found in pancreatic acinar cells would be in agreement with the buffer mode [98]. However,
reduction of velocity and amplitude is not the major effect observed in Xenopus oocytes.

In Xenopus oocytes, stable spirals are observed under conditions of low mitochondrial Ca2+

uptake [13, 48, 54, 55]. Spiral waves are periodic patterns, unlike the solitary waves mentioned
above. In simulations of this regime, a decrease in rotational frequency of spiral waves is
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Figure 2. Characteristics of solitary waves in dependence on V (1)
max. Waves

slow down with increasing mitochondrial uptake and finally fail to propagate.
Parameter values are given in table 1 except Pmax

r = 7.03 µM s−1, CM = 1.2 µM,
I = 0.27 µM and νm = 0.15.

Table 1. Parameters for deterministic simulations.

Parameter Value Unit

Leak flux coefficient P leak
r 0.0097 s−1

Channel flux coefficient Pchan
r 3.89 s−1

Pump flux coefficient Pmax
r 5.31 µM s−1

Pump dissociation constant Kr 0.0296 µM
Uniporter flux coefficient V (1)

max 6 µM s−1

Uniporter dissociation constant Kd 1.5 µM
Na+/Ca2+ exchanger flux coefficient V (2)

max 3 µM s−1

Na+/Ca2+ exchanger Ca2+ dissociation constant Km 1 µM
Na+/Ca2+ exchanger Na+ dissociation constant KNa 5 mM
Na+ concentration 10 mM
Effective diffusion coefficient D of Ca2+ 50 µm2 s−1

Effective volume ratio νr = VER/Vcyt 0.185
Effective volume ratio νm = Vmit/Vcyt 0.1
Total concentration of Ca2+ CM 1.56 µM
IP3 concentration I 0.27 µM
Subunit kinetics

β0 0.8 µM/I
β1 0.12 µM
β2 0.1 µM
ε 0.15 s−1

accompanied by a small increase in wave velocity and a small decrease in wave amplitude with
increasing V (1)

max (figure 3). However, this behaviour only holds for small values of V (1)
max below

a critical value. When mitochondria are energized in Xenopus oocyte experiments, spiral wave
patterns become unstable, disappear, and do not reform. In agreement with experiments, spirals
cease to exist at a certain critical value of mitochondrial Ca2+ uptake V (1)

max,cr in simulations too.
Above this value, it is found that waves emitted from pacemakers form the pattern. Examples
of these waves, as observed in experiments and simulations, are shown in figure 4.
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Figure 3. Characteristics of waves with increased mitochondrial activity: (A)
pulse profiles with (full curve, V (1)

max = 28 µM s−1) and without (dashed curve,
V (1)

max = 0 µM s−1) increased mitochondrial activity. The amplitudes were
normalized to 1. The direction of motion is from right to left. With increased
mitochondrial activity the typical biphasic decrease of Ca2+ in the back of the
pulse can be seen. In the refractory area (around 400 µm), Ca2+ is higher with
increased mitochondrial activity than under normal conditions. That prolongs
receptor recovery. (B) Pulse amplitude (full curve) and velocity (dashed curve)
for periodic pulse trains in dependence on the frequency of the wave train,
V (1)

max = 8 µM s−1. (C) Dependence of spiral wave velocity (circles), frequency
(crosses) and amplitude (triangles) on V (1)

max for low mitochondrial Ca2+ uptake
(V (1)

max < V (1)
max,cr) normalized to the value at V (1)

max = 0. For parameters see table 1.
(Figure from [30].)

A simulation was also carried out corresponding to an experiment in which pyruvate/malate
was injected into an oocyte [48]. In the course of this simulation, V (1)

max was increased to mimic
the injection. The changing Ca2+ concentration at a location about a wavelength off the spiral
core is shown in figure 4(C). The Ca2+ oscillations associated with spiral waves cease as the
system moves to a new steady state upon increasing V (1)

max. This is followed by the dominance of
waves emitted from a pacemaker. Figure 5 shows the transient state of a spiral wave tip when
Ca2+ uptake exceeds the critical value (V (1)

max > V (1)
max,cr).

When the tip bends in the early stage of spiral formation, another small-amplitude wave
emerges from the back of the wave at the highest curvature (indicated by white arrow in
figure 5(A)). Mitochondrial Ca2+ efflux is responsible for this secondary wave, which in turn
is responsible for prolonging the refractory state of the IP3R and preventing spiral formation.
Although efflux plays a fundamental role in the destabilization of the spiral core, it is not the
sole determinant. Here, wavefront curvature also contributes to spiral core instability. Near the
spiral tip, where the wavefront curvature is the highest, Ca2+ diffusion down the gradient of the
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Figure 4. Simulation of an experiment. (A), (B) and (C) are results of a
simulation. (D) and (E) are pictures from experiments. (A), (D) Spiral at low
mitochondrial activity. There is a pacemaker in the upper left corner of (A) but
its activity is suppressed by the spiral (V (1)

max = 8 µM s−1). (C) Time course of
the local Ca2+ at a point two spiral wavelengths off the centre of the simulation
area. V (1)

max was increased at t = 120 s to 16 µM s−1. That corresponds to the
injection of pyruvate/malate in the experiments. The spiral becomes unstable and
disappears. After a transient, the pacemaker governs the pattern formation. See
animation. (B), (E) Waves emitted from a pacemaker in the regime with high
mitochondrial activity. The other parameter values are the same as in figure 3.
For other parameters see table 1. (Figure from [30].)

back of the wave is focused. This focal increase in Ca2+ further prolongs the refractory period
of IP3Rs. Thus, both curvature and mitochondrial efflux are responsible for the generation of
the secondary wave which forces the tip outward, thereby preventing spiral pattern formation
(figure 5(B)). This phenomenon was experimentally observed in the oocyte after energization as
shown in figures 5(C) and (D). The free end of a Ca2+ wave is forced outward by a secondary
Ca2+ wave and the spiral fails to form.

When periodic wave patterns of different frequencies are present in a medium, they compete
for space. As time goes on, the pattern with the highest frequency generally gains spatial control
of the field. It was shown experimentally that pacemakers are present in oocytes and that spiral
waves dominate pacemakers in Xenopus oocytes with normal mitochondrial respiration [56].
Thus, it is only after the spirals have disappeared above V (1)

max,cr—when mitochondria are
energized—that the lower frequency pacemakers can govern the pattern formation in the oocyte.
Hence, energization results in a wave pattern dominated by slow pacemakers. The smaller
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Figure 5. Development of the core of an unstable spiral at high mitochondrial
activity (V (1)

max = 8 µM s−1; the other parameter values are the same as in figure 3).
(A) and (B) are taken from simulations, (C) and (D) from experiment. (A), (C)
When the wave bends at its free end, a patch of high Ca2+ emerges at its back.
(B), (D) The patch expands, pushing the free end outward and preventing spiral
formation. For other parameters see table 1. (Figure from [30].)

frequency leads to an increase in wave amplitude and velocity, according to the dispersion
relation (figure 3).

The local dynamics of the model yield three stationary states, each with different
concentrations of cytosolic Ca2+. At low mitochondrial Ca2+ uptake (small V (1)

max), only the
state with the lowest cytosolic Ca2+ is stable and the cytosol behaves as an excitable system
(figure 6). The system becomes bistable at the uptake value V (1)

max,b (note, V (1)

max,b < V (1)
max,cr).

At this point, the stationary state with the highest cytosolic Ca2+ concentration is stabilized by
increased mitochondrial Ca2+ cycling.

When both stable stationary states exist at adjacent locations, the front connecting the states
moves so that the volume occupied by one of the states grows at the expense of the other.
The state which loses volume is metastable. Whether the system switches by a front from low to
high cytosolic Ca2+ or vice versa depends on the degree of mitochondrial energization. In most
of the bistable region that we consider here, the state of high cytosolic Ca2+ is metastable. Note
that in the bistable regime, both pulses and fronts occur and below V (1)

max,cr spirals form. Above
V (1)

max,cr, the region of high Ca2+ can expand if it is surrounded by a pulse, even though it is the
metastable state. Thus, a front of transition from low to high Ca2+ can occur in this parameter
range if the front immediately follows a pulse. This occurs when the unstable spiral core expands
(figures 5(A)–(D)). If the pulse leading the front is extinguished by collision with another pulse,
the front reverses its direction of motion and the patch of high Ca2+ shrinks and disappears.
Another way that a patch of high Ca2+ in figure 5(B) may disappear is that a pacemaker inside it
starts a front that returns the cytosol to a state of low Ca2+. Finally, energization of mitochondria
creates a pattern in which not spirals but the waves emitted by pacemakers become the dominant
structure of the bistable system.
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Figure 6. Survey of the behaviour of the local dynamics, wave form existence
and patterns of the equation (1) with increasing V (1)

max.

Figure 7. Experimentally observed Ca2+ front travelling into the region with low
Ca2+. (A) Bright areas indicate high Ca2+. (B) Line scan along the bar indicated
in (A). (Figure from [30].)

At very high energization of the mitochondria, fronts from low to high cytosolic Ca2+

continue to exist outside the spiral core. The region of high cytosolic Ca2+ emerging from the
spiral instability continues to expand even if the leading pulse becomes annihilated. Experimental
evidence for such a transition in oocytes is shown in figure 7. Fronts in both directions (and
pulses) co-exist before at still even higher V (1)

max fronts switching the cytosol from high to low
Ca2+ cease to exist. If a front is initiated in this range of V (1)

max, the resting Ca2+ concentration
in the oocyte is predicted to switch to the stationary state with high cytosolic Ca2+ and wave
activity stops. That is evocative of the fertilization wave in oocytes which was modelled as a
bistable system too [33, 100].

The mechanism of mitochondrial-induced spiral instability described above suggests that
spirals could be recovered by increasing cytosolic Ca2+ removal. Experimental studies in
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Xenopus oocytes show that overexpression of SERCAs permits spiral wave formation even in
the presence of energized mitochondria. Consistent with experimental observations, simulations
showed that an increase in SERCA density restores spiral formation at high mitochondrial Ca2+

uptake [30].
In summary, the model consisting of equations (1) could cast the main experimental findings

into a unified picture. It is worth asking whether mechanisms can be identified underlying the
wave instabilities observed in simulations [31]. For the presentation of these results we change
to dimensionless variables and measure space units in

√
D/ε and time units in 1/ε. The Ca2+

concentration is given in units of CM.
We investigate the existence and stability of a pulse with periodic boundary conditions for

a range of V (1)
max in the bistable regime (see figure 8). Waves are found as stationary solutions

in the co-moving coordinate system. There are four branches of periodic solutions with stable
and unstable parts originating from two saddle-node bifurcations at small wavelengths (see
figure 8) [31]. The ‘inner’ pair of branches—formed by the unstable high-velocity branch and
the stable low-velocity branch (see figure 8, top)—does not exist at low V (1)

max. The high-velocity
branches correspond to a range of high Ca2+ travelling in a medium in the lower stationary
state (see figure 9, right). The wave trains forming the outer part of spirals are on the stable
branch. The unstable high-velocity pulses are distinguished from the stable ones by a delayed
drop of the Ca2+ concentration to the level of the refractory area and a correspondingly shorter
refractory area. The low-velocity branch is a range of low Ca2+ travelling in a medium in the
upper stationary state (see figure 9, left).

At a certain value of V (1)
max = V (1)

max,tc = 16.9 µM s−1, the stable high-velocity branch collides
with the unstable one and a gap in velocity opens up (figure 8, bottom). The collision of the
branches is a transcritical bifurcation at parameters (V (1)

max,tc, λtc), where the wavelength λ of the
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Figure 9. Profiles of coexisting wave trains travelling from left to right at
V (1)

max = 17.0 µM s−1. Full curve: stable; dashed curve: unstable; left panel:
low-velocity branches; right panel: high-velocity branches. For other parameters
see table 1. (Figure from [31].)

tim
e

space

Figure 10. A periodic wave train on a ring disappears upon a parameter shift from
V (1)

max = 16.5 to 17.0 µM s−1, because of the opening dispersion gap. Bright areas
indicate high Ca2+. The peak grey level changes at the moment of the parameter
shift. For the other parameters see table 1. (Figure from [31].)

wave trains has to be considered as an additional bifurcation parameter. The situations above
and below V (1)

max,tc shown in figure 8 represent the typical unfoldings of this bifurcation with
respect to the branches involved in the collision. The dispersion gap creates a range of forbidden
periods. In figure 10 we show a simulation of a wave train where V (1)

max is shifted from 16.5 to
17.0 µM s−1 with a period in the opening gap. Shortly after the parameter shift, the wave train
disappears by flooding the refractory area with Ca2+. This is caused by strong Ca2+ release from
the mitochondria and is in agreement with the spiral instabilities described above.

The mechanism destroying the pulse becomes more plausible by considering the pulse
profile and the unstable eigenmode (figure 11). Mitochondria take up a great amount of Ca2+

during the first part of the excited phase of the pulse. That mitochondrial Ca2+ is released when
cytosolic Ca2+ decreases in the back of the pulse as can be seen in figure 11, bottom. That
slows down the decrease of cytosolic Ca2+ in the back. With increasing mitochondrial uptake
(i.e. increasing V (1)

max) the amount of Ca2+ taken up in the first part of the pulse increases and so
does the amount released in the back. Finally, at the critical value of V (1)

max, the large amount of
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Figure 11. Pulse profile (bottom panel) and eigenmodes (top panel) of an unstable
pulse close to the saddle node bifurcation limiting the dispersion gap at high
velocities. The pulse travels from left to right. Curve styles: dashed— c, dash-
dotted—m, full—n. The most unstable eigenmode is almost identical with the
Goldstone mode in the front range but deviates considerably in the back of the
pulse. For the other parameters see table 1. (Figure from [31].)

released mitochondrial Ca2+ causes a transition to the upper stationary state in the back of the
pulse instead of the transition to the refractory state. This mechanism is supported by the shape
of the eigenvector of the leading eigenvalue (figure 11, top). A comparison of that eigenmode
with the Goldstone mode (not shown), which would cause a simple shift of the pulse, led to the
identification of the mechanism in biological terms as prolongation of recovery from inhibition.
The eigenmode is identical to the Goldstone mode in the front range of the pulse. However, the
unstable mode raises the level of cytosolic Ca2+ c where the transition from the excited phase of
the pulse to the refractory area occurs and hence increases the inhibitor n in the refractory area
of the pulse.

Free spirals at low V (1)
max are stable. With slowly increasing V (1)

max, spirals are destroyed
at V (1)

max,cr < V (1)
max,tc. The occurrence of the instability in the spiral core at lower V (1)

max is in
agreement with the ideas about the mechanism and due to curvature effects close to the spiral
core as explained above. If we stabilize the spiral core artificially, spirals are destroyed when
the rim of the dispersion gap reaches their intrinsic period [31].

The dispersion gap can be perceived as a nonlinear frequency filter. Given the fact that waves
on the lower branch of the dispersion relation cannot exist in two or more spatial dimensions since
they shrink from the free ends [31], it would be a low pass filter. Experiments on oscillations in
cells of the salivary gland of blowfly by Zimmermann et al [103] very much support this notion.
In those experiments, mitochondria were also energized by pyruvate/malate. That reduced the
frequency of oscillations by a factor of 2–3 and increased their amplitude. Evidence for the
reduction of frequency by mitochondria has been found in oocytes as well. Marchant et al [67]
measured the puff frequency of release sites in dependence on the number and proximity of
surrounding mitochondria. They found that puff sites surrounded by larger mitochondrial mass
or situated less than 1.25 µm away from mitochondria exhibit puff frequencies on average 1.7
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times smaller than puff sites further away from mitochondria. In each imaging frame the fastest
site far away from mitochondria was on average six times faster than the slowest puff site close
to mitochondria. Remarkably, the amplitude of puffs was not influenced by mitochondria [67].
These data demonstrate that mitochondria even reduce frequencies of elemental events and
without being energized, if they are close enough to the release site.

Mitochondrial Ca2+ fluxes modulate cytosolic Ca2+ transients. One action of mitochondria
is a buffer-like reduction of amplitudes of cytosolic Ca2+ spikes and wave velocities [15, 22, 68].
Another characteristic effect on cytosolic Ca2+ signals is the appearance of biphasic decay
of cytosolic Ca2+ spikes [5, 16, 75, 79, 88, 93]. Mitochondrial efflux slows down the decrease
of cytosolic Ca2+ as soon as mitochondrial release becomes faster than uptake through the
uniporter [16]. The effect may even lead to a plateau phase of cytosolic Ca2+ concentration, if
mitochondrial release compensates almost completely for all other fluxes removing Ca2+ from
the cytosol. The dispersion gap is the manifestation of this slowing down of the decay of cytosolic
transients by mitochondria in wave characteristics, since it is caused by release of Ca2+ in the
back of a wave. Abortion of wave propagation due to the buffer features of mitochondria occurs
at even higher values of mitochondrial uptake.

2. Stochastic simulations

The existence of spontaneous wave creation by pacemakers with long periods is crucial for
the explanation of the pattern formation with energized mitochondria given above. It can be
explained by stochastic models which we will consider now. However, this is not the only
question motivating research. Rather, in certain cells the question for the origin of long periods
in general is of interest. For instance in Xenopus oocytes, wave periods of up to 120 s are
observed, but the longest timescale of the channel dynamics is only about 10–15 s. Hence, the
long periods cannot be explained by the local dynamics in Xenopus oocytes. One possibility to
prolong Ca2+ oscillation periods is coupling to a phosphorylation–dephosphorylation cycle or
receptor phosphorylation [35, 53]. However, this is probably not the case in Xenopus oocytes.
Influx across the plasma membrane does not seem to set the period either, since dynamics on the
timescale of a period is not very sensitive to the Ca2+ concentration in the extracellular medium
in Xenopus oocytes [12, 47].

Regardless of these considerations, the best reason for stochastic models is the observation
of stochastic phenomena in intracellular Ca2+ dynamics, the most prominent of which are
the small localized release events called puffs. Puffs are the elemental events which are
used to build up global events like waves and oscillations. Parker et al investigated this
hierarchy of spatio-temporal structures in detail in Xenopus oocytes and Bootman et al in HeLa
cells [7, 8, 10, 65, 66, 92, 97]. Typically, a single puff is not enough to initiate a wave [65].
Rather, the cooperative action of several puff sites is required. The mechanism by which waves
are initiated following a step increase of IP3 is not an increase in puff amplitude. The amplitude
of puffs immediately preceding wave initiation was constant. The way the critical amount of
Ca2+ is raised is an increasing puff frequency by up to a factor 10 [65]. Wave initiation has been
investigated for periodic waves as well [66]. Measurements demonstrate typical differences
between repetitive wave initiation with short and long periods. The peak of the previous wave
was chosen as the reference time in the presentation of the results of the experiments [66]. Puffs
did not occur in the first 7 s after a wave passed. Then, puffs occurred with increasing frequency.
That increase continued till initiation of the next wave for short-period waves (<15 s). The puff
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Table 2. Parameters for stochastic simulations. The first figure in column ‘Value’
refers to figures 12–17, the second one to figures 18 and 19. The simulations
shown in the latter ones used constant lumenal concentrations and the fast buffer
approximation [46] so that buffer rate constants do not appear in the equations.
Parameters not occurring in a model are marked by ‘—’.

Parameter Value Unit

Leak flux coefficient Pl 0.0025, 10−4 s−1

Channel flux coefficient P 600; 3555 s−1

Single channel radius Rs 0.0354; 0.01 µm
Cluster spacing outside focal sites 4.33; 3.5 µm
Maximum number of channels per cluster Nmax

K 25; 27
Number of additional clusters in focal sites NF 5; 0
Pump flux coefficient Pp 40; 80 µM s−1

Pump dissociation constant Kd 0.2; 0.1 µM
Volume ratio Vcyt/VER 10.0; 5.4
Concentration of free Ca2+ E in the ER —; 6.75 µM
Diffusion coefficient D of free cytosolic Ca2+ 223; 223 µm2 s−1

Diffusion coefficient DE of free lumenal Ca2+ 40; — µm2 s−1

Diffusion coefficient Dm of cytosolic endogenous
mobile buffer 11.26; 11.26 µm2 s−1

Diffusion coefficient Dex of cytosolic exogenous buffer 32.0; 32.0 µm2 s−1

Diffusion coefficient DEm for lumenal mobile buffer 1; — µm2 s−1

On-rates of fast buffers: k+
s , k+

m, k+
ex, k+

Es, k+
Em 500; — (µM s)−1

Dissociation constants of buffers k−
i /k+

i :
Ks 2; 9 µM
Km 2; 6.72 µM
Kex 0.247; 0.247 µM
KEs 500; — µM
KEm 5; — µM
Total concentrations of buffers:
Bs 200; 95.31 µM
Bm 50; 19.1 µM
Bex 60; 40 µM
BEs 100; — mM
BEm 5; — mM
Total concentration of Ca2+ C0 5.385; — mM
Subunit kinetics, note bi = ai di , i = 1, . . . , 5
a2, a4 0.0555; 0.2 (µM s)−1

a5 2.222; 20 (µM s)−1

d1 0.13; 0.13 µM
d2 3.776; 1.049 µM
d3 0.943; 0.953 µM
d4 0.5202; 0.144 µM
d5 0.72; 0.0823 µM
IP3 concentration I 0.15 µM
a6 (see figure 12) a2 I+a4d1

d1+I

b6 (see figure 12) b2 I+b4d3
d3+I
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amplitude quickly reached a certain level which then stayed constant for the last 30–40% of the
wave period. Waves with intermediate periods (15–50 s) exhibit an increase in puff frequency
from 7 s after the previous wave until about three-quarters of the way through the cycle. The
amplitude again soon reaches its steady level which it then keeps for most (≈60%) of the cycle.
Finally, waves with periods longer than 50 s did not show any essential variation in puff amplitude
or puff frequency during the 60% of the wave cycle preceding the next wave [66].

Especially for long-period waves, the nucleation of a wave by the cooperative action of
a few puffs can be demonstrated [65]. Since puffs are stochastic events, the formation of a
supercritical nucleus occurs only with a certain probability. Marchant et al [66] state that the
time elapsing between two consecutive waves is determined by two processes: the recovery from
inhibition caused by the first wave and the creation of a supercritical nucleus for the second wave.
The probabilistic character of nucleation introduces variability into the wave period. Marchant
et al [66] report a standard deviation of up to 40% for long-period waves. That supports the
interpretation of long-period repetitive waves as nucleation phenomena.

2.1. Stochastic channel models

The processes causing random behaviour in intracellular Ca2+ dynamics are the transitions
between the different states of the channel subunits and the channel. Channels open and close
randomly. The opening and closing probability depends on the state of the channel subunits.
The opening probability is the highest, if a minimum number of subunits are activated.

The Othmer–Tang model reproduces the basic findings on IP3 receptor channel dynamics.
However, it does not consider certain details of regulation of the IP3R by Ca2+ and IP3, as e.g. the
number of Ca2+ ions which need to bind for channel opening to occur. That might become
relevant in stochastic simulations dealing with single binding and dissociation events. Hence,
we use a more detailed model from now on. The model by DeYoung and Keizer was set up as
a deterministic model by the authors [19] and used later on as a stochastic scheme by Falcke et
al [28, 32]. The model assumes identical, independent subunits. Each subunit has three binding
sites: an activating binding site, an inhibiting binding site and a binding site for IP3. Subunits are
activated, if IP3 is bound, Ca2+ is bound to the activating site and is not bound to the inhibiting
site. The channel is activated, if at least three subunits are activated. The stochastic events are
binding of Ca2+ and IP3 to and dissociation from the channel subunits.

We can simplify the model by taking advantage of the timescale separation between IP3

binding and dissociation on one side and Ca2+ binding and dissociation on the other. DeYoung
and Keizer assumed the IP3 processes to be two orders of magnitude faster than the other reaction
rates. That implies that the binding state of IP3 will be in a stationary distribution most of the
time and pairs of states with identical Ca2+ binding configuration can be lumped into one state.
That leaves four lumped states of a subunit corresponding to Ca2+ bound or not bound to the
activating and inhibiting binding sites. Given one of these four states, the subunit is in one of
the substates of IP3 binding with the probability given by the stationary distribution. Such a
four-state scheme is shown in figure 12. The probability for transitions corresponding to binding
of Ca2+ ions depends on the concentration of free Ca2+ at the location of the channel.

2.2. Modelling concentrations

The Ca2+ in a cell is transported through channels and by pumps, diffuses in the cytosol and the
ER and reacts with buffers. These processes are described by reaction diffusion equations for the
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Figure 12. The four Ca2+ binding states Xik of a subunit in the DeYoung–Keizer
model. The index i corresponds to the activating site and k to the inhibiting site.
An index is 1 if the site has an ion bound and 0 otherwise.

cytosolic concentration of free Ca2+ c, the concentration in the ER E and the buffer concentrations
(with Ca2+ bound) in the cytosol and ER bi and bE, j . The buffer dynamics is binding and
dissociation of Ca2+ and diffusion. The index ‘i ’ of the buffer variable denotes different buffers
like endogenous stationary buffer (s), endogenous mobile buffer (m) and exogenous mobile
buffer (ex). Stationary buffers do not diffuse.

Living cells and their subcompartments are of course spatially three-dimensional objects.
Nevertheless, the reaction diffusion problem is often reduced to two spatial dimensions.
The fluxes between the compartments cytosol and ER are then scaled by the volume ratio
γ = Vcytosol/VER. That leads to the partial differential equations

∂c

∂ t
= D∇2c + (Pl + Pc(r, t))(E − c) − Pp

c2

K 2
d + c2

− Hi(c, bi)

∂ E

∂ t
= DE∇2 E − γ

[
(Pl + Pc(r, t))(E − c) − Pp

c2

Kd2 + c2

]
− Hj(E, bE, j)

∂bi

∂ t
= Hi(c, bi) = Db,i∇2bi + k+

b (Bi − bi)c − k−
b,i bi, i = s, ex, m

∂bE, j

∂ t
= Hj(E, bE, j) = DE, j∇2bE, j + k+

E, j(Gi − bE, j)E − k−
E, j bE, j , j = s, m.

(2)

The first term in the equation for the cytosolic Ca2+ concentration c is the diffusion term. The
second and third terms model the Ca2+ flux through the membrane of the ER. Pl is the coefficient
for a leak flux proportional to the concentration difference E −c. The function Pc(r, t) describes
the location and opening state of channel clusters. Pc(r, t) has a positive value P at the location
of a cluster, if channels in the cluster are open. We include the number of open channels by
the size of the area where Pc(r, t) is larger than zero. That area equals No R2

S. RS is a radius
reflecting the spacing of channels within a cluster and No is the number of open channels. The
third term of the equation for c (Pp) models the action of the pumps transporting Ca2+ from
the cytosol into the ER. We describe that as a spatially continuous flux density depending on c.
The last term of the equation describes the reaction of free Ca2+ with buffers. The equation for the
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dynamics of the lumenal concentration E includes diffusion, the flux through the membrane and
the reaction with lumenal buffers. The flux terms are those appearing as well in the equation for
cytosolic Ca2+ only with opposite sign and scaled by the volume ratio γ . The last two equations
describe the dynamics of the buffers with Ca2+ bound. The first term is the buffer diffusion, and
the second term the binding of Ca2+ to the free buffer represented as the difference between the
(constant) total concentration and the concentration of Ca2+-bound buffer, e.g. (Bi − bi). The
last term of buffer dynamics is the rate of Ca2+ dissociation from the buffer.

When a channel opens, a concentration profile builds up quickly in the cytosol and inside
the ER. A stationary state is reached when free Ca2+ has spread far enough so that removal of
Ca2+ from the cytosol back into the ER balances the flux through the channel.

In order to reach a simulation procedure able to simulate long timescales and large length
scales adiabatic approximations were applied [27, 28]. The crucial approximation was to replace
the time-dependent formation of the concentration profile around a cluster by the stationary
solution belonging to the actual number of open channels. This is well justified for the
concentrations at the location of the cluster but meaningful on the length scale of cluster spacing
too as explained in [28]. Basically, this is based on the localization of the profiles by buffers
which reduce the diffusion length by binding free Ca2+.

Buffers localize concentration profiles so strongly that the concentration increase due to open
channels is about two orders of magnitude smaller at the next neighbour’s location than at the
cluster with open channels itself. The localization can be used to further simplify simulations.
The increase due to release through open channels is the difference between the base level
concentrations (when all channels are closed) and the concentration profile (when channels are
open) and we call it single-cluster profile. It approaches 0 for large distances from the cluster. In
taking advantage of the localization of single-cluster profiles, the complete concentration field
can be represented as sum of the base level and a superposition of all single-cluster profiles.

The single-cluster concentration profiles for all possible numbers of open channels can
be calculated in advance to the simulation. During the simulation, we appoint a single-cluster
profile to a cluster according to its number of open channels. The superposition of all profiles
is the global concentration field [28]. The concentration fields and the cluster dynamics are
mutually coupled. On the one hand, the transition rates for binding transitions depend on the
concentration of free Ca2+ as shown in figure 12. On the other hand, the concentration fields
depend on the configuration of open channels.

2.3. Stochastic wave patterns

Stochastic simulations comprising up to 712 clusters were performed on a cluster array like that
shown in figure 13. Clusters were arranged on a hexagonal grid with a few additional clusters
scattered in between to mimic focal sites (see figure 13 for details). The number of channels in
each cluster was drawn from a uniform distribution between N max

K /2 and N max
K .

A set of simulations for different IP3 concentrations is shown in figure 14. Only puffs are
found at low concentrations, i.e. release events are localized and not coordinated on a length scale
of several cluster distances. That changes with the onset of global events at a slightly higher IP3

(figure 14(A)). These global events are waves emerging from a nucleation area. They are very
rare for low IP3 concentrations and may travel across the whole system (figure 14(A), first and
second peak) or fade away before they reach the system boundary (third peak). That parameter
regime of abortive wave propagation is characterized by a distribution of the probability for
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Figure 13. Array of clusters used in simulations. The area is quadratic
with edge length L = 120 µm. Clusters form a hexagonal grid with
distance d. NF further clusters are scattered randomly around the points
(L/4, L/4), (L/4, 3L/4), (3L/4, L/4), (3L/4, 3L/4)within a square with edge
length 2.42d mimicking a focal site; here NF = 5.
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Figure 14. Simulations and oscillation characteristics for different IP3

concentrations: (A) I = 0.15 µM, (B) I = 0.18 µM (see animation), (C)
I = 0.42 µM, (D) Tav and its standard deviation in dependence on IP3. (Figure
from [28].)

a wave to travel a certain distance before being destroyed by fluctuations rather than steadily
propagating waves [32].

Increasing IP3 leads to more frequent waves (figure 14(B)) and almost every wave travels
across the whole system now. The time interval in between waves is not completely regular
like the period of a deterministic oscillation, but an average interwave time interval Tav and its
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Figure 15. Repetitive wave nucleation for two concentrations of exogenous
buffer: (A) Bex = 60 µM, (B) Bex = 75 µM. The number of open channels
is shown. The average period in (A) is Tav = 47.40 ± 10.00 s, and in (B)
Tav = 121.17 ± 57.23 s. The transition from X01 → X00 was increased by a
factor of 2.5 compared to the standard parameters of table 1. See table 1 for
further parameters except NF = 10. (Figure from [28].)

standard deviation �Tav can be determined. Both Tav and �Tav decrease with increasing IP3

(figure 14(D)) leading to almost regular oscillations with a period of about 17 s at high IP3

(figure 14(C)). That scenario found while going from low to high IP3 agrees with experimental
observations [66]. In particular, the large range of periods of eight times the shortest one reported
from the experiments is captured. Short periods can be set essentially by the longest timescale of
the channel dynamics Td being the transition to the inhibited state and recovery from it. However,
long periods last 3–8 times longer and cannot be explained by the channel dynamics alone.

Long periods can be explained by wave nucleation. Waves emerge from small areas—a
nucleus—and than spread through the whole system. Nucleation of global events is probabilistic,
because a single puff activates a neighbouring cluster with a certain probability only—not with
certainty. The nucleation probability pn is small compared to the puff probability because a
large supercritical nucleus of a few clusters is needed. The larger a nucleus, the smaller is the
curvature of its boundary. The smaller the curvature of the boundary, the larger is the number of
active neighbours of an inactive cluster just outside the nucleus and hence the probability that
that cluster is activated. Hence, the larger the nucleus the larger is the probability that it grows.
Deactivation, inhibition and fluctuations hinder the growth of a nucleus. In that way, a critical
size of a nucleus arises.

The nucleation probability is very small just after a wave has travelled across the system
because of inhibition of most of the channels by the high Ca2+ concentration during the wave.
That causes the deterministic part Td of the time elapsing between two consecutive waves. Td

is determined essentially by the transition rates from the activated state (X10) to the inhibited
state (X11) and recovery from inhibition (X11 → X01 → X00). However, pn is still small after
recovery from inhibition. Hence, the next wave does not emerge immediately but it takes some
time before another global event can be set off. The small value of pn provides for the larger
part of Tav at low IP3 [28].

The period increases with decreasing strength of spatial coupling and decreases with
increasing system size in agreement with the idea of nucleation processes setting long
periods [27, 28] (see figure 16). Average periods created by wave nucleation are in the range
observed experimentally. The nontrivial information carried by the data is the good agreement
between experimentally measured and simulated ratios of the standard deviation of periods to the
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Figure 16. The average period Tav of repetitive wave nucleation and its standard
deviation in dependence on the cluster spacing. See table 1 for further parameters
except NF = 10, I = 0.10 µM (circles), NF = 5, I = 0.195 µM (diamonds)
and NF = 5, I = 0.21 µM (×). (Figure from [28].)

average period �Tav/Tav (see [28]). That supports the nucleation hypothesis. Simulations with
different random realizations of a cluster array with identical average cluster spacing and average
number of channels per cluster showed differential Tav and a varying relative standard deviation
�Tav/Tav as well. That implies that there are optimal arrays having minimal �Tav/Tav [28].

Oscillation periods were sensitive to changes in the number of channels per cluster and the
strength of spatial coupling. In particular, the sensitivity for the average number of excitable
channels per cluster raises the question for the deterministic limit. The deterministic limit
assumes infinitely many channels per cluster while keeping the flux density and N max

K R2
S constant.

Simulations showed that Tav changes by a factor of 5 while going from 25 to 328 channels per
cluster at low IP3. Results with even higher values of N max

K suggest that the deterministic
limit is not oscillatory, but is a stationary state with high activity compared to the activity
between waves during long-period oscillations (figure 17). That means that the oscillations are
completely due to fluctuations, i.e. stochastic binding and dissociation of Ca2+. Obviously, the
fluctuations occurring with realistic channel numbers are large enough to leave the attractive
region (stable manifold) of the high-activity stationary state, which is observed for channel
numbers approaching the deterministic limit. We find again a high-activity stationary state for
larger IP3 and large N max

K (figure 17, insets). That means that short-period oscillations with small
N max

K , too, are due to fluctuations.
The stationary high-activity state reflects the behaviour of the DeYoung–Keizer model. Such

a state can be reached in the deterministic model by increasing the Ca2+ flux through channels,
which causes an increase of the cytosolic Ca2+ concentration. That situation occurs at the location
of open channels in a discrete model. The high local Ca2+ concentration suppresses oscillatory
behaviour, which needs intermediate Ca2+ concentrations. That suggests that the oscillatory
regime in models is lost during the transition from spatially continuous channel density to spatial
discreteness of the channel clusters while keeping the average flux density constant. Fluctuations
compensate for that by restoring the ability for oscillatory behaviour.

In the simulations presented up to now, we have found a strong dependence of pattern
timescales on the number of channels per cluster. Such dependence exists for other characteristics
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Figure 17. Simulations with N max
K = 1130, I = 0.15 µM and NF = 5. The

single-channel radius was chosen proportional to (N max
K )−1/2 as explained in the

text. The case shown corresponds to figure 14 (A) (thick curve) and with recovery
from inhibition sped up by a factor of 2.5 (thin curve). Insets: simulations with
(A) I = 0.42 µM, N max

K = 546 and (B) I = 0.27 µM, N max
K = 685. (Figure

from [28].)

of patterns, too. We have merely to consider larger length scales in order to be able to observe
it. Patterns on these large spatial scales are shown in figures 18 and 19. The spiral in the left
panel of figure 18 was simulated with a larger number of channels per cluster than the right one,
but again both systems have the same mean field equations. The difference in the wavelengths
of the spirals is obvious. The spiral on the left-hand side rotates with a period of about 45 s
and the one on the right-hand side with approximately 75 s. The transition to the deterministic
limit is demonstrated in figure 19 on the basis of spatio-temporal patterns. Pulses forming more
or less stable spirals are observed at small numbers of channels per clusters. At large numbers,
front waves occur. They are the trademark pattern of bistable local dynamics. The bistability
disappears in a saddle node bifurcation at very low IP3. A very similar dependence of wavelength
and periods on noise strength was found by Jung and Mayer-Kress [50] in a two-dimensional
array of pulse coupled threshold elements.

3. Concluding remarks

Intracellular Ca2+ dynamics exhibits a duality of stochastic and deterministic features. Puffs are
clearly stochastic events. Stochasticity shows up in global events as well in the form of period
distributions instead of regular oscillations and as the wave creation mechanism [27, 28, 32, 66].
The smooth wavefronts observed in experiment (figure 1) and in stochastic simulations (figure 19)
suggest that a deterministic description should be possible whereas the strong dependence of
wave characteristics on channel numbers contradicts that assumption. Langevin equations like
those used by Shuai et al [49, 85, 86] for single-cluster models are suggested by the observations
in simulations. However, they fail at the small numbers of channels per cluster which occur in
the wave nucleation regime.

The results of deterministic and stochastic modelling complement one another.
Deterministic models allow the understanding of wave propagation with the theory of nonlinear
partial differential equations and of wave instabilities with bifurcation theory. Stochastic
descriptions explain local spontaneous events and the generation of waves. In the course of
the research on wave instabilities with energized mitochondria, bistability was suggested by
theory and confirmed experimentally by the observation of fronts figure 7. It was assumed in
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Figure 18. Simulations with different N max
K but the same deterministic limit.

The single-channel radius was chosen proportional to (N max
K )−1/2 as explained in

the text. Left panel, N max
K = 60 (see animation); right panel, N max

K = 27 (see
animation). The size of the simulation area is 1.31 × 1.57 mm2, I = 0.100 µM.
See table 1 for further parameters.

Figure 19. Simulations with different N max
K but the same deterministic limit. The

single-channel radius was chosen proportional to (N max
K )−1/2 as explained in the

text. N max
K from left to right 23 (animation a), 35 (animation b), 47 (animation c),

71 (animation d). For all panels I = 0.175 µM, concentration of free Ca2+ in the
ER E = 3.375 µM, P = 3614 s−1, Pp = 40 µM s−1. The size of the simulation
area is 1.31 × 1.57 mm2. See table 1 for further parameters.

the model for the fertilization wave in Xenopus oocytes as well [100]. An explanation of long
timescales in Xenopus oocytes and slow pacemakers was suggested by stochastic modelling.
Simulations with large numbers of channels per cluster suggest bistability as the deterministic
limit of the stochastic system too (see figure 17). In both systems, pulses—a wave type more
typical for excitable or oscillatory dynamic regimes—were found in a bistable regime. Pulses
coexist in the deterministic model with fronts. They are due to fluctuations around the higher
stationary state, which push the system out of the basin of attraction, in the stochastic model.

The most obvious drawback of the stochastic approach is that it introduces a new parameter
which is the number of channels per cluster. Sun et al [92] obtained an estimate of maximal 8
open channels per cluster during a puff. That is close to the estimate by Mak et al of 5 [62] and
leads to 15–30 channels per cluster taking the IP3 binding probability into account. However,
these numbers are based on single-channel current estimates which are not known very precisely.
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The stochastic simulations presented here and in [27, 28, 32] suggest that the concept of
excitable, bistable or oscillatory dynamic regimes of ordinary differential equations or partial
differential equations might be of limited use applied to intracellular Ca2+ dynamics. That is
supported by the results of Shuai and Jung [49, 85, 86]. They found that a Hopf bifurcation
of the deterministic limit of a single-cluster model does not show up in the stochastic puff
behaviour. The concept of thresholds separating perturbations which decay from those which
are amplified might turn out to be useful for comprehending nucleation phenomena and the
transition from long- to short-period oscillations [28]. However, at the current state of research,
neither the existence of oscillations nor the wave type can be reliably predicted from just the
type of deterministic regime.

Nucleation could be found for a variety of parameters of the local dynamics [28]. One
parameter the global behaviour of intracellular Ca2+ dynamics is very sensitive to is the number
of channels per cluster which can be activated by Ca2+. That number is controlled by IP3. In
summary, the picture arises that nature created a robust stochastic mechanism that does not much
care about dynamic regimes but can easily be controlled by the IP3 concentration.

Parameters like spatial coupling and the number of channels, which can be activated by
Ca2+, can be tuned experimentally. Hence, the experimental access as a prerequisite for fruitful
research is given. Given the value and success of both approaches, the relation between stochastic
and deterministic features and models of intracellular Ca2+ dynamics will be a major issue of
this research.
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between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism
Biochim. Biophys. Acta 1366 17–32

[83] Satoh T, Ross C A, Villa A, Supattapone S, Pozzan T, Snyder S H and Meldolesi J 1990 The inositol 1,4,5-
trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labelling reveals concentration
in an er subcompartment J. Cell Biol. 111 615–24

[84] Selivanov V A, Ichas F, Holmuhamedov E L, Jouaville L S, Evtodienko Y V and Mazat J-P 1998 A model
of mitochondrial Ca2+-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by
mitochondria Biophys. Chem. 72 111–21

[85] Shuai J W and Jung P 2002 Optimal intracellular calcium signalling Phys. Rev. Lett. 88 068102-1–4

New Journal of Physics 5 (2003) 96.1–96.28 (http://www.njp.org/)

brand4.eps
http://www.njp.org/


96.28

[86] Shuai P and Jung P 2002 Stochastic properties of Ca2+ release of inositol 1,4,5-trisphosphate receptor clusters
Biophys. J. 83 87–97

[87] Sienaert I, DeSmet H, Parys J B, Missiaen L, Vanlingen S, Sipma H and Casteels R 1996 Characterization
of a cytosolic and a luminal Ca2+ binding site in the type i inositol 1,4,5-trisphosphate receptor J. Biol.
Chem. 271 27005–12

[88] Simpson P B, Mehotra S, Langley D, Sheppard C A and Russell J T 1998 Specialized distributions of
mitochondria and endoplasmic proteins define Ca2+ wave amplification sites in cultured astrocytes
J. Neurosci. Res. 52 672–83

[89] Sneyd J, Dale P D and Duffy A 1998 Traveling waves in buffered systems: applications to calcium waves
SIAM J. Appl. Math. 58 1178–92

[90] Sneyd J, Keizer J and Sanderson M J 1995 Mechanisms of calcium oscillations and waves: a quantitative
analysis FASEB J. 9 1463–72

[91] Sneyd J, Tsaneva-Atanasova K, Bruce J I E, Straub S, Giovannucci D V and Yule D I 2003 A model of
calcium waves in pancreatic and parotid acinar cells Biophys. J. at press

[92] Sun X-P, Callamaras N, Marchant J S and Parker I 1998 A continuum of InsP3-mediated elementary Ca2+

signalling events in Xenopus oocytes J. Physiol. 509 67–80
[93] Szado T, Kuo K H, Bernard-Herlay K, Poburko D, Lee C H, Seow C, Ruegg U T and van Breemen C 2003

Agonist induced mitochondrial transients in smooth muscle FASEB J. 17 28–37
[94] Tang Y and Othmer H G 1996 Simplification and analysis of models of calcium dynamics based on IP3-

sensitive calcium channel kinetics Biophys. J. 70 246–63
[95] Taylor C W 1998 Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels Biochim.

Biophys. Acta 1436 19–33
[96] Thomas D, Lipp P, Berridge M J and Bootman M D 1998 Hormone-evoked elementary Ca2+ signals are not

stereotypical, but reflect activation of different size channel clusters and variable recruitment of channels
within a cluster J. Biol. Chem. 273 27130–6

[97] Thomas D, Lipp P, Tovey S C, Berridge M J, Li W, Tsien R Y and Bootman M D 1999 Microscopic properties
of elementary Ca2+ release sites in non-excitable cells Curr. Biol. 10 8–15

[98] Tinel H, Cancela J M, Mogami H, Gerasimenko J V, Gerasimenko O V, Tepikin A V and
Petersen O H 1999 Active mitochondria surrounding the pancreatic acinar granule region prevent spreading
of inositol trisphosphate-evoked local cytosolic Ca2+ signals EMBO J. 18 4999–5008

[99] Wagner J and Keizer J 1994 Effects of rapid buffers on Ca2+ oscillations and Ca2+ diffusion Biophys. J. 67
447–56

[100] Wagner J, Li Y-X, Pearson J and Keizer J 1998 Simulation of the fertilization Ca2+ wave in Xenopus laevis
eggs Biophys. J. 75 2088–97

[101] Wussling M H P and Salz H 1996 Nonlinear propagation of spherical calcium waves in rat cardiac myocytes
Biophys. J. 70 1144–53

[102] Yao Y and Parker I 1995 Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus
oocytes J. Physiol. 482 533–53

[103] Zimmermann B 2000 Control of InsP3-induced Ca2+ oscillations inpermeabilized blowfly salivary gland
cells: contribution of mitochondria J. Physiol. 525 707–19

New Journal of Physics 5 (2003) 96.1–96.28 (http://www.njp.org/)

brand4.eps
http://www.njp.org/

