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Abstract. We consider supersymmetric inflation models in which inflation
occurs at an intermediate scale and which provide a solution to the µ problem
and the strong CP problem. Such models are particularly attractive since
inflation, baryogenesis and the relic abundance of cold dark matter are all related
by a set of parameters which also affect particle physics collider phenomena,
neutrino masses and the strong CP problem. For such models the natural
situation is a universe containing matter composed of baryons, massive neutrinos,
lightest superpartner cold dark matter and axions. The present-day relic
abundances of these different forms of matter are (in principle) calculable from
the supersymmetric inflation model together with a measurement of the cosmic
microwave background temperature and the Hubble constant. From these relic
abundances one can deduce the amount of the present-day dark energy density.

1. Introduction

Recent data on the cosmic microwave background (CMB) radiation [1] provides strong support
for inflation, by measuring the first, second and third peaks of the angular power spectrum.
Inflation therefore seems to be increasingly well established. Low-energy supersymmetry
(SUSY) is perhaps less well established (though there is considerable indirect evidence for it [2]),
but is certainly desirable from many points of view, and has the advantage when combined with
inflation of helping to ensure that the inflaton potential is sufficiently and naturally flat [3]. The
CMB data also supports a Λ cold dark matter (CDM) Universe in which the energy density is
dominated by dark energy (DE) (corresponding possibly to a cosmological constant Λ), and
CDM [4].
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In this paper we consider supersymmetric inflation models in which inflation occurs at an
intermediate scale [5]–[8], and which provide an intermediate scale solution to the µ problem
and a solution to the strong CP problem via the Peccei–Quinn (PQ) mechanism [9]. When
right-handed neutrinos are included, such models may give baryogenesis via leptogenesis. They
will have calculable CDM and DE relic densities. And they may have supergravity (SUGRA)
mediated SUSY breaking with no moduli or gravitino problems. A main point of the paper is
to show that in such models in which all these features are simultaneously present there will
be fewer parameters than in models in which these problems are separately addressed. We will
discuss an explicit example of such a model in order to demonstrate the connections between
the physics of each of the separate sectors, and the resulting enhanced predictivity leading for
example to connections between collider physics experiments and cosmological observations.

Within such a framework one may expect on general grounds that our Universe contains
sizeable relic abundances of baryons (from leptogenesis), axions (a) (from the solution to the
strong CP problem), as well as weakly interacting massive particles (WIMPS). In R-parity
conserving SUSY the WIMP is identified as the lightest supersymmetric particle (LSP), and this
is often assumed to be the lightest neutralino of the minimal supersymmetric standard model
(MSSM). We shall argue from this perspective that the LSP could equally well be a lighter stable
singlet (singlino) [10] identified with an axino [11] or inflatino [12]. Neutrino masses provide
smaller amounts of hot dark matter. Within this approach all these forms of matter in the Universe
will have calculable relic abundances, given a measurement of the CMB temperature and the
Hubble constant, which are related to the parameters of the underlying supersymmetric theory
which may be determined from particle physics experiments. This amounts to a generalization
of the observation made a few years ago that the relic abundance of neutralinos is related to
the parameters of the supersymmetric theory. Further, a given parameter typically is relevant to
more than one relic abundance, so the total number of parameters is fewer than when the various
forms are considered separately. From the calculated present day relic abundances of matter one
can deduce the amount of the present day DE density, even without specifying the physics of
DE.

2. The omega problem in supersymmetric inflation

In general the ratio of the total density of the Universe ρtot to critical density ρcrit is given by
Ωtot where

Ωtot = Ωγ + Ωmatter + ΩDE (1)

and Ωγ , Ωmatter, ΩDE are the ratios of radiation density ργ , matter density ρmatter and DE
density ρDE to critical density ρcrit, and the radiation density is unimportant ργ � ρmatter.
Note that the critical density is a function of time and in the present epoch ρcrit = 3M2

PH2
0 =

(3h1/2 × 10−3 eV)4 ∼ (M2
W/MP )4 where MW is the weak scale, MP is the Planck scale, and

H0 = 100h km s−1Mpc−1 is the present day Hubble constant, with h = 0.7 ± 10% [13]†. From
observation [1] ΩDE ∼ 2/3 while Ωmatter ∼ 1/3 and Ωtot is very close to unity. Inflation predicts
Ωtot = 1, for all times after inflation. The matter contributions consist of (at least)

Ωmatter = Ωb + Ων + ΩLSP + Ωa. (2)

† For a recent summary of the measurement of h see [13].
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The most recent data [1] is consistent with nucleosynthesis estimates of Ωb ∼ 0.04, where the
baryons (b) in the Universe are mainly to be found in dark objects. The determined value of
ΩCDM ∼ 0.3 contains unknown relative contributions from ΩLSP and Ωa. Super-Kamiokande
sets a lower limit on neutrino masses

∑
i mνi

≥ 0.05 eV which corresponds to Ων ≥ 0.003. In
hierarchical neutrino mass models the lower bound is saturated and interestingly the neutrino
density is then comparable to the visible baryon density Ωstars ∼ 0.005.

We now discuss how to calculate the relic densities from our present rather primitive state
of knowledge about the comprehensive theory needed to really do that†. In the following it is
important to keep in mind that our present inability to calculate the ratios of different forms of
matter should be distinguished from the ability to calculate them in principle. Later we discuss
a simple model which illustrates these ideas.

Of the three likely dominant densities Ωb, ΩLSP and Ωa, the latter arises from non-relativistic
axions being produced at the QCD scale by the usual misalignment mechanism, and is the most
difficult of the three to estimate since it depends on a randomly selected angle‡. Therefore we
shall focus mainly on the question of how to calculate Ωb and ΩLSP .

The present-day value of Ωb corresponds to the ratio of baryon number density to
entropy density of the Universe Yb = nb/s ≈ 0.7 × 10−10, assuming nb̄ = 0. For the
calculation of Yb, we shall restrict ourselves here to the so-called leptogenesis mechanism.
The basic idea of leptogenesis [18, 19] is that right-handed neutrinos (or possibly sneutrinos)
are copiously produced in the early Universe, then decay to produce lepton number (and
hence B–L) asymmetry. The lepton number asymmetry is subsequently converted into baryon
number asymmetry by sphaleron interactions. Concerning the three Sakharov conditions: the
CP-violation originates from complex Yukawa coupling constants‖; lepton number violation
originates from the Majorana mass of the right-handed neutrinos, and baryon number violation
from sphalerons. Concerning the out-of-equilibrium condition, in the conventional approach to
leptogenesis it is assumed that the right-handed neutrinos are produced by their couplings to
other particles in the thermal bath, but that these couplings are sufficiently weak that the decays
occur out-of-equilibrium, leading to a narrow range of couplings [20, 21]. From the perspective
of inflation the conventional leptogenesis picture will change if the reheat temperature is below
the mass of the lightest right-handed neutrino. In this case right-handed neutrinos may be
produced during reheating via (direct or indirect) couplings to the inflaton field, and may then
be produced with masses greatly exceeding the reheat temperature, providing only that they
are lighter than the inflaton field. In this case the out-of-equilibrium condition is automatically
satisfied during reheating. This second mechanism is preferred from the point of view of the
gravitino constraint, since in this case if the reheat temperature is below the limit TR < 109 GeV
then thermally produced gravitinos are not a problem¶.

In the conventional case the LSP is regarded as the lightest neutralino χ̃1 (a linear
combination of neutral bino B̃, wino W̃3, and higgsinos H̃1, H̃2) and it is produced in thermal
equilibrium at temperatures above its mass ∼ MW . According to the following very crude
argument when their annihilation rate Γ ∼ σnf ∼ nf/M

2
W becomes smaller than the expansion

rate of the Universe H ∼ T 2
f /MP (at a temperature Tf ∼ MW ), they freeze out of the thermal

† The calculation will involve non-perturbative cosmological effects during the reheating process, such as
preheating [14]–[17].
‡ Any relativistic axions produced during (p)reheating will be red-shifted away.
‖ Complex SUSY mass parameters are not relevant for leptogenesis if its scale is above that of SUSY breaking.
¶ If the gravitino is the LSP then this limit on the reheat temperature may be relaxed [22].
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bath, and the present day matter density is then ρχ ∼ MWnf (T/MW )3 ∼ M2
WT 3/MP including

the dilution factor (Rf/R)3 ∼ (T/MW )3. The current temperature is obtained by roughly
equating ρχ ∼ ργ ≈ T 4 which gives T ∼ M2

W/MP . Inserting this temperature we find
ρχ ∼ (M2

W/MP )4 ∼ ρcrit. Many more careful analyses have been performed in order to
obtain precise estimates for ρχ by considering the detailed annihilation channels within different
regions of SUSY parameter space. What concerns us more here is how including the effects of
inflation will change this simple framework. As in the discussion of leptogenesis (above) from
the perspective of inflation and baryogenesis, and in general a broader picture, the conventional
picture will change if the reheat temperature is below the mass of the lightest neutralino, and
they are produced by non-thermal processes during the reheating process after inflation. Another
way in which the physics might differ is if the LSP is not the lightest neutralino, but instead some
lighter singlino associated with an axino or inflatino. For example, if the lightest neutralino
freezes out then decays into an axino (ã) then the present-day axino density is suppressed by
the ratio of axino mass to lightest neutralino mass ρã = (mã/mχ)ρχ [11]. In order to learn
the actual relic density of LSPs (or axions or any candidate) it is necessary to actually calculate
it; detecting LSPs or axions is possible even if the relic density is well below Ωmatter of order
1/3 [23].

3. An example

3.1. Why intermediate scale inflation?

We now wish to consider a specific example of a model which addresses the particle physics
issues mentioned earlier, in order to illustrate many of the general features that we have discussed
above. The brand of inflation most closely related to particle physics seems to be hybrid inflation
which may occur at a scale well below the Planck scale, and hence be in the realm of particle
physics [24]. The next question is what is the relevant scale at which hybrid inflation takes place?
One obvious possibility is to associate the scale of inflation with some grand unified theory (GUT)
symmetry breaking scale, as originally conceived by Guth [25]. However, it is somewhat ironic
that hybrid inflation at the GUT scale faces the magnetic monopole problem, which was precisely
one of the original motivations for considering inflation in the first place! Although in certain
cases this problem may be resolved, there are typically further symmetry breaking scales below
the GUT scale at which discrete symmetries are broken, leading to problems with cosmological
domain walls.

As an example of the difficulties faced by GUT scale inflation models, consider the breaking
of the Pati–Salam symmetry group SU(4) ×SU(2) ×SU(2) down to the standard model gauge
group. The minimal symmetry breaking potential in this model [26] contains a singlet which
could be a candidate for the inflaton of hybrid inflation. However, it was immediately realized
that such a scenario would face a magnetic monopole problem since the gauge group is unbroken
during inflation, and only broken by the choice of vacuum after inflation [26]. A possible solution
to this problem is to consider the effect of higher dimension operators in the superpotential which
for a range of parameters have the effect of breaking the gauge symmetry during inflation [27].
Such a scheme can also address the µ problem and the strong CP problem, at the expense of
introducing additional singlets which develop vacuum expectation values (VEVs) at the PQ
symmetry breaking scale [9]. However, in this scheme it turns out that the vacuum in which
PQ symmetry is unbroken is preferred below the reheat temperature of the model so that PQ
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symmetry is not broken after inflation [27]. Moreover PQ symmetry breaking is associated
with the breaking of discrete symmetries in the model, so that it would lead to the domain wall
problem in any case [27]. The only solution to these problems seems to be to assume that PQ
symmetry is also broken during inflation, but since the inflaton has zero PQ charge, and since the
inflation scale of order 1014 GeV [27] and hence much larger than the PQ symmetry breaking
scale, this assumption seems rather questionable.

Intermediate scale hybrid inflation immediately solves both the magnetic monopole problem
and the domain wall problem. The idea is simply that there is a period of hybrid inflation
occurring below the GUT scale at the PQ symmetry breaking scale itself, in which the inflaton
carries PQ charge and so the choice of domain is fixed during inflation. The Universe therefore
inflates inside a particular domain, and the magnetic monople relics produced by the GUT scale
symmetry breaking are inflated away. This provides a powerful motivation for intermediate
scale inflation, which is is the subject of this paper. We now turn to an explicit example of an
intermediate scale inflation model.

3.2. Intermediate scale supersymmetric inflation model

The model we consider [6] is a variant of the NMSSM. This model has a SUGRA foundation [8],
and leptogenesis and reheating has been studied [7], and preheating [17, 28] has been
demonstrated not to lead to over-production of either axions or gravitinos. The model provides a
solution to the strong CP problem and the µ problem, with inflation directly solving the monopole
and domain wall problems at the inflation scale. It is therefore a well motivated, successful model
that has been well studied and does not appear to suffer from any embarrassing problems, and
is therefore a suitable laboratory for our discussion here. This variant of the NMSSM has the
following superpotential terms involving the standard Higgs doublets Hu, Hd and two gauge
singlet fields φ (inflaton) and N ,

W = λNHuHd − kφN2 (3)

where λ, k are dimensionless coupling constants. Notice that the standard NMSSM is recovered
if we replace the inflaton φ by N . However, this leads to the familiar domain wall problems
arising from the discrete Z3 symmetry. In this new variant, the Z3 becomes a global PQ U(1)PQ

symmetry that is commonly invoked to solve the strong CP problem [9]. This symmetry is
broken in the true vacuum by intermediate scale φ and N VEVs, where the axion is the pseudo-
Goldstone boson from the spontaneous symmetry breaking and constrains the size of the VEVs.
With such large VEVs this model should be regarded as giving an intermediate scale solution to
the µ problem, and as such will have the collider signatures discussed in [10].

We can make the φ-field real by a choice of the (approximately) massless axion field. We
will now regard φ and N to be the real components of the complex singlets in what follows.
When we include soft SUSY breaking mass terms, trilinear terms AkkφN

2 + h.c. (for real Ak)
and neglect the λNHuHd superpotential term, we have the following potential:

V = V0 + k2N4 + 1
2m

2(φ)N2 + 1
2m

2
φφ

2 (4)

where m2(φ) = m2
N +4k2φ2 −2kAkφ. We can identify the various elements of the potential: V0

arises from some other sector of the theory, SUGRA for example, and dominates the potential [8];
the soft SUSY breaking parameters Ak and mN are generated through some gravity-mediated
mechanism with a generic value of O(TeV).
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The basic idea of hybrid inflation is very simple [3]. For the field dependent mass of the N
scalar positive, m2(φ) > 0, then N = 0 since its potential has positive curvature. With N = 0
the potential becomes very simple indeed,

V = V0 + 1
2m

2
φφ

2. (5)

We shall assume that mφ comes from no-scale SUGRA, and vanishes at the Planck scale [8], so
that it is generated through radiative corrections such that m2

φ ∼ −k2A2
k. Since m2

φ is negative,
during inflation φ is slowly rolling away from the origin, and therefore we have inverted hybrid
inflation. When φ exceeds a critical value

φc = (Ak/4k)
(

1 −
√

1 − 4m2
N/A2

k

)
(6)

the sign of the field dependent mass of N will become negative, m2(φ) < 0, and the N field will
no longer be pinned to zero, but will roll out to the global minimum of the potential,

〈φ〉 = Ak/4k, 〈N〉 = (Ak/2
√

2k)
√

1 − 4m2
N/A2

k. (7)

Together with our assumptions about the SUSY parameters, this implies

Ak ∼ kφc ∼ k〈N〉 ∼ k〈φ〉 ∼ λ〈N〉 ≡ µ ∼ 103 GeV. (8)

During inflation the inflaton field φ must satisfy the slow roll conditions ε, η � 1†. The COBE
normalization δH = 1.95×10−5 requires the value of the inflaton mass from radiative corrections
m2

φ ∼ −k2A2
k ∼ −(100 eV)2 and from equation (8) this implies that λ, k ∼ 10−10 and

〈N〉 ∼ 〈φ〉 ∼ 1013 GeV. We address the smallness of λ, k in the next section. The spectral index
n which relates to the power spectrum Pk ∝ kn−1, is given by |n − 1| = 2η − 6ε ∼ 2η ∼ 10−12

which provides a basic prediction of the model. The present value of the spectral index in the
range 0.80 < n < 1.05 at 68% C.L. slightly disfavours the accurate prediction that n = 1.00 but
only at the 1σ level, and we may have to wait for the results from the Planck satellite which will
measure it to an accuracy of ∆n = ±0.01 to definitively test this prediction [29].

It is non-trivial that a set of parameters exists that is consistent with axion and SUSY
physics and allows the correct COBE perturbations to be achieved by radiative corrections.
Without SUSY one would be free to add soft scalar masses at will, but with SUSY one must
rely on the theory which either generates soft masses of order a TeV, or sets them equal to zero
as in no-scale SUGRA, in which case the radiative corrections, which are under control in the
case of SUSY predict the relevant value of the soft parameters, without any further adjustable
parameters. Thus SUSY is playing a crucial role in the model which is why we refer to it as a
supersymmetric inflation model.

3.3. Role of non-renormalizable operators

The couplings λ, k should be thought of as effective couplings arising from non-renormalizable
operators [5, 6] so they are actually couplings of order unity times small factors arising from
ratios of VEVs to the Planck mass to some power, as can occur in models, and are not unnaturally

† Recall that ε ≡ 1
2M̃2

P (V ′/V )2 with |η| ≡ |M̃2
P V ′′/V |, where V ′(V ′′) are the first (second) derivatives

of the potential and M̃2
P = M2

P /8π is the reduced Planck mass. The COBE normalization is given by
δ2
H = (1/150π2)V0/(M̃4

P ε).
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small. In the original model it was suggested that the superpotential in equation (3) arose as an
effective theory from a non-renormalizable superpotential which at leading order is given by

WNR = λ′NHuHd
MM

M2
P

− k′φN2 M
2

M2
P

+ c
(MM)3

M3
P

+ d
(NM)5(MM)2

M11
P

+ · · · (9)

where two extra singlets M and M have been introduced which develop VEVs by a radiative
mechanism 〈M〉 = 〈M〉 ∼ 1014 GeV, as a result of which we recover the original superpotential
in equation 3 and we reinterpret our couplings λ, k as effective couplings given by

λ ≡ λ′ 〈M〉〈M〉
M2

P

∼ λ′10−10, k ≡ k′ 〈M〉2

M2
P

∼ k′10−10. (10)

Thus the underlying coupling constants λ′, k′ are of order unity, although for the most part we find
it convenient to discuss the model in terms of effective couplings λ, k. The underlying theory
respects a Z3 × Z5 symmetry, and the U(1)PQ symmetry arises as an approximate effective
symmetry, leading to an explicit contribution to the axion mass from the term proportional to
d which tilts the axion potential slightly, and perturbs the θ angle by an amount ∆θ ≈ 10−11,
thereby preserving the PQ solution to the strong CP problem, but providing a prediction for the
next generation of electric dipole moment (EDM) experiments.

3.4. The cosmological constant problem

Notice that the SUGRA-derived potential contribution V0 exactly cancels with the other terms (by
tuning) to provide agreement with the observed small cosmological constant. Thus we assume
that at the global minimum V (〈φ〉, 〈N〉) = 0 which implies that V0 = k2〈N〉4. The height of
the potential during inflation is therefore V

1/4
0 = k1/2〈N〉 ∼ 108 GeV. Since the approach has

a consistent way to set the large cosmological constant to zero, the absence of a real solution to
this problem may not be an obstacle to the implications of the approach.

3.5. Parameter counting and singlino mixing

A relevant parameter count at this stage reveals two superpotential effective parameters (λ and
k), the two soft SUSY breaking parameters (Ak and mN ), plus the constant energy density V0.
From these five parameters we have inflated the Universe with the correct COBE perturbations,
provided a µ term of the correct order of magnitude and solved the strong CP problem. They also
govern the phenomenology of the singlet Higgs and Higgsino components of φ and N which
may weakly mix with the MSSM superfields Hu, Hd. For example the Higgsino mixing matrix
in the basis H̃d, H̃u, Ñ , φ̃ is


0 −λ〈N〉 −λ〈Hu〉 0

−λ〈N〉 0 −λ〈Hd〉 0
−λ〈Hu〉 −λ〈Hd〉 2k〈φ〉 2k〈N〉

0 0 2k〈N〉 0


 . (11)

The LSP will be the lightest eigenvalue of the full ‘ino’ matrix, extended in the usual way to
include gaugino–higgsino mixing. Clearly if k < λ/2 then a singlino will be the LSP. In our case
the singlino may be regarded as a linear combination of axino and inflatino. The coupling of the
superfield S containing the singlino S̃ is given from the usual result [10] W = µ(1+εS/v)HuHd
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Table 1. This table illustrates the fact that a particular parameter of the model
(columns) simultaneously controls several different aspects of particle physics
and cosmology (rows) which are thereby related. Lsoft contains Ak,m

2
N and the

other soft parameters, LYuk contains the Yukawa coupling constants controlling
all fermion masses and mixing angles.

V0 k λ Lsoft LYuk

Inflation and COBE
√ √

—
√

—
MSSM µ parameter — —

√ √
—

Fermion masses, mixings — — — —
√

SUSY collider physics —
√ √ √ √

Strong CP, axion abundance (Ωa) —
√ √ √

—
Leptogenesis (Ωb) —

√ √ √ √
LSP abundance (ΩLSP ) —

√ √ √
—

with µ = λ〈N〉. Here ε ∼ v/fa where the fa is the axion decay constant and v is an electroweak
VEV. Thus we have fa ∼ 〈N〉 so ε ∼ λ, and hence

W ∼ λ〈N〉(1 + λS/v)HuHd. (12)

As usual in models based on an intermediate scale solution to theµ problem [5, 6, 10] the coupling
of the singlino to the neutralinos means that S̃ nearly decouples. However, the conservation of
R-parity means that eventually the lightest neutralino produced in colliders must decay into the
singlino, and all the collider signatures discussed in [10] may apply. In the case that the lightest
neutralino leaves the detector before it decays into the singlino, there will be no unconventional
collider signature. In this case the knowledge concerning a lighter singlino will come from
cosmology since the LSP relic density gets diluted by the ratio of the singlino to lightest neutralino
masses, and direct dark matter searches will not see anything since the singlino LSP will not
scatter off nuclei.

One of the main things we want to emphasize is the connection between the calculation
of relic densities and the other physics, via their common parameters. This is summarized in
table 1 for the particular model we have been discussing. The same parameters that control the
ino mass matrix will also be involved in reheating of the Universe after inflation, and giving the
relic densities of LSP and in leptogenesis as we discuss in the next section. Different models may
have different mechanisms to solve some of the problems, different reheating and preheating,
and so on, but will still lead to a version of table 1.

3.6. Preheating/reheating

It is usually assumed that inflation ends with the singlets φ,N oscillating about their global
minimum. Although the final reheating temperature is estimated to be of order 1 GeV [6], during
the reheating process the effective temperature of the Universe, as determined by the radiation
density, can better be viewed as rapidly rising to V

1/4
0 = k1/2〈N〉 ∼ 108 GeV then slowly falling

to the final reheat temperature [7] during the reheating process. This reheating gives entropy
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to the Universe. Non-perturbative effects can produce particles with masses up to the potential
height, i.e. m ≤ V

1/4
0 ∼ 108 GeV (preheating). The preheating and reheating process in this

model is quite complicated, but the essential physics is as follows. To begin with the potentially
problematic axions and gravitinos are not over produced during preheating [17, 28]. Higgs
scalars are copiously produced through preheating via the couplings λ and k to the oscillating
inflaton fields. Although the neutralinos are produced in Higgs decays via preheating, once the
Higgses decay they go into thermal equilibrium, and subsequently freeze out while the Universe
is radiation dominated, similar to the usual hot Big Bang scenario. However, for a range of
parameters the singlino is lighter than the lightest neutralino, and in this case after freeze-out the
lightest neutralino decays into the singlino thereby reducing the LSP relic density by the ratio of
their masses.

Recently it has been realized that reheating in all hybrid models, including the SUSY
motivated ones of interest to us here, goes through very effective tachyonic preheating [16]. As a
result the stage of the background oscillations of the scalars around the minimum of the potential
will never be reached. This picture is dramatically different from the early papers on the reheating
in hybrid models [14, 15] and will probably affect the results in [17]. On the other hand the new
picture of preheating implies that exciting one field (for example φ or N ) is sufficient to rapidly
drag all other light fields with which it interacts into a similarly excited state. This strengthens
our claim that the Higgs doublets which interact with N will be efficiently preheated.

Once the Yukawa couplings are included in the superpotential, right-handed sneutrinos
are also expected to be produced during the initial period of preheating via their couplings
to the Higgs doublets, and decay out-of-equilibrium into leptons and Higgses giving rise to
leptogenesis. We have already remarked that, unlike the usual hot Big Bang scenario, the out-of-
equilibrium condition is automatically satisfied during reheating, and furthermore the production
mechanism of right-handed neutrinos is totally different. In the standard scenario the baryon
asymmetry is given by Yb ∼ dε1/g

∗ where ε1 is the lepton number asymmetry produced in the
decay of the lightest right-handed neutrino of mass M1, g∗ counts the effective number of degrees
of freedom (for the SM g∗ = 106.75 while for the supersymmetric SM g∗ = 228.75) and d is
the dilution factor which takes into account suppressions from either the couplings being too
small to thermally produce right-handed neutrinos, or too large to satisfy the out-of-equilibrium
condition. Typically d � 1 except for a narrow range of couplings [20]. In the inflationary
picture of reheating outlined above, the baryon asymmetry is given by Yb ∼ γε1(cV0)1/4/M1

where c is the fraction of the total vacuum energy converted into right-handed neutrinos due
to preheating, and γ accounts for dilution due to entropy production during reheating. Since
ε1 ∼ 10−6(M1/1010 GeV) [21] we find that Yb ∼ 10−8γ(c)1/4, apparently independently of M1

(although c will depend on M1, for instance c = 0 for M1 > 108 GeV).
Solving the Boltzmann equations for a particular choice of parameters in this model the

densities of the neutralinos, radiation, relativistic axions and baryons were calculated at reheating
time, defined as the time at which the oscillating singlet energy density rapidly decayed to zero [7].
This time represents the start of the hot Big Bang. The important point to emphasise is that at this
time tRH , for a given model the Boltzmann equations enable us to calculate the energy density
of the different types of matter ρmatter(tRH), as well as the radiation energy density ργ(tRH). In
the present model the details of this calculation are discussed in [7], and a similar calculation
may be performed for any other model.
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4. How to calculate the size of the dark energy density in supersymmetric
inflation

We now turn to the question of DE, which is not addressed by our supersymmetric particle
physics based model of inflation. The origin of DE might be a traditional cosmological constant
with equation of state w = −1 or some time-varying smooth energy (quintessence) with
−1 < w < −0.6 where the upper bound is from current observations, and may be in conflict with
some quintessence models [30]†. Quintessence models assume a zero cosmological constant
and add some arbitrary field to account for DE. From the point of view of our inflation model,
the simplest possibility is to assume that at the global minimum (after inflation) the height of the
potential is not zero but about 10−3 eV. This possibility, which just corresponds to a standard
cosmological constant with w = −1, can be arranged (though not explained) by tuning V0

in equation (4); V0 has to be tuned in any case to give a zero cosmological constant, so this
possibility requires no additional tuning to that already required in the model. In the no-scale
SUGRA model [8] V0 arises from the moduli fields in the string theory, and is determined by the
non-perturbative physics of moduli stabilisation which is not yet understood from a fundamental
point of view but may nevertheless be parametrized. Of course such a procedure raises the
cosmic coincidence question: why should we have ρDE ∼ ρmatter at the present epoch? Until
the cosmological constant problem is resolved, there is no way that this question can be answered.
We reject recent claims to the contrary which are based on setting the cosmological constant
to zero by hand to start with, since there is always the danger in this approach that one has
thrown away the baby along with the bathwater. In the absence of anything better, some authors
have turned to anthropic arguments, but many anthropoids reject this approach also as long as
alternatives may be possible.

Is there anything that we can say about DE at the current time from the perspective of our
supersymmetric particle physics based model of inflation? Perhaps surprisingly the answer is
positive: we shall show that we can deduce the present day value of DE density from the model,
together with the measured CMB temperature and the Hubble constant, even if the model does
not yet specify the physics of DE!

A key point of our approach is that a supersymmetric particle physics based model of
inflation enables us to calculate (in principle at least) the (energy or number) densities of all
forms of radiation and matter (but excluding DE) at some early time tRH after inflation and
reheating has taken place, corresponding to the start of the standard hot Big Bang. For simplicity
we consider only one type of matter energy density ρmatter(tRH) (which may readily be obtained
from the calculated number density) and radiation energy density ργ(tRH). The argument may
be straightforwardly generalized to the case of several components of radiation and matter. Now,
using the equations of the standard hot Big Bang, we wish to obtain their values at the present
time t0, ργ(t0) and ρmatter(t0). Without further information this is impossible since we need
something to tell us when the present time t0 is, and moreover the model does not specify either
ρDE(tRH), or its equation of state, both of which will influence the evolution of the Universe.
Therefore let us input into our analysis the present day observed CMB temperature T0 = 2.725 K,
which corresponds to a photon density ργ(t0) = (2.115 × 10−4 eV)4, a photon number density
nγ = 410 cm−3, and, assuming three families of light neutrinos, an entropy density s = 7.04nγ .

† Note that for a scalar field w = p/ρ = (KE − PE)/(KE + PE) and if the kinetic energy (KE) is small
compared to the potential energy (PE) then w is negative. w < −1 would require negative KE which corresponds
to the scalar being a ghost field, and a loss of unitarity [31].
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Then, ignoring additional sources of entropy between tRH and t0 (such as electron–positron
annihilation), since we know the equations of state for photons and matter, ργ ∼ R−4 and
ρmatter ∼ R−3, where R is the scale factor of the Universe, using the initial values of ργ(tRH)
and ρmatter(tRH) predicted by the model and the present value of ργ(t0) from observation, we
find ρmatter(t0) ≈ ρmatter(tRH)[ργ(t0)/ργ(tRH)]3/4. We emphasise that this determination of
ρmatter(t0) is independent of the unknown DE. Allowing for entropy production, which will
increase the photon energy density relative to the matter energy density, it is usually convenient
to consider the ratio nmatter/s which is equal to the number of particles of each species per
comoving volume. From the model we can calculate nmatter/s at tRH , and by particle number
conservation the value of this ratio at the present time t0 is unchanged. Using the present value
of s (above) we therefore immediately find nmatter(t0) and from the mass of the particle type we
readily find ρmatter(t0), again independently of the DE.

Once we have obtained ρmatter(t0), from a combination of our model calculation and the
observed CMB temperature, as outlined above, we now use the observed Hubble constant H0,
or equivalently the present day critical density ρcrit, to convert ρmatter(t0) into the various
Ωmatter = ρmatter(t0)/ρcrit. Once Ωmatter is predicted within some supersymmetric particle
physics based model of inflation, supplemented by measurements of the CMB temperature and
the Hubble constant, then it is clear that ΩDE is also predicted to be

ΩDE = 1 − Ωmatter. (13)

Thus a model of inflation that is capable of predicting Ωmatter using measurements of the CMB
temperature and the Hubble constant, is also capable of predicting ΩDE from equation 13. This
sum rule was written down in [32], including a curvature term and it was discussed there how to
determine each of the components ΩDE and Ωmatter from observation. What we are saying here
is quite different from the empirical approach to determining the components of this equation
discussed in [32], and should not be confused with it. To begin with we are assuming inflation, so
that the curvature contribution is zero. Secondly we are only taking two inputs from observation,
namely the CMB temperature and the value of the Hubble constant. Given these inputs we have
shown how an inflation model allows us to then calculate Ωmatter, and hence deduce ΩDE from
equation (13).

At first sight our result appears surprising: how can we have deduced ΩDE from a model in
which the DE is unspecified? In order to answer this it is useful to compare two slightly different
models of inflation, one in which the DE density is zero and one in which it is non-zero, but
which otherwise predict identical values of ργ(tRH) and ρmatter(tRH) (in our example this just
corresponds to tuning V0 slightly differently in the two cases leaving all the other parameters
unchanged.) In both cases this will result in the same values of ρmatter(t0), once ργ(t0) is inputted.
The only difference is that the Friedmann equations, with zero curvature term due to the inflation
assumption, will determine two different values of the Hubble constant, corresponding to two
different values of critical density. The first is given by ρcrit1 = ρmatter(t0), and the second
involving the sum of two contributions ρcrit2 = ρmatter(t0) + ρDE(t0). Since we input the
Hubble constant from observation, we know the true value of ρcrit in our Universe, and so we
can discriminate between the two cases from a measurement of the Hubble constant. More
generally, it is clear that, once the correct supersymmetric particle inflation model is known, and
the present day value of ρmatter(t0) is calculated from it (using the CMB temperature as input),
that the present-day value of ρDE(t0) may be deduced from the Hubble constant H0 which is
telling us information about DE by telling us the critical density. From this example it is clear
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that our argument gives us no new insight into the cosmic coincidence question, since a Universe
without DE would simply correspond to having a different Hubble constant.

Once the importance of the Hubble constant H0 in our argument is realised, the next
question is whether our argument contains any content at all? The answer must be yes, since the
conclusion relies on non-trivial information coming from the model, namely the initial condition
for ρmatter(tRH) and ργ(tRH) without which it would be impossible to find ρmatter(t0) from
the CMB temperature alone, and without ρmatter(t0) it would be impossible to deduce ρDE(t0)
from the Hubble constant H0. A related question, is whether our argument is actually useful
in practice, given that at the present time we do not know the correct model, and even if the
model were known and all the parameters of that model were accurately specified, we still would
need to know the physics of preheating and reheating very well. Also when the argument is
generalised to all the forms of matter and radiation we would need to have a good understanding
of the physics of baryogenesis and a way of calculating the axion misalignment angle, and so on
in order to be able to specify the present day relic densities of all the component forms of matter.
One could criticise the argument on the grounds that the accuracy of the deduced density of DE
is therefore limited by the accuracy with which the matter density can be calculated. While this
is true, it would seem remarkable to us to suppose otherwise: while it would be nice to be able
to calculate the DE density much more accurately than the matter density, this possibility hardly
seems very likely. What our argument gives is a way of calculating ΩDE to the same precision
as Ωmatter, and this we believe is the best that one can hope for.

Whether the DE is due to scalar fields, or an incomplete vanishing of a cosmological constant
(corresponding perhaps to the Universe ending up temporarily in a vacuum state slightly above
a global minimum at zero), perhaps some of the parameters that determine it will be related
to parameters that also determine the forms of matter. In the present paper we do not specify
any particular model for DE and so we must therefore rely on observation to determine the
equation of state for the DE. If observation eventually tells us that w = −1 and that the DE
is equivalent to a cosmological constant, then it will be a tremendous challenge to theorists to
explain this (see, for example, the approach of Bastero-Gil, Mersini and Kanti [33]). Explaining a
vanishing cosmological constant is already proving a very difficult question for string theorists,
and explaining a very small one does not apparently make this any easier. In this case it is
possible that the DE question will be around for a long time. In the meantime progress may
be forthcoming on determining the supersymmetric particle inflation model and in determining
its parameters and in being able to use those parameters to calculate the relic matter densities
with increasing accuracy. In such a scenario, the one consolation may be that our argument
enables one to then calculate the size of the DE density (i.e. the cosmological constant) even in
the absence of any theory of it.

5. Summary and conclusion

We have considered the class of supersymmetric inflation models in which inflation occurs
at the intermediate PQ symmetry breaking scale. Such models are better motivated than
GUT scale inflation models which face the problems with magnetic monopoles and domain
walls. In intermediate scale supersymmetric inflation the same theory which is responsible for
inflation is also responsible for the solution to the µ problem, and the strong CP problem. As
a consequence one would generally expect CDM to contain an axion component in addition to
an LSP component. The LSP itself need not be the lightest neutralino, but may be a singlino
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associated with the singlet fields which control hybrid inflation and resolve the µ problem.
The present day relic densities of the CDM components comprising LSPs and axions may be
calculated in a given model, using the observed CMB temperature and Hubble constant, although
the axion density will be subject to the usual uncertainties of the unknown misalignment angle.

Once right-handed neutrinos are added, as the recent confirmations of neutrino masses
suggests that they should be, then the possibility of baryogenesis via leptogenesis seems well
motivated, and then the baryon density may be calculated in a given model. The various relic
densities are in principle calculable in a given model, and are related to each other and to other
phenomena since the number of parameters involved is generally smaller than would be the
case without a theory. The same parameters control cosmology on the one hand and collider
physics on the other hand. For example common soft SUSY breaking parameters are involved
in both inflation and collider physics. In order to illustrate all these ideas we have described an
explicit intermediate scale supersymmetric inflation model which already exists and is quite well
studied in the literature [6]–[8], and many of the general ideas above are made very explicit in the
model, for example the role of the underlying parameters in determining different phenomena is
demonstrated for this model in table 1.

Over the next few years there will be considerable progress in cosmology from the Map
and Planck explorer satellites, and in SUSY from the Tevatron and LHC. We believe the time is
ripe for a new closer synthesis of SUSY and inflation, and that the most promising scenario will
involve these theories meeting at the intermediate scale. We have shown that in this case one may
hope to relate different phenomena in cosmology and in particle physics in a much closer and
more predictive way than ever before. Finally we have made the original observation that, given
the value of the CMB temperature and Hubble constant from observation, an intermediate scale
supersymmetric inflation model allows the present-day matter relic density to be calculated, and
hence the present-day DE relic density to be determined from equation (13) even in the absence
of any theory of DE.
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