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Abstract. We investigate the superfluid properties of a Bose–Einstein
condensate (BEC) trapped in a one-dimensional periodic potential. We study,
both analytically (in the tight binding limit) and numerically, the Bloch chemical
potential, the Bloch energy and the Bogoliubov dispersion relation, and we
introduce two different, density dependent, effective masses and group velocities.
The Bogoliubov spectrum predicts the existence of sound waves, and the arising
of energetic and dynamical instabilities at critical values of the BEC quasi-
momentum which dramatically affect its coherence properties. We investigate
the dependence of the dipole and Bloch oscillation frequencies in terms of an
effective mass averaged over the density of the condensate. We illustrate our
results with several animations obtained solving numerically the time-dependent
Gross–Pitaevskii equation.
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1. Introduction

The study of the superfluid properties of Bose–Einstein condensates (BECs) trapped in periodic
potentials attracts a fast growing interest. The main reason is that the control parameters of such
systems are widely tunable in realistic experiments, allowing for the investigation of different
and fundamental issues of quantum mechanics, ranging from quantum phase transitions [1] and
atom optics [2, 3] to the dynamics of Bloch and Josephson oscillations [4]–[6]. Several efforts
are also focused on the realization of new technological devices, such as BEC interferometers
working at the Heisenberg limit [3] and quantum information processors [2].

The dynamics of BECs in lattices is highly non-trivial, essentially because of the
competition/interplay between the discrete translational invariance of the periodic potential and
the nonlinearity arising from the interatomic interactions. For deep enough optical potentials,
interactions induce a quantum transition from the superfluid to a Mott-insulator phase [1, 7, 8].
In this work we study the system in a region of parameters such that its ground state stands deeply
in the superfluid phase, with the dynamics governed by the Gross–Pitaevskii equation (GPE).
Because of the discrete translational invariance, the excitation spectrum of the system exhibits
a band structure which has several analogies with the electron Bloch bands in metals [9]–[11].
On the other hand, the coexistence of Bloch band and nonlinearity allows, for instance, solitonic
structures [12]–[14] and dynamical instabilities [15]–[17] which do not have an analogue either
in metals or in Galilean invariant systems.

Exact, time-dependent solutions of the GPE with an external periodic potential, equation (1),
can be written as Bloch states, namely as plane waves modulated by functions having the same
periodicity of the lattice. The dynamics of small amplitude perturbations on top of these states
satisfies two coupled, linear Bogoliubov equations, which can be solved numerically. However,
when the interwell barriers of the periodic potential are high enough, the system can be described
in a nonlinear tight binding approximation and several important properties of the system can be
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retrieved analytically [18]. Indeed, in the nonlinear tight binding approximation the continuous
GPE can be replaced with a discrete nonlinear (DNL) equation (equation (5)), where the relevant
observables of the system are the number of particles Nl(t) trapped in well l and the relative
phases φl,l+1(t) = φl+1(t)− φl(t). In this paper, we rewrite the results derived in [18] in a more
convenient form, namely in terms of two effective masses and group velocities. Furthermore,
we compare our analytical expressions with full numerical solutions, and we extend our analysis
to investigate the behaviour of the system at low optical potential depths, where the nonlinear
tight binding approximation breaks down. We show that the phenomena predicted by the DNL
equation (5) can be generalized to the case of shallow potentials, bringing new insights into the
dynamics of the system.

2. Discrete nonlinear dynamics

In the ‘classical’ (mean field) approximation, the BEC dynamics at T = 0 is governed by the
GPE [19]

ih̄
∂�

∂ t
(�r , t) =

[
− h̄2∇2

2m
+ Vext(�r) + g|�(�r , t)|2

]
�(�r , t) = µ�(�r , t), (1)

where g = 4π h̄2a/m, with m the atomic mass and a the s-wave scattering length: a > 0 (a < 0)
corresponds to an effective interatomic repulsion (attraction). In the following we consider only
a BEC with repulsive interatomic interactions. The external potential Vext includes the optical
periodic potential VP, which is typically superimposed on a harmonic (or linear) potential VM.
The periodic potential is

VP = s ER sin2

(
πx

d

)
, (2)

where d is the lattice spacing and π/d is the wavevector of the lasers in the lattice direction. The
lattice spacing determines the Bragg momentum

qB = h̄
π

d
, (3)

corresponding to the boundary of the first Brillouin zone. The energy barrier between adjacent
sites is expressed in units of the recoil energy ER = q2

B/2m. From (2) we see that the minima
of the laser potential are located at the positions xl = ld (l is an integer). Around these points,
VP ≈ mω̃2

x(x − xl)
2/2, where h̄ω̃x = 2

√
s ER.

The harmonic potential is VM = m[ω2
x x2 + ω2

y y2 + ω2
z z2]/2. Since, typically, ωx � ω̃x ,

it is convenient to write the external potential as Vext = VL + VD, where the lattice potential
VL = s ER sin2 (πx/d) + m[ω2

y y2 + ω2
z z2]/2 includes the transverse confining field, and the

‘driving’ field VD = mω2
x x2/2 gives the effective force acting on the centre of mass of the

condensate wavepacket.
In order to understand the basic physics of the system, we first consider the case of deep

optical lattices, where analytic solutions can be obtained in the tight binding approximation.
Then we study the behaviour of the system beyond the tight binding limit, solving numerically
the Gross–Pitaevskii and Bogoliubov equations with arbitrarily shallow periodic potentials.
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As has been shown in [18], when the interwell barriers are much higher than the chemical
potential, it is possible to write the condensate wavefunction as

�(�r , t) =
∑

l

ψl(t)�l(�r; Nl(t)), (4)

where the Wannier wavefunctions�l are well localized in each well. The total number of atoms
is NT = ∑

l Nl ≡ ∑
l |ψl |2. Replacing this ansatz in the GPE (1) and integrating out the spatial

degrees of freedom, we find the DNL equation

ih̄
∂ψl

∂ t
= Vlψl + µloc

l ψl − χ [ψl(ψ
∗
l+1 + ψ∗

l−1) + c.c.]ψl

− [K + χ(|ψl|2 + |ψl+1|2)]ψl+1 − [K + χ(|ψl|2 + |ψl−1|2)]ψl−1. (5)

The ‘local’ chemical potential µloc
l is the sum of three contributions

µloc
l = µkin

l + µpot
l + µint

l =
∫

d�r
[

h̄2

2m
( �∇�l)

2 + VL �
2
l + g|ψl|2 �4

l

]
, (6)

which depend on the atom number Nl explicitly through |ψl|2 and implicitly through the shape
of the �l . The tunnelling rates Kl,l±1 between the adjacent sites l and l ± 1 are

K � −
∫

d�r
[

h̄2

2m
�∇�̄l · �∇�̄l±1 + �̄l Vext�̄l±1

]
, (7)

where the onsite wavefunctions have been calculated with an average number of atoms per site,
N0 = |ψ0|2, namely �l(Nl) � �̄l(N0) (a discussion of the validity of this approximation is
in [18]). On the same line, the coefficient χ is given by

χ = −g
∫

d�r �̄3
l �̄l±1, (8)

and the on-site energies Vl , arising from any external potential superimposed on the optical
lattice, are

Vl =
∫

d�r VD�̄
2
l , (9)

such that Vl ∝ l2 (Vl ∝ l) when the driving field is harmonic (linear).
The dependence of the local chemical potential on the number of atoms is affected by

the effective dimensionality of the condensates trapped in each well of the lattice. This can
be determined by comparing the interaction chemical potential µint

l = |ψl |2g
∫

d�r �4
l and the

three frequencies, ω̃x , ωy , ωz obtained expanding the lattice potential around the minima of each
well VL � m[ω̃2

x(x − xl)
2 + ω2

y y2 + ω2
z z2]/2. For instance, when ω̃x , ωy, ωz 
 µint

l , the spatial
width of each trapped condensate does not depend (in the first approximation) on the number
of particles Nl in the same well, and the condensate wavefunction in each valley of the periodic
potential is well approximated by a Gaussian. We consider this as a 0D (zero-dimensional)
case: then, the nonlinear tight binding approximation (4) reduces to the usual tight binding
approximation �(�r , t) = ∑

l ψl(t)�l(�r) [12]. The 1D case arises when two frequencies are
larger than the interaction chemical potential. In this case the system realizes an array of weakly
coupled cigar-shaped condensates, with�l factorized as Gaussians along the two tight directions
and a Thomas–Fermi in the other direction. In the 2D case only one frequency is smaller than
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the local interaction chemical potential: we have an array of pancake-like condensates, with �l

factorized as a Gaussian along the tight direction and a Thomas–Fermi in the two other directions.
The 3D case is given by the condition µint

l 
 ω̃x , ωy, ωz and the wavefunction in the lth well
�l is simply given by a three-dimensional Thomas–Fermi function. The crucial point is that
the effective dimensionality of the condensates gives a different scaling of the local interaction
chemical potential (6) with the number of atoms

µloc
l = Uα|ψl |α, (10)

with α = 4/(2 + D), where D = 0, 1, 2, 3, |ψl|2 is the number of atoms in well l, and Uα is a
constant which does not depend on the number of atoms nor on the site index. When χN0 � K
and D = 0, the DNL equation (5) gives the discrete nonlinear Schrödinger equation [12].

3. Excitation spectra

In this section we derive the Bloch and the Bogoliubov excitation spectra of the system in the
absence of any driving field (Vl = 0). First we derive our results analytically in the tight binding
approximation; then we solve the equations numerically for a wide set of parameters to extend
our treatment beyond the tight binding regime.

3.1. Bloch energy, Bloch chemical potential, effective masses and group velocities

The Bloch states �p(x) = eipx/h̄�̃p(x), where �̃p(x) is periodic with period d, are exact
stationary solutions of the GPE (1). Both the energy per particle εα(p) (Bloch energy) and
the chemical potentialµα(p) of such solutions form a band structure, so that they can be labelled
by the quasi-momentum p and the band index α.

The DNL (5) describes only the lowest band of the spectrum (in the following, we will
consider only the lowest band α = 1, and we will omit, for simplicity, the band index α). Exact
solutions of the DNL are the ‘plane waves’ ψl = ψ0 exp(i(pld − µt)/h̄), where p is the quasi-
momentum, and l is the site index (note that theψl are plane waves in the discrete l-space, but do
not correspond to plane waves in real space). Within the DNL equation framework, the energy
per particle ε(p) and chemical potential µ(p) corresponding to these solutions are

ε(p) = εloc − 2(K + 2χN0) cos

(
πp

qB

)
≡ εloc − q2

B

π 2mε

cos

(
πp

qB

)
, (11)

µ(p) = µloc − 2(K + 4χN0) cos

(
πp

qB

)
≡ µloc − q2

B

π 2mµ

cos

(
πp

qB

)
, (12)

where µloc = µloc
l |ψl=ψ0 = ∂(N0ε

loc)/∂N0, with N0 = |ψ0|2 the number of atoms per well and
εloc = 2UαN α/2

0 /(α + 2). In the previous equations we have introduced the effective masses
mε and mµ, to emphasize the low momenta (long wavelength) quadratic behaviour of the Bloch
energy spectrum and of the chemical potential [20]. It turns out that several dynamical properties
of the system can be intuitively understood in terms of such effective masses. This approach
is quite common, for instance, in the theory of metals, where mµ ≡ mε. However in BEC,
because of the nonlinearity of the GPE, the two relevant energies of the system, ε andµ, have the
same cos(πp/qB) dependence on the quasi-momentum p, but different curvatures. Therefore,
mµ �= mε, with
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1

mε

≡ ∂2ε

∂p2

∣∣∣∣
p=0

= 2π 2(K + 2χ N0)

q2
B

, (13)

1

mµ

≡ ∂2µ

∂p2

∣∣∣∣
p=0

= 2π 2(K + 4χN0)

q2
B

, (14)

where K and χ have been defined in equations (7) and (8). Sometimes it is convenient to extend
the definition of the effective masses to the full Brillouin zone, introducing the quasi-momentum
dependent masses

mε(p) ≡
[
∂2ε

∂p2

]−1

= mε

cos(πp/qB)
, (15)

mµ(p) ≡
[
∂2µ

∂p2

]−1

= mµ

cos(πp/qB)
, (16)

where, following equations (13) and (14), mε = mε(0) and mµ = mµ(0).
It is also useful to introduce, with the same line of reasoning, two different group velocities,

defined as

vε ≡ ∂ε

∂p
= 1

mε

qB

π
sin

(
πp

qB

)
, (17)

vµ ≡ ∂µ

∂p
= 1

mµ

qB

π
sin

(
πp

qB

)
. (18)

There is a simple, general relation between the two different group velocities (following from
µ = ∂ (N0ε)/∂N0):

vµ = vε +
∂vε

∂N0
N0 (19)

with, given equations (13) and (14), vµ > vε. The analogue relation for the effective masses has
been retrieved in [20].

Of course, the concept of effective mass, defined as the inverse of the curvature of the
corresponding spectrum (as that of group velocity, defined as the first derivative) can be extended
to shallow optical potentials, where the nonlinear tight binding approximation breaks down. In
this case, the quasi-momentum dependence of ε and µ will not be simply described by a cosine
function, but will still remain periodic in the quasi-momentum p. In particular, the value p where
mε(p) changes sign (corresponding to ∂2ε/∂p2 = 0) will be greater than qB/2 and will in general
not coincide with the momentum where mµ(p) changes sign (corresponding to ∂2µ/∂p2 = 0).

The presence of the two different effective masses (group velocities) raises an important
problem: which effective mass (group velocity), and how, enters in the dynamical properties of
the system? For instance, we anticipate that the current carried by a Bloch wave with quasi-
momentum p is ρ0 vε(p), where ρ0 is the average particle density; mµ, on the other hand, plays a
crucial role in the Bogoliubov spectrum. To conclude this section, we remark that Bloch states are
not the only stationary solutions of the GPE. Because of nonlinearity, indeed, periodic solitonic
solutions can also appear for a weak enough periodic potential, introducing new branches in the
excitation spectra [21, 22].
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3.2. The Bogoliubov dispersion relation

In this section we study the Bogoliubov spectrum of elementary excitations. This describes the
energy of small perturbations with quasi-momentum q on top of a macroscopically populated
state with quasi-momentum p (stationary solution of equation (1)). To be explicit, let us consider
first the case in which the radial degrees of freedom y, z are integrated out. The wavefunction
in the x direction can be written as

�(x, t) = e−iµ(p)t/h̄eipx/h̄

[
�̃p(x) +

∑
q

ũ pq(x)e
iqx/h̄e−iωpq t + ṽ∗

pq(x)e
−iqx/h̄eiωpq t

]
. (20)

Because of the periodicity, the Bogoliubov amplitudes can be written as Bloch waves
(i.e. {u, v}pq(x) = exp(iqx/h̄){ũ, ṽ}pq(x)), where q is the quasi-momentum of the excitation
and {ũ, ṽ}pq(x) are periodic functions. The subscript {pq} indicates that both the amplitudes
ũ, ṽ and the excitation frequencies ωpq depend on the quasi-momentum p of the carrying wave
and on the quasi-momentum q of the excitation.

In terms of the periodic functions �̃ , ũ and ṽ, the Bogoliubov equations take the form[
1

2m
(−ih̄∂x + p + q)2 + s ER sin2

(
πx

d

)
− µ + 2gnd|�̃p|2

]
ũ pq(x) + gnd�̃2

pṽpq(x)

= h̄ωpq ũ pq(x) (21)[
1

2m
(−ih̄∂x − p + q)2 + s ER sin2

(
πx

d

)
− µ + 2gnd|�̃p|2

]
ṽpq(x) + gnd�̃∗2

p ũ pq(x)

= −h̄ωpq ṽpq(x) (22)

where n is the 3D-average density and
∫ d/2

−d/2 |�̃p|2 dx = 1. Equations (21) and (22) can be solved

numerically in a very efficient way working with the Fourier components of �̃, ũ and ṽ.
In the tight binding regime, the Bogoliubov analysis corresponds to perturbing the large

amplitude wave asψl = [ψ0+δψl] exp(i(pld−µt)/h̄), with δψl = ∑
q Uq exp(i(qld/h̄−ωpqt)).

Retaining only first-order terms with respect to δψ , we get two coupled linear equations analogous
to (21) whose eigenvalues can be calculated analytically [18]. The general solution (for any
effective dimensionality of the system: D = 0, 1, 2, 3) is

h̄ωpq = q2
B

π 2mµ

sin

(
πp

qB

)
sin

(
πq

qB

)

± 2

√
q4

B

π 4m2
µ

cos2

(
πp

qB

)
sin4

(
πq

2qB

)
+

q2
B

π 2mε

∂µ

∂N0
N0 cos

(
πp

qB

)
sin2

(
πq

2qB

)

+ O

[(
m−1
µ − m−1

ε

m−1
µ

)2]
(23)

with the chemical potential given by µ(p, N0) = µloc − (q2
B/π

2mµ) cos(πp/qB) (see
equation (12)), and µloc

l = Uα|ψl|4/(2+D). For D = 0 and in the limit χ = 0, we recover
the well-known results for the DNL Schrödinger equation [16, 24]. Equation (23) has been first
written in [18] in terms of the parameter of the DNL equation (5), while, for small q and arbitrary
p, has been derived in [17] for arbitrary values of s.

In figure 1, we compare the analytic results (dots) with the numerical solution of
equations (21) and (22) (solid curve), for a system in the tight binding regime. In the numerical
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Figure 1. Numerical solutions of equations (21) and (22) for s = 20 and
gn = 0.5ER (green dots); analytic solution equation (23) in the tight binding
approximation (solid blue curve); analytic solution of equation (23) where mµ is
replaced with mε (dashed red curve). The quasi-momentum of the carrying wave
is p = 0.4qB in (a) and p = 0.7qB in (b).

calculations, the effective masses are obtained from the curvatures of the Bloch energy and
chemical potential spectra, while the term N0∂µ/∂N0 has been evaluated from the density
dependence of the chemical potential. As was noted in [20], effects related to the difference
between the two effective masses in the Bogoliubov spectrum of a condensate at rest (p = 0) are
usually negligible. In contrast, such difference becomes important when the condensate moves
with a large quasi-momentum, as shown in figure 1(b).

4. Sound waves and instabilities

The small q (large wavelength) limit of the Bogoliubov dispersion relation becomes

h̄ωpq ≈ qB

πmµ

sin

(
πp

qB

)
q + |q|

√
1

mε

∂µ

∂N0
N0 cos

(
πp

qB

)
(24)

(we assume, for the moment, that 1/mε(∂µ/∂N0)N0 cos(πp/qB) > 0). The linear behaviour
in q indicates that the system supports (low amplitude) sound waves, propagating on top of the
large amplitude travelling wave �p with velocity

vs,± = h̄
∂ω

∂q

∣∣∣∣
q→0±

=
{
vµ + c, (q → 0+)

vµ − c, (q → 0−)
(25)

where the ‘chemical potential group velocity’ vµ has been defined in equation (18), and the
‘relative sound velocity’ c is defined as
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c =
√

1

mε

∂µ

∂N0
N0 cos

(
πp

qB

)
. (26)

The two different velocities vs,± correspond, respectively, to a sound wave propagating in the
same and in the opposite direction of the large amplitude travelling wave. As we have already
noted, and discuss again in the next section, vµ is different from (it is larger than) the actual
velocity of the large amplitude wave, see equation (19).

Contrary to the case of a Galilean invariant system (s = 0), the sound velocity depends on the
quasi-momentum p. Moreover, vs depends on the effective dimensionality of the condensates,
since (from equations (10) and (12)) (∂µ/∂N0)N0 ∼ αUαN α/2

0 . In the limit α = 2, p → 0 and
mε,mµ → m we get the sound velocity in the uniform case.

The system is energetically unstable if there exist any ωpq < 0. In the limit s = 0, this
corresponds to a group velocity larger than the sound velocity (Landau criterion for superfluidity).
When the system has a discrete translational invariance (s > 0) the condition for this instability
is obtained from the Bogoliubov excitation spectrum equation (23). Then, we have that the
system is not superfluid when ωpq < 0, corresponding to

v2
µ > c2. (27)

This result should be compared with the well known Landau criteria for a homogeneous system
(s = 0), stating that the superfluid is energetically unstable when v2 > c2, v ≡ ∂ε/∂p = ∂µ/∂p
being the group velocity of the condensate, and c = √

1/m(∂µ/∂N0)N0 the sound velocity.
There is a further dynamical (modulational) instability mechanism associated with the

appearance of an imaginary component in the Bogoliubov frequencies, which disappears in
the absence of interatomic interactions, or in the translational invariant limit (if a > 0). The
onset of this instability in the tight binding regime, coincides with the condition

c2 < 0 ⇒ cos

(
πp

qB

)
< 0 ⇒ |p| > qB

2
. (28)

The dynamical instability drives an exponentially fast increase of the amplitude of the (initially
small) fluctuations of the condensate. Since the initial phases and amplitudes of the fluctuation
modes are essentially random, their growth induces a strong dephasing of the condensate, and
dissipates its translational kinetic energy (which is transformed in incoherent collective and
single particle excitations). The unstable modes q grow with a timescale given by the imaginary
part of the excitation frequency

τ−1
pq = 2qB

π h̄

∣∣∣∣sin

(
πq

qB

)∣∣∣∣ Im

[√
q2

B

π 2m2
µ

cos2

(
πp

qB

)
sin2

(
πq

2qB

)
+

1

mε

∂µ

∂N0
N0 cos

(
πp

qB

)]
. (29)

We remark here on the different scaling of the energetic and dynamical instability with the
interatomic interactions. With a decrease of the scattering length, the sound velocity decreases,
and smaller and smaller group velocities can break down the superfluidity of the system (in the
limit a = 0, the sound velocity c = 0: the non-interacting condensate is always energetically
unstable for an arbitrary small group velocity). On the other hand, the dynamical modulational
instability criterion does not depend on the scattering length. This apparent paradox is simply
solved by noticing that the growth time of the unstable modes, equation (29), actually depends
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on interactions, and diverges when the scattering length vanishes (τ → ∞ when a → 0).
Therefore, a non-interacting condensate is always dynamically stable. There is a further point to
note: if we consider a condensate moving with an increasing velocity, the system always becomes
first energetically unstable, then it hits the dynamical instability. However, in real experiments
the energetic instability can grow quite slowly (and at zero temperature only in the presence
of impurities [15]), so that the dominant dephasing mechanism is given by the modulational
instability. This aspect can also be highlighted with numerical experiments, studying, for
instance, Bloch oscillations of a condensate with the interactions switched off. In this case,
even though the system is energetically unstable, it remains coherent over many oscillations. If
the interatomic interactions are switched on, however, the system dephases rather quickly, the
dephasing occurring when the quasi-momentum of the condensate is in the dynamically unstable
region of the Bloch spectrum. We have done such a numerical experiment, and the results are
shown in figures 4 and 5. Of course, our prediction can be tested in real experiments, tuning the
scattering length with a Feshbach resonance.

To summarize, the tight binding approximation predicts the onset of dynamical instability
(complex excitation frequency) at p = qB/2. We point out that p = qB/2 also corresponds to
the quasi-momentum where, in the tight binding regime, the effective masses mε(p) and mµ(p)
change sign. A system with a negative effective mass and positive scattering length can be,
roughly speaking, seen as equivalent to a system with a negative scattering length and positive
effective mass. It is well known that a BEC having a negative scattering length is dynamically
unstable, and such parallelism might be thought to give a simple explanation of the instability.
However, we will see that this coincidence between the onset of dynamical instabilities and
the inversion of sign of the effective mass does not take place at lower optical potentials (see
figure 3).

Let us concentrate now on the behaviour of the excitation frequencies for shallow optical
potentials, where the tight binding expression derived in (23) is not applicable. For small optical
potential depths, the Bogoliubov equations have to be solved numerically and the results show
a more complicated behaviour. In figures 2(a)–(c), we show the numerical solutions of the 1D
Bogoliubov equations for three different values of s (s = 1, 2 and 5); we plot the real and
imaginary part of ωpq as a function of q and we vary p in time.

We point out a series of differences with respect to the tight binding regime:

• the complex frequencies appear at the boundary of the first Brillouin zone (q = qB) for a
value of p > qB/2 (dots in figure 3) and they reach the centre of the zone (q = 0) for a
higher value of p (orange region in figure 3);

• the range of momenta p where the frequencies are complex for some q, but real around
q = 0, decrease with increasing s; in the tight binding limit this range vanishes;

• in the limit of our numerical accuracy, which is due to the discrete sampling of p and q,
we found that the value of p where the effective mass mε changes sign (squares in figure 3)
corresponds to the value of p at which the frequencies with non-vanishing imaginary part
reach q ≈ 0. In the tight binding approximation, this appears explicitly through the term
cos(πp/qB)/mε under the square root.

We would like to remark on two important results arising from our study of the excitation
spectra. First, as shown in figure 3, we found the onset of the dynamical instability for values
of the quasi-momentum where the effective mass mε(p) is still positive. Second, the range of
momenta where the system has a positive effective mass and, at the same time, is dynamically
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Figure 2. Real and imaginary part of ωpq as a function of q for different values
p, for gn = 0.5ER and s = 1 (animation) (a), s = 2 (animation) (b) and s = 5
(animation) (c).

unstable, increases with decreasing s (bearing in mind that the amplitude of the imaginary part
vanishes for s → 0 or gn → 0, which implies that the growth in time of the instability diverges
both for uniform interacting systems and for ideal gases in optical lattices). So, one can study
the behaviour of the system at low s to distinguish between two possible dephasing mechanisms,
one due to the sign of mε, the other one due to the dynamical instability, as will be detailed in
section 6.

Various important aspects of the physics of energetic and dynamical instabilities of a BEC
in a periodic potential have been studied in [12, 15]–[17].

5. Newtonian dynamics

Using the results in [18], we can now rewrite the dynamics of a BEC wavepacket in terms of the
energy effective mass. For the BEC wavepacket we use the following ansatz:
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of the quasi-momentum p where complex frequencies are found around q = 0;
squares: value of the quasi-momentum p where the effective mass mε changes
sign. The dotted curves are a guide to the eye.

ψl = √
K(σ ) f

(
l − ξ

σ

)
exp

(
iP(l − ξ) + i

δ

2
(l − ξ)2

)
, (30)

where ξ(t) and σ(t) are, respectively, the centre and the width (in lattice units) of the wavepacket,
P(t) and δ(t) their associated momenta and K(σ ) a normalization factor such that

∑
l Nl = NT

(with |ψl|2 ≡ Nl). The function f is generic: for instance, we can choose f (X) = e−X2

or f (X) = (1 − X 2)1/α (with −1 ≤ X ≤ 1) to describe, respectively, the dynamics of a
Gaussian or a Thomas–Fermi wavepacket. The equations of motion of the collective variables
ξ(t), σ (t), p(t), δ(t) have been obtained in [12, 18]. With V j = � j 2 (� = md2ω2

x/2), and
neglecting the dynamics wavepacket width dynamics (σ̇ (t) = 0), we find that the group velocity
ξ̇ and the effective force acting on the centre of mass of the wavepacket are given by

h̄ξ̇ = q2
B

π 2

〈
1

mε

〉
sin P, (31)

h̄ Ṗ = −∂Vd

∂ξ
, (32)

where Vd = �(ξ 2 + σ 2 I2
I1
) with I1 = ∫

dX f 2(X) and I2 = ∫
dX X 2 f 2(X). Since the effective

masses depend on the local (on-site) density, we have to introduce an effective mass averaged
over the local density of the condensate wavepacket〈

1

mε

〉
=

∑
l m−1

ε (Nl)|ψl |2∑
l |ψl |2 , (33)

with, according to equation (13), m−1
ε (Nl) = (2π 2/q2

B)(K + 2χNl). We summarize here the
most important results, written in term of the effective mass mε:
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Figure 4. Bloch oscillations for s = 10 and gn = 0.5ER. Time evolution (see
animation) of the spatial density (upper plot), of the relative phases (middle plot)
and of the momentum distribution (lower plot).
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(i) in the case of a homogeneous system (VD = 0, Nl = constant), the tunnelling rate is given
by

π 2h̄

q2
B

Ṅ out
l

Nl�φ

∣∣∣∣
�φ→0

= 1

mε

; (34)

(ii) the frequency of small amplitude oscillations of the wavepacket driven by a harmonic field
Vl ∝ l2 is

ωdip

ωx
=

√〈
m

mε

〉
; (35)

(iii) if the driving field is linear Vl = mGdl, we have simple Bloch oscillations with

ξ =
〈

1

mε

〉
q2

B

π 2 mGd
cos

(
πm G

qB
t

)
. (36)

This analysis does not take into account possible dephasing mechanisms such as those
investigated in the previous section. In the collective coordinate approach, such dephasing
mechanisms can be described by including the dynamics of the width of the wavepacket σ(t)
and of the corresponding momentum δ(t) [12].

6. Numerical experiments on Bloch oscillations, dipole oscillations and free expansions
in the lattice

In this section, we discuss some numerical simulations of the GPE in order to illustrate the
phenomena described in the previous sections. We first consider Bloch oscillations (section 6.1):
we create a condensate in a harmonic trap superimposed on the lattice and then switch off the
harmonic trap and replace it with a linear potential. We expect the BEC to oscillate periodically
in space (Bloch oscillations).

The second numerical simulation consists in creating a condensate in a harmonic trap
superimposed on the lattice, and suddenly displacing the centre of the harmonic trap (section 6.2).
This experiment has already been studied theoretically [16] and performed experimentally
in [6, 23]. We discuss it again, generalizing the previous results to the case of shallow optical
lattices.

The third numerical simulation consists in creating a condensate in a harmonic trap
superimposed on the optical lattice and then switching off the harmonic trap in the lattice
direction, letting the condensate expand in the periodic potential (section 6.3): for values of
the mean-field energy large enough (with a fixed height s of the interwell energy barriers), the
wavepacket is self-trapped [12] and spreading of the wavepacket does not occur.

In all cases, for an interacting BEC, we found some form of self-trapping and dynamical
instabilities for some values of the depth of the periodic potential or the initial conditions of the
BEC wavepacket. For instance, in the dipole oscillation experiment, the condensate may stop on
one side of the harmonic potential and be unable to complete the oscillation. It is useful to look at
the dynamical evolution of the relative phases of condensates trapped in neighbouring wells and
the BEC evolution in momentum space. There is a clear correspondence between the distribution
in momentum space and that in quasi-momentum space: the quasi-momentum distribution of the
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Bloch state �p(x) = eipx/h̄�̃p(x) with quasi-momentum p is δ(p); its momentum distribution
is |∑�c�δ(p + 2�qB)|2, where � is integer and where c� is the Fourier coefficient of the periodic
function �̃p(x). An analogous relation is also valid when the condensate is not in a well-defined
Bloch state, but in a superposition of Bloch states of the first band. In this case, the width
of the peaks of the momentum distribution will be equal to the width of the quasi-momentum
distribution. In the following we will work with the momentum distribution, which is simply
obtained from the Fourier transform of the condensate wavefunction.

6.1. Bloch oscillations

Bloch oscillations can be explained in very simple terms. In the presence of a linear potential
superimposed on the optical lattice, the behaviour of a particle with quasi-momentum p is
described by the equation of motion p(t) = Ft , where F is the constant force due to the linear
potential. Since the velocity is given by vg = ∂ε(p)/∂p, when the effective mass is negative, the
particle will respond to a positive (negative) force with a negative (positive) acceleration. Since
the energy band ε(p) is periodic in p, this will result in periodic oscillations in coordinate and
velocity space.

This simple explanation, even neglecting important effects like Landau–Zener tunnelling
to a higher band, provides a useful model to interpret experiments with electrons [25], with cold
atoms [26] and with BECs [4, 5]. However, if interactions in the condensate play a major role,
the scenario can change dramatically. First of all, the momentum distribution �(p, t) will not
evolve just like �(p(t)), as approximately happens for non-interacting systems, but will also
spread. Furthermore, in the presence of interactions, it might happen that the condensate gets
dephased and, after a short while, the oscillations stop (see figure 4). For the situation described
in there (s = 10, for which the tight binding approximation works well), the dephasing process
begins when the centre of the momentum distribution reaches p = qB/2. This point corresponds
both to the onset of the dynamical instabilities and the inversion of the effective mass. Since the
momentum distribution has a certain width, one might think that the oscillations stop because the
sign of the effective mass is not the same for the whole condensate. An alternative interpretation
relies on the onset of dynamical instabilities.

In order to highlight the correct interpretation, we study the Bloch dynamics of a non-
interacting condensate, which is always dynamically stable. The initial spatial width is chosen
in order to get about the same momentum distribution as in the interacting case, in order to have
similar effective mass effects. More specifically, since in the interacting case the width of the
momentum distribution increases slowly, while in the non-interacting case it remains almost
constant, we choose the initial conditions so that the two momentum distributions will be similar
at the ‘critical point’, where 〈p〉 = qB/2.

The direct comparison is shown in figure 5. We observe, in the non-interacting case, regular,
perfectly periodic Bloch oscillations, in spite of the finite width of the momentum distribution.
This clearly shows that, in the interacting case, the onset of decoherence is due to dynamical
instability.

6.2. Dipole oscillations

Dipole oscillations consist of motion of a condensate at the bottom of a harmonic trap. The
average velocity is periodic in time and the momentum distribution, showing characteristic peaks
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due to the optical lattice, also oscillates periodically in time at the bottom of the band. During
the time evolution, the phase differences between neighbouring condensates remain locked over
the whole condensate.

For a given set of parameters corresponding to small displacements, small interactions or
small optical potential depths, dipole oscillations remain periodic, with the condensate locked in
phase. On the other hand, if we increase one of these quantities, we find that the oscillations get
dephased during the time evolution, or even stop before the condensate reaches the bottom of
the harmonic potential. For the sake of comparison we display in figures 6(a)–(c) the evolution
of the density, of the phase difference and of the momentum distribution for the following sets
of parameters: for fixed interactions (gn = 0.01ER) and harmonic trap (h̄ωx = 0.004ER), we
choose

(a) s = 3, x0 = 3d: oscillations;

(b) s = 3, x0 = 9d: broken oscillations;

(c) s = 10, x0 = 9d: broken oscillations.

Looking at the phase difference between neighbouring condensates, we find that when the
condensate oscillation is interrupted, the phases get scrambled. This corresponds to a randomized
flux of atoms which are no longer able to flow coherently down to the potential. The evolution of
the momentum distribution suggests that this phenomenon happens when the condensate reaches
the instability region, given in the specific cases by p greater than qB/2.

To further explore this interpretation, we choose a shallow optical potential such that there
is a broad range of p where the effective mass mε(p) is positive and at the same time the system
is dynamically unstable (see figure 3). We increase the nonlinear interaction parameter to get a
relevant imaginary part of the excitation frequencies, otherwise the timescale where instabilities
manifest themselves is too long. In figure 6(d) (lower plot), we indicate with a red dotted line the
quasi-momentum where the dynamical instabilities arise and with a green dotted line the quasi-
momentum where the effective mass changes sign. We actually observe the first signatures of
decoherence when the momentum distribution is contained between the two lines, indicating
that the decoherence is related to the dynamical instability point. Experimental evidence of
dynamical instabilities is reported in [23].

6.3. Expansion in the lattice

After creating the condensate in the harmonic trap superimposed on the lattice, we switch off the
harmonic trap and let the condensate, which is initially at rest, expand. During the expansion, the
current of atoms is from the inside to the outside of the cloud and the phase differences increase,
being positive for x < 0 and negative for x > 0. In [12] the occurrence of self-trapping was
predicted in the tight binding: when interactions are larger than a critical value, the width of the
wavepacket does not continue to increase with time (as for vanishing or small interactions) and
the wavepacket remains localized around a few sites. A similar nonlinear self-trapping occurs
in the two-site problem [27].

Increasing the interactions, the system enters into the self-trapped regime as shown in
figure 7(b). If the interactions are strong enough, we see that after a first stage (whose duration
depends on the strength of the interactions) the expansion stops and the condensate evolves
as a random flow of atoms between the condensates localized at the bottom of the different
potential wells, indicating the onset of a new dynamical instability. In this case, however, a
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Figure 6. Dipole oscillations for (a) gn = 0.01ER, s = 3, x0 = 3d (animation);
(b) gn = 0.01ER, s = 3, x0 = 9d (animation); (c) gn = 0.01ER, s = 10,
x0 = 9d (animation); gn = 0.5ER, (d) s = 1, x0 = 9d (animation). Time
evolution of the spatial density (upper plot), of the relative phases (middle plot)
and of the momentum distribution (lower plot). In (d), a red dotted line indicates
the quasi-momentum where the dynamical instabilities arise and a green dotted
line indicates the quasi-momentum where the effective mass changes sign.
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Bogoliubov-like stability analysis is much more problematic because of the non-trivial temporal
evolution of the condensate wavepacket. A possible, though approximate, approach is to write
down an effective Hamiltonian of the system in terms, for instance, of the collective coordinates
introduced in section 5. Such a Hamiltonian would contain a limited number of degree of
freedom, making the stability analysis a much easier task. This is the approach followed in [12]
to study the dynamics of an expanding condensate in the discrete nonlinear Schrödinger equation
framework (with mµ = mε). Within this approach one recovers, in a unified framework, the
critical values of the parameters for the self-trapping conditions of a wavepacket of finite width
initially at rest, and the onset of the modulational instability of a Bloch wave discussed in the
previous sections. For instance, considering a Gaussian wavepacket with initial width σ0 and
quasi-momentum p0, the collective coordinates approach predicts the onset of self-trapping at
a critical value of the parameter � = U2 NT/2K [12]. When cos(p0) > 0, the critical value is
�c ≈ 2

√
πσ0 cos(p0); when cos(p0) < 0, the critical value is �c ≈ 2

√
π | cos(p0)|/σ0. When

the width of the wavepacket is very large (σ0 → ∞),�c → ∞ if cos(p0) > 0 (and the system is
always dynamically stable), while�c → 0 if cos(p0) < 0 (and the system is always dynamically
unstable), recovering the findings of section 4.

The study of the dynamical instabilities of a condensate trapped in a periodic potential is a
rich problem, and deserves further investigation. As we have mentioned, this is connected to the
general problem of the stability of a non-stationary state, which also includes for instance the
propagation of sound waves in the nonlinear regime. First experimental results on self-trapping
with weakly coupled BECs are reported in [28, 29].
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7. Conclusions

The Gross–Pitaevskii dynamics of a BEC trapped in a deep periodic potential can be studied
in terms of a DNL equation. This mapping allows a clear and intuitive picture of the main
dynamical properties of the system, which can be calculated analytically. We have calculated
the effective masses of the system, connected to the Bloch energy and chemical potential spectra.
We have calculated the Bogoliubov dispersion relation, and studied the sound velocity and the
appearance of energetic and dynamical instabilities. We have generalized these concepts to the
case of shallow optical lattice, which requires a numerical solution and provides insight into
the understanding of the problem. Both in the tight binding limit and in the case of the shallow
optical potential, we have investigated in detail the onset of dynamical instability, which seems to
be the main mechanism of dephasing of the condensate in Bloch oscillation and dipole oscillation
experiments.
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Note added in proof. An equation similar to the DNL (15) has been derived in [30] to describe
the dynamics of an electric field in an array of coupled optical waveguides embedded in a material
with Kerr nonlinearities.
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[1] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[2] Rolston S L and Phillips W D 2002 Nature 416 219 and references therein
[3] Orzel C, Tuchman A K, Fenselau M L, Yasuda M and Kasevich M A 2001 Science 291 2386 and references

therein
[4] Anderson B P and Kasevich M A 1998 Science 282 1686
[5] Morsch O, Müller J H, Cristiani M, Ciampini D and Arimondo A 2001 Phys. Rev. Lett. 87 140402
[6] Cataliotti F S, Burger S, Fort C, Maddaloni P, Minardi F, Trombettoni A, Smerzi A and Inguscio M 2001

Science 293 843
[7] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
[8] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[9] Berg-Sørensen K and Molmer K 1998 Phys. Rev. A 58 1480

[10] Javanainen J 1999 Phys. Rev. A 60 4902
[11] Chiofalo M L and Tosi M P 2000 Phys. Lett. A 268 406
[12] Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353
[13] Abdullaev F K, Baizakov B B, Darmanyan S A, Konotop V V and Salerno M 2001 Phys. Rev. A 64 043606

Alfimov G L, Kevrekidis P G, Konotop V V and Salerno M 2002 Phys. Rev. E 66 046608
[14] Rey A-M, Blakie P B and Clark C W 2003 Phys. Rev. A 67 053610
[15] Wu B and Niu Q 2001 Phys. Rev. A 64 061603(R)
[16] Smerzi A, Trombettoni A, Kevrekidis P G and Bishop A R 2002 Phys. Rev. Lett. 89 170402
[17] Machholm M, Pethick C J and Smith H 2003 Phys. Rev. A 67 053613
[18] Smerzi A and Trombettoni A 2003 Phys. Rev. A at press

Smerzi A and Trombettoni A 2003 Focus issue on Nonlinear localized modes: fundamental concepts and
applications Chaos 13 766

New Journal of Physics 5 (2003) 112.1–112.20 (http://www.njp.org/)

http://www.njp.org/


112.20

[19] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
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