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Abstract
Bymeans of particle-based numerical simulations using the discrete elementmethod, we address the
question of how the performance of granular dampers is affected by the shape of the granular particles.
In consistence with previous experiments performedwith nearly spherical particles wefind that
independently of the particles’ shape, the granular system is characterized by a gas-like regime for
small amplitudes of the container’s oscillation and by a collect-and-collide regime for large amplitude
forcing. Both regimes are separated by an optimal operationmode—the critical amplitude of the
damping oscillation forwhich the energy dissipation ismaximal—which is independent of the particle
shape for given conditions of particlemass,material properties and number of particles. However, in
the gas-like regime, wefind that spherical particles lead tomore efficient energy dissipation compared
to complex shaped particles of the samemass. In this regime, a dependence on the damper’s efficiency
on the particle shape is found.

1. Introduction

Granular dampers, that is, containers partially filledwith granularmaterial, arewidely used as ameans for
attenuatingmechanical vibrations in a broad range of systems [1–14]. Indeed, granular dampers perform
particulary well in applications where the acceleration due to gravity can be neglected, because gravity tends to
demobilize the granulate (see [15]). This is whymuch attention has been given to the study of granular dampers
inmicrogravity conditions, in particular to investigate the factors controlling their performance [16–18].

While the influence of the parameters of the driving [15, 19],material properties andparticle size [20–23]on the
granular dampers’performance has beenmatter of study bymany authors, the rôle of particle shapeon this
performancewaspayedmuch less attention.As amatter of fact, the particulatematerial used ingranular dampers is
typically composedof spherical particles.However, it iswell-known that dissipative properties of granularmaterials
made of complex particle shapesmaybe very different from the ones of spherical particle ensembles [24, 25]. This
different behavior raises the questionofwhether the particle shape could be used as an adjustable designparameter
for the optimal operationmodeof a granular damper, depending on the practical application.Moreover, it is
relevant to understand towhich extent the degree of non-sphericitymay affect the performanceof the damper.

Particle-based simulations bymeans of the discrete elementmethod (DEM) provide a powerfulmeans for
investigating the dynamics of granularmaterials [26]. Sánchez et al [27] performed thefirst DEM simulations of
granular dampers using different particle shapes. In particular, the authors performed two-dimensional
simulations using circles, squares, triangles and hexagons, and found similar values of the frequency response
function of the granular system for these particle shapes. Apart from the study by Sánchez et al [27], there is no
systematic investigation of the rôle of particle shape on the granular dampers’ performance. Such an
investigation should include a quantitative description of particle shape.Moreover, it should be performed for
three-dimensional systems because in practice granular dampers are three-dimensional devices.

Therefore, herewe perform this systematic study by investigating a diversity of particle shapes covering a
broad range of shape parameter values (specified below).We focus on the relevant quantity characterizing the
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performance and operationmode of granular dampers, that is, the average value of total dissipated energy per
oscillation cycle, in response to the vibration amplitude [28, 29].

2.Numerical experiments

We simulate the process using theDEM, that is, simultaneously solvingNewton’s equations of translational and
rotationalmotion for all particles.

MostDEMmodels are designed for particulate systems composed of spherical particles, for which contact
detection is simple. Geometrically complex particles can bemodeled using themultispheremethod, where
spherical particles are arranged relatively to one another to form composite particles [30–33]. Each composite
particle leads to a rigid body, the total force onwhich is computed by summing up the forces on all constituent
spheres.Moreover, the angularmomentumof the complex particle is computed from the total torque on all
spheres with respect to the body’s center ofmass [34]. The interactions between spherical particles belonging to
distinct composite particles are calculated by considering the contact forcemodel described below.

2.1. Particle shapes
By using themultispheremethod, wemodel different complex particle shapes as shown in table 1. Thefirst of
such particle shapes is the rod, which is represented by particles#2–#4 in thefirst row of table 1. Furthermore,
we alsomodel squares, rings, crosses and L-shaped particles, by combining beads of the same size (see particle
shapes#5–#10).Moreover, particle#11 is an asymmetric rod that consists of beads of different sizes. It has
been inspired by the polar granular rods of [35], which defined rodswith amass gradient along the particle’s axis.

Table 1.Particle shapes used in the simulations. The composite particles constructedwith themultispheremethod are displayed in thefirst
rowof the table. The second row shows the symbols associatedwith each shape as used infigures 2–4. The subsequent rows show the values
of shape parameters defined in equations (1)–(4), associatedwith each particle. For particles#2–#11 (counted from left to right) the shape
parameters are calculatedwith respect to the plane i–j, which is the plane ontowhich the particle’s projected area ismaximal (see coordinate
systemon the bottom right hand corner). The sketches at the bottomof the table showparticle#8with the spherocylinders containing the
particle’s constituent bead (first sketch from left to right) as well as the definition ofP,A, Pc and Ac for this particle.

2
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In contrast to [35], however, here the particle asymmetry is in the shape and not in themass. The density of each
constituent bead of particle#11has been chosen such that each bead has the samemass.

For the complex particle shapes#2–#11, all constituent spheres lie on the plane i–j—the coordinate system
taken as reference for defining the particle shapes is shown in the bottom right-hand corner of the table.
However, particles#12–#14 also contain beads on the plane i–k. Particle#12 can be viewed as a combination
of particles#5 and#10, disposed orthogonally to each other on the planes i–j and i–k, respectively.Moreover,
particles#13 and#14 consist of two orthogonal rings and squares, respectively.We thus define the particle
shapes#2–#11 as two-dimensional complex particle shapes, while particles#12–#14 are three-dimensional
complex particle shapes.

In the following,first we present the parameters used to characterize the two-dimensional particle shapes.
Thereafter we showhow these parameters are adapted to describe the three-dimensional objects.

Thefirst shape parameter is the aspect ratio, that is, the ratio of the Feret’sminimumdiameter to the Feret’s
maximumdiameter

( )h º
D

D
, 1min

F

max
F

where the Feret’s or caliper diameter gives the length of the object along a specified direction [36, 37]. The second
shape parameter is the circularity [37]

( )p
ºC

A

P

4
, 2

2

whereA andP denote the area and perimeter of the particle, respectively.
To computeA andP, we consider the projection of each complex particle onto the plane i–j, which is the

plane onwhich the particle’s constituent beads lie. However, we do not compute the projection of the single
constituent beads, which defines a set offilled circles on the plane i–j. Instead, for simplicity, we approximate the
complexmultisphere particles by intersecting spherocylindrical shells [38], andwe computeA andP from the
projection of these shells on the plane i–j. As an example, the perimeter P and the areaA obtained from the
projection of particle#8 (the cross) is shownon the bottomof table 1. Furthermore, note that each of the rings
defining particles#9 and#13 can be obtained by bending a rod to form a closed (circular) loop. The enclosing
shell for each ring is obtained by bending the spherocylindrical shell of the associated rod, therebymerging both
its dips to form a closed cylindrical shell.

The third shape parameter is the convexity,

( )ºC
P

P
, 3x

c

where Pc is the hull perimeter, that is, the perimeter of the convex hull or smallest convex envelope enclosing the
composite particle. This envelopemay be visualized as the shape enclosed by a rubber band stretched around the
composite particle [37]. For the cross-shaped particle#8, the convex hull fromwhich Pc is computed is shown
on the bottomof table 1.

Finally, the fourth particle shape parameter is the solidity

( )ºS
A

A
, 4

c

where Ac is the convex hull area. That is, Ac denotes the area inside the convex hull around the two-dimensional
particle shape (see example on the bottomof table 1). The solidity gives, thus, the fraction of the areawithin the
convex hull that isfilledwith particle’smaterial (that is, solid). Correspondingly, the rougher (or less solid) the
particle shape becomes, themore the solidity valuewill approach zero.

We note that, whereas the computation of the particle shape parameters is simplified by using the
interesecting spherocylindrical shells as reference geometries, certainly amore precise characterization should
incorporate the roughness due to the countours of the single constituent beads along the shell’s axis—the
roughness due to the shape of the particle without regard to the beads’ contours is already incorporated in the
solidity. Indeed, the aim of the present analysis is to quantify themain geometric characteristics influencing the
particle’s rotational behavior, that is the degree of non-sphericity of themultisphere particle shapes, which is
whywe choose the shape parameters listed above.Moreover, we note that previousDEMsimulations using
spherocylinders have been presented in [38]. However, here we adopt themultispheremethod in the
simulations as it leads to an efficient computation of particle–particle contact detection, while with the generated
multisphere particles it is possible to capture themain characteristics associatedwith the rotational behavior of
the differentmodeled shapes.

For the three-dimensional particle shapes#12–#14, the convexity and solidity are defined here based on
the area and volume associatedwith the three-dimensional objects, respectively. Specifically, the convexity Cx3 is

3

New J. Phys. 18 (2016) 073049 HPourtavakoli et al



defined as

( )=C
A

A
, 5x

c
3

3

3

whereA3 is the sumof the total surface area of all spherocylinders enclosing the constituent spheres of the
composite particle, while Ac3 is the area of the three-dimensional convex hull or the smallest three-dimensional
envelope enclosing the particle shape. Analogously, the solidity S is defined as

( )=S
V

V
, 6

c
3

3

3

whereV3 is the sumof the volumes of all spherocylinders enclosing the particle’s constituent spheres as specified
above, whileVc3 is the volume of the convex hull around the composite particle.Moreover, while the circularity
is ameasure inherent to two-dimensional objects [37], the aspect ratio of particle shapes#12–#14 can be
computed for each one of the planes defined in table 1 and the results are displayed in this table.

Furthermore, the parameters adopted to characterize the particle shapemay have different values depending
on the particle dimensions. This can be clearly seen from the examples of the rods, that is particles#2–#4where
rods of different lengths—but same shape—have different values of aspect ratio and circularity.Moreover,
considering a cross (particle#8)with various length values (L) leads to different values of solidity, since ~A L
while ~A Lc

2 due to the definition on the bottomof table 1. Therefore, considering just one single parameter
from table 1 is insufficient to describe a given particlemorphology. It is rather the set of all parameter values
(combined)which should be used to characterize a single particle used in the simulation. In otherwords, it is
based on their combined values that the parameters of table 1 are regarded as shape parameters to describe the
complex particle shapes in the present work (see also [37]).

We also note that the quantitication of the particle shapes can bemade in different ways, for instance by
performing aMinkowsky tensor shape analysis of the particles [39]. However, the characterization of particle
shape presented here can be easily applied in experimental applications, as shown in the experimental works of
[37, 40]. Aswe can see from table 1, for the four particle shape parameters chosen, a broad range of values is
obtained for the different particles, thus providing an adequate description of the particle shape diversity
considered in the present work.

2.2. Inter-particle forcemodel
The contact forces inDEMsimulations can be described through a variety ofmodels, which are suitable for
different particle geometry andmaterial behavior [26, 34, 41, 42]. In the simulations of the presentmanuscript,
we consider viscoelastic interaction in the normal direction (see [43]). The normal force corresponding to this
model follows the equation

˙ ( )
 rx r x x= - -⎜ ⎟⎛

⎝
⎞
⎠F A emin 0,

3

2
, 7n n n

3 2

where ξ, the compression of the colliding particles, is described by the equation

∣ ∣ ( ) x = + - -R R r r . 81 2 1 2

In this equation,R1 andR2 denote the radii of the particles, which are at positions

r1 and


r2. Furthermore, the

normal unit vector, denoted by

en, is defined as ( ) ∣ ∣    

= - -e r r r rn 1 2 1 2 .
The expression for the normal force encodes, thus, an elastic parameter, ρ, as well as a dissipative parameter,

An. This dissipative parameter can be obtained from the pre-collisional (impact) velocity, vimp, of the colliding
particles and the coefficient of restitution, ε, associatedwith this collision, as shown in [44–47].Moreover, the
elastic parameter is a function of the Young’smodulus (Y), the Poisson’s ratio (ν) and the effective radius of the
particles, ( )º +R R R R Reff 1 2 1 2 . The following expression is used to calculate this parameter

( )
( )r

n
º

-
Y

R
2

3 1
. 9

2 eff

Furthermore, the behavior ofmany granular systems can be strongly influenced by friction.However, it has
been shown in [16] that the dissipative behavior of granular dampers ismainly controlled by dissipation due to
normal interaction forces. Therefore, although tangential forces play an important role for particle–particle
interactions of granularmaterials, in the present workwe build on the results of [16] to discuss the role of
particle shape by considering the dissipationmodel presented above.We anticipate that our simulations showed
no significant effect of friction on the conclusions of the present work.However, the detailed investigation of the
particles’ dynamics in presence of frictional and cohesional forces is stillmatter of current investigation andwill
be treated in a future work.

4
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2.3. Simulation of the granular damper
The equations used for computing the interactions between the particles and thewalls of the damper are the
same used to calculate the inter-particle interaction forces, with one of the contact partners being of infinitemass
and radius [33, 48, 49].

In accordance with the experiments of [28], in each numerical experiment we consider a total of 473
complex (multisphere)particles, eachwithmass equal to themass of a steel sphere diameter 4 mm—the size of
the steel beads used in the experiments [28]. The diameters of the constituent spheres of each particle are thus
chosen such as to reproduce the specifiedmass. Initially the particles are deposited under the action of gravity on
the bottomof the granular damper, whereupon the damper starts to oscillate with frequencyω and amplitude

Adamp.While the deposition of the particles with the damper at rest is performed using Earth gravity, the shaking
of the damper occurs under conditions of weightlessness [18, 28].

2.4.Model parameters and numerical integration
The values of themodel parameters are listed in table 2. The integrationwas performed using theDEM library of
[50], which has been extended here to incorporate the analyticalmodel of [47] for obtaining the viscoelastic
constantAn. In order to compute this constant, we assume a coefficient of restitution e » 0.75pp and
e » 0.76pw , for particle–particle and particle-wall collisions, respectively, associatedwith a pre-collisional
velocity »v 1.0imp m s−1. Using these values of restitution coefficient and a different numerical tool based on
event-drivenDEMsimulations, [16] reproducedwell the dynamics of center ofmass position of the granular
system investigated here.

We note that, while we have chosen parameters based on thematerial properties of steel, the coefficient of
restitution chosen here is rather low. Following a previous particle-basedmodel for granular dampers [16], this
choice ismade because part of the collisional dissipation is due to frictional forces, which are not considered in
the simulations. The value of 0.75was obtained in [16] by comparing simulation results using frictionless
particles to the experimental results obtainedwith steel particles. In this reference, excellent agreementwas
found between the trajectory of the center-of-mass position of the particles relative to the box center, thus
indicating that simulationswith normal dissipation (using this value of coefficient of restitution) canwell
describe the dissipative behavior of the particles due to collisions with the sidewalls.

The integration time stepDt must be small enough to accurately solveNewton’s equations for the particle
interaction. For undamped collisions, the durationTcol of the collision can be estimated using the equation [41]

( )
r

» º
+

-
⎛
⎝⎜

⎞
⎠⎟T

M
v M

m m

m m
3.21 , where 10col

eff
2 5

imp
1 5

eff
1 2

1 2

withm1 andm2 standing for themasses of the interacting particles. Typically a timestepmuch smaller thanTcol is
recommended [51].We thus calculate the collision time of two spheres with diameter equal to»1mm,which is
the smallest diameter value of all beads adopted tomodel the different particle shapes in table 1. Since the time
Tcol for such a collision computed using equation (10)with thematerial properties specified above is about 20 μs,
we use hereD = -t 10 6 s.Moreover, we have found that using smaller timestep values does not change our
results.

Table 2.Numerical values of the parameters used in the
simulations. For particle-wall collisions the Poisson’s ratio
usedwas n = 0.37. The dimensions of the damper (L,W
andH, definedwith respect to the axes x, y and z, respec-
tively) are as in [28].

Parameter Symbol Value

Particlematerial density ρp 7800 kg m−3

Particle diameter d 4 mm

Young’smodulus Y 108 Pa

Poisson’s ratio ν 0.3

Box length L 100 mm

Boxwidth W 50 mm

Box height H 50 mm

timestep Δt 10−6 s

5
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3. Results and discussion

Figure 1 shows snapshots of the simulations of the damper oscillation using the L-shaped particles in the 10th
column from left to right in table 1. The snapshots in the upper and lower rows refer to amplitude of oscillation
of 10 mmand 80mm, respectively. Aswe can see from this figure, for an amplitude of 10 mm, the granular
system is in a gas-like regime, inwhich only a few particles interact with the oscillatingwalls during one
oscillation period [28]. In this regime, particle-wall collisions are just sufficient to balance the energy loss
resulting from the particle–particle collisions in the bulk of thematerial. By contrast, for the amplitude of
80 mm, the system is in the collect-and-collide regime [28]. That is, during the inward stroke all thematerial is
collected and accumulates as a packed layer at thewall of the container. Once the container has passed the phase
ofmaximal velocity, it decelerates and the granular particlesmove away from thewall collectively.When the
bulk of particles impacts onto the opposite wall of the container, a large fraction of the system’s kinetic energy is
dissipated due to inelastic collisions.

Moreover, the gas-like and collect-and-collide regimes are separated by an optimal operationmode—the
critical amplitude of the damper’s oscillation forwhich the energy dissipation ismaximal. Similar behaviorwas
found for all particle shapes considered.

In order to quantify our results we calculate the energy dissipated per cycle of the damper’s oscillation as a
function of the oscillation amplitude Adamp. To do so, we integrate the product of themeasured force F (t)—that
is, the total force exerted by the particles on the sidewalls of the damper (parallel to the direction ofmotion)—
and velocity ˙ ( )x t over one period, p w=T 2 , of the sinusoidal driving ( )w=x A tsindamp , that is

˙ ( ) ( ) ( )ò=E x t F t td . 11
T

diss

Moreover, themaximumenergy, Emax , that can be dissipated in one oscillation cycle can be estimated by
considering all particles colliding inelastically with thewall at themaximal relative velocity, w=v A2max damp

[28]. At the collisionwith onewall (half cycle), themaximal energy that can be dissipated is equal to mv 2max
2 ,

while the corresponding value for one entire cycle is twice as large, or =E mvmax max
2 . Therefore, Emax , the

maximal energy which can be dissipated in one period of oscillation in the stationary state [28], follows the
equation

( )w=E mA4 , 12max damp
2 2

wherem is the totalmass of all particles in the system [28].
The damping efficiency associatedwith a given particle shape can be characterized by computing the relative

energy dissipated per cycle, E Ediss max . Figure 2 shows the damping efficiency defined in thismanner as a
function of the oscillation amplitude for all particle shapes investigated. Aswe can see in thisfigure, for all
particle shapes, the value of damping efficiency (that is, E Ediss max ) increases linearly with the amplitude Adamp

in the gas-like regime, for < A0 20damp mm.The damping efficiency displays a fast increase with Adamp as
the oscillation amplitude increases beyond 20 mm,whereas for »A 30damp mmamaximal value for E Ediss max

is reached. The system enters the collect-and-collide regime as the amplitude becomes larger than 30 mm. In
[28], it was shown that the critical amplitude separating the gas-like regime from the collect-and-collide regime

Figure 1. Snapshots of the damper simulations using L-shaped particles (10th particle shape from left to right infigure 1) at oscillation
amplitudes =A 10damp mm (top; gas-like regime) and =A 80damp mm (bottom; collect-and-collide regime). For both amplitudes,
the displayed snapshots correspond to the oscillation phases p 2,π and p3 2 (from left to right), whereas the damper’s horizontal
position evolves in time according to the equation ( ) ( )pn=x t A tsin 2damp (where n = 4 Hz is the oscillation frequency [28]).
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can be estimated using the equation

( )
p

»A
L

, 13
g

crit

where Lg is the clearance of the granularmaterial in the damper. This clearance is the difference between the
length (L) of the container and the thickness of the granular layer associatedwith all particles deposited on the
container’s bottomwall. It can be obtained by calculating the volume occupied by all particles in rcp on the
bottomof the damper at rest. Using the reference value =L 89.4g mmof the clearance associatedwith the
spherical particles of diameter =d 4 mm [28]—and thus with the same volume as each of the particles
considered in our simulations—we obtain »A 28.5crit mm,which is indeed very close to the amplitude value at
which the damping efficiency obtained in our numerical experiments ismaximal (see figure 2).

We note that the results from experiments with oscillation frequency ν in the range  n1 Hz 5
suggested independence of the critical amplitude on the frequency (for this range of ν). This behavior is
consistent with equation (13), which predicts independence of Acrit on ν. In consistencewith previous
experiments [28], we thus perform simulationswith an oscillation frequency of n = 4 Hz, that is within the
aforementioned range, for all particle shapes investigated.

As can be seen from figure 2, the critical amplitude Acrit is nearly independent of the particle shape. Indeed, a
theoreticalmodel for explaining this critical amplitude has been proposed by [28]. According to thismodel,
desynchronization of the collective particlemotion occurs if the particle bulk arrives at the opposite wall at a
timewhere this wall is accelerating away from it, whichmeans that the granular systemwill not get collected by
thewall butmainly scattered. This criterion for the transition is indeed independent of the particle shape, as is
the value of Acrit obtained fromour simulations.

Moreover, we see infigure 2 that the results for the different particle shapes collapse well for amplitudes
larger than Acrit, the collect-and-collide regime. In this regime, the behavior of the system can be described by by
means of a one-particlemodel, as shown by [16]. That is, the granular systembehaves like a single quasi-particle
cycling between thewalls of the container in the direction of the oscillation. Once the particles collectively hit
one of thewalls, the quasi-particle associatedwith the bulk loses all its relative velocity with respect to thewall,
whichmeans that the collision is characterized by a vanishing coefficient of restitution. Reference [29] tested this
theory against systematic experiments inmicrogravity conditions therebyfinding quantitative agreement
betweenmeasured and predicted values of the average dissipated energy per cycle as a function of the amplitude
in the collect-and-collide regime (seefigure 8 of [29]). Our results show that thismodel proves applicable not
only for spherical particles but also for complex particle shapes.

For amplitudes in the gas-like regime (in particular when A Adamp crit), we observe an interesting
behavior infigure 2, that is the curves do not collapse as well as they do in collect-and-collide regime
( >A Adamp crit). In the gas-like regime, we expect the dissipative behavior of the system to be relatedwith the
granular temperature [25, 26], or equivalently the spread of the granular system, since in this regime the bulk of
particles is located around the center of the damper (thus far from the drivingwalls). Thismeans that the
dissipated energy is due to collisions of only a few particles with drivingwalls, which are far away from the bulk.

The simplest quantity whichwe can compute to investigate this behavior is the standard deviation of the
positions of the particles along the oscillation axis relative to the particles’ center-of-mass position.We thus
investigate the time-averaged standard deviation of the particles’ positions xi(t) relative to the center-of-mass

position ( )x tcm of the granularmaterial, ( ( ) ( ))s = å -= x t x t Nx i
N

i t1 cm
2 1 2 (withN= 473 particles), for an

Figure 2.Damping efficiency, E Ediss max , as a function of the oscillation amplitude. The symbols denote different particles as defined
in thefirst and second rows of table 1.

7
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amplitude =A 10damp mm,which is well within the range of amplitudes characterizing the gas-like regime.
Figure 3 shows the damping efficiency as a function of sx for all particle shapes investigated. The symbols denote
the corresponding particle shapes as specified in table 1 (see first and second rows). Aswe can see, by considering
all complex particles shapes investigated, a linear increase of the damping efficiencywith sx is observed, whereas
this behavior is found for all amplitudes below 15 mm, that is when the system iswell within the gas-like regime.
The bestfit to the simulation data associatedwith the complex particle shapes using the equation

( )s= +
E

E
a b 14x

diss

max

gives » -a 0.0688 and »b 0.005 65 mm−1, with correlation coefficient 0.95. This bestfit is denoted by the
continuous line infigure 3.

Aswe can see from figure 3, equation (14) describes well the behavior of the damping efficiency as a function
of sx for all complex particle shapes.However, the fit to the data from the complex particles does not capture the
point associatedwith the spherical particles (red circle). The observed value of E Ediss max for the spherical
particles ismuch larger than the value predicted from the fit to the complex particles data using equation (14). It
is interesting to discuss this behavior in the light of the experimental results of [25], who investigated the
dynamics of rods in a stationary boxwith sidewalls vibrating in antiphase undermicrogravity conditions. These
authors foundmuch smallermean free path values for the rod particles compared to the spherical particles,
meaning that for the complex shaped particles, grain–grain collisions dominate over grain-wall collisions.We
note that lowermean free pathmeans less dissipation due to particle-wall collisions due to lower dispersion of
the particles from the center-of-mass position—or, equivalently, lower sx. Indeed, themore compact the
particles are distributed around the center-of-mass position the lower themean free path and sx. Qualitatively
ourfindings are, thus, consistent with this experimental result since less dissipation (due to collisions with the
drivingwalls) is observed for the complex particle shapes in the damper (see figure 3). However, we note that
since the experiments of [25] differ from the granular damper dynamics it is difficult tomake a comparison of
the granular dynamics between both systems—for example of the distribution of the particles in the container.
Nevertheless, our simulations suggest that the spherical particle shape is the optimal shape to be used in granular
dampers with regard to energy dissipation in the gas-like regime.

By considering one type of particle shape (the rods), we can see a dependence of the damping efficiency on
some of the shape parameters.We see infigure 4(a) that the damping efficiency increases linearly with the aspect
ratio η of the rods, whereas the best fit to the data using the equation h= +E E a br rdiss max gives »a 0.0097r

and »b 0.069r with correlation coefficient 0.997.Moreover, infigure 4(b)we see that the damping efficiency
increases nonlinearly with circularity (C) of the rods. The bestfit using the equation = + aE E a b Cc cdiss max

gives »a 0.023c , »b 0.057c and a » 13.2 with correlation coefficient 0.994.We note that bothfits include the
data point associatedwith the spherical particles (η=C=1). It is interesting to note that the value of sx is
smaller themore elongated the rod, that is, themore the particle deviates from the spherical shape (see figure 3).
Therefore, a relationship between sx and the shape parametersmentioned above is found in our simulations.
Moreover, the relationship between the granular temperature (which is related to sx) of the system and the rod’s
aspect ratio has been shown in [25]. However, we note that the fits presented infigure 4 do not capture the
simulation data for the other particle shapes.We conclude that the dependence of the damping efficiency on the

Figure 3.Damping efficiency, E Ediss max , as a function of the time-averaged standard deviation of the particles’ positions along the
oscillation axis (x) relative to the center-of-mass position of the granular system, for an amplitude of oscillation =A 10damp mm (gas-
like regime). The symbols denote different particle shapes as defined in table 1, while the continuous line represents thefit to the
simulation data associatedwith the complex particle shapes using equation (14).
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shape parameters should be sensitive to the rotational characteristics of the different types of particle geometries,
which remains to be investigated.

Indeed, it is interesting to note that the linear fit equation for the damping efficiency as a function of sx

(figure 3) describes well the behavior of both two-dimensional and three-dimensional complex shapes. This
interesting behavior remains to be investigated in futurework. In particular, we note that friction largely
influences the rotational behavior of the particles andwe thus expect different dissipative behavior of the various
particle shapes in presence of friction. Futurework should thus focus on the effect of friction on the result of
figure 3.

Moreover, while infigure 4we show a dependence of the dissipative behavior on aspect ratio and circularity
of the rods, we remark that other shape parameters should be important for the dissipative behavior of the
granular damper.However, based on the available simulation data, we could notfind any dependence of the
dissipated energy on the solidity or convexity (such as we found for the aspect ratio and circularity infigure 4).
The reason for this result remains to be clarified in future work.

While the presentmanuscript focuses on the damping efficiency based on the conditions of the experiments
of [16, 18, 28], the physics of the granular system in the gas-like regime should be investigatedmore
systematically considering different particle numbers and system sizes.Moreover, it would be interesting to
investigate the dissipative behavior of the different particle shapes inmore detail, especially close to the critical
amplitudewhere dissipation ismaximal (see figure 2).

4. Conclusions

Wehave performed particle-based (DEM) simulations of granular dampers in the absence of gravity using a
broad range of particle shapes. The results of our simulations indicate that the critical amplitude Acrit of the
damper’s oscillation forwhich the efficiency ismaximal does not depend on the shape of the particles, provided
thematerial properties as well as the particlemass and number of particles are the same. For intense forcing,

>A Adamp crit, the system is found in the collect-and-collide regime, in which the granulate’s center ofmass
moves synchronously with the driven container. Forweak forcing, <A Adamp crit, the particulate system exhibits
gas-like behavior. In this gas-like regime, we found that the damping efficiency is smaller for complex particle
shapes than for spherical particles.Moreover, a dependence of the damper’s efficiency on the aspect ratio and
circularity of rod-shaped particles was found.

Wenote that in previous experiments byMarhadi andKinra [21] the average kinetic energy converted into
heat per cycle of the damper oscillationwasmeasured for spherical particles as well as for irregularly shaped
particles (including quartz sand grains) of differentmaterials. However, as pointed out by the authors of this
study, it was not possible to conclude on the rôle of particle shape based on the experimental data since the
samples were associatedwith different particle size andmass values. Herewe have performed a systematic study
of the rôle of particle shape by considering the same number of particles in all numerical experiments, and by
using the same particlemass for all particles, independently of the particle shape.

We note that the behavior of the granular system also depends on the parameters of the driving and also on
the elastic and dissipative properties of the particles, as discussed in previousworks [20–23]. However, here these

Figure 4.Dependence of the damping efficiency E Ediss max on the rods’ shape parameters, at an amplitude of oscillation
=A 10damp mm (gas-like regime): (a) aspect ratio η, defined by equation (1), and (b) circularityC, defined by equation (2). The

symbols denote simulation data for different particle shapes as defined in table 1, while the continuous line denote the bestfit to these
data using the equations, h= +E E a br rdiss max and = + aE E a b Cc cdiss max in (a) and (b), respectively. Thesefits give

»a 0.0097r , »b 0.069r , »a 0.023c , »b 0.057c and a » 13.2.
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characteristics have been considered the same in all simulations since the present work is focused on the effect of
particle shape.Moreover, we have also performed simulations by including tangential forces as in previous
works [26, 33, 48, 49] and found that the conclusions of the presentmanuscript do not changewhen friction is
taken into account. That is, the same dissipative behavior of the granular damper is observed if friction is
included, whichmeans roughly shape-independent values of dissipated energy in the collect-and-collide regime
and larger dissipation for spherical particles in the gas-like regime compared to complex particle shapes.
Moreover, we also found that the value of the critical amplitude also changes negligibly with friction.
Notwithstanding these preliminary findings, we remark that the dissipative properties of granular systems
constituted of frictional particles is still poorly understood andmatter of active research [52–54]. Granular
dampers inmicrogravity provide an excellent laboratory for investigating these properties, and the present work
should be thus continued to investigate inmore detail the effect of friction on the characteristics of the inter-
particle interactions for the different particle shapes—in the particular in the gas-like regime.

It should be further remarked here that our results were obtained for particulate ensembles in the regime
where attractive particle interaction forces can be neglected. Indeed, cohesive forcesmay largely influence the
dynamic behavior of the granular system, in particular leading to the emergence of clustering and the formation
of particle agglomerates [48, 55]. Since it is known that the packing behavior and dynamic properties of cohesive
granularmaterialsmay display strong dependence on the particle shape (see e.g. [56]), the present study should
be extended in the future in order to account for cohesive forces between the granular particles. Therefore, our
contribution should be now continued by investigating towhich extent the answer to the question of the present
manuscript’s title is affected by the consideration of attractive particle interaction forces.

Acknowledgments

We thankMohammad Farahani for discussions.We thank theGermanResearch Foundation (DFG) for funding
through theCluster of Excellence ‘Engineering of AdvancedMaterials’, the Collaborative ResearchCenter
SFB814, and grant PO472/20-2.We gratefully acknowledge the computing time granted by the John von
Neumann Institute for Computing (NIC) and provided on the supercomputer JUROPA at Jülich
Supercomputing Centre (JSC).

References

[1] Paget A L 1937Vibration in steam turbine buckets and damping by impacts Eingeering 143 111
[2] RyzhkovD I 1953Vibration damper formetal cuttingEng. Dig. 14 246–51
[3] Norcross J C 1967Dead-blowhammer headUSPatent No 3,343,576
[4] RockeRD andMasri S F 1969Application of a single-unit impact damper to an antenna structure Shock Vib. Bull. 39 1–0
[5] LangerW and StrienzG 1991 Schwingungsberuhigung hoher schlanker BauwerkemitHilfe von passiven Schwingungstilgern IfL-Mitt.

30 46–53
[6] PanossianHV1992 Structural damping enhancement via non-obstructive particle damping technique J. Vib. Acoust. 114 101–5
[7] Simonian S S 1995 Particle beamdamper Proc. SPIE Int. Soc. Opt. Eng. 2445 149–60
[8] Kielb R,Macri FG,OethD,Nashi AD,Macioce P, PanossianH and Lieghley F 1999Advanced damping systems for fan and

compressor blisksProc. National Turbine EngineHighCycle Fatigue Conf. (Monterey, CA) unpublished
[9] Simonian S S 2004 Particle damping applications 45th AIAA/ASME/ASCE/AHS/ASCStructures Structural Dynamics andMaterial Conf.

(Palm Springs, California) vol 6, pp 4145–61
[10] ChanKW, LiaoWH,WangMY andChoy PK2006 Experimental studies for particle damping on a bond arm J. Vib. Control 12

297–312
[11] Xia Z, LiuX and ShanY 2011Application of particle damping for vibration attenuation in brake drum Int. J. Veh. Noise Vib. 7 178–94
[12] HeckelM, SackA, Kollmer J and Pöschel T 2012Granular dampers for the reduction of vibrations of an oscillatory sawPhysicaA 391

4442–7
[13] XiaoW, Li J,Wang S and FangX 2016 Study on vibration suppression based on particle damping in centrifugal field of gear

transmission J. SoundVib. 366 62–80
[14] Veeramuthuvel P, SairajanKKand Shankar K 2016Vibration suppression of printed circuit boards using an external particle damper

J. SoundVib. 366 98–116
[15] SalueñaC, Pöschel T and Esipov S E 1995Dissipative properties of vibrated granularmaterials Phys. Rev.E 59 4422–5
[16] BannermanMN,Kollmer J, Sack A,HeckelM,Müller P and Pöschel T 2011Movers and shakers: granular damping inmicrogravity

Phys. Rev.E 84 011301
[17] SackA,HeckelM, Kollmer J E and Pöschel T 2014 Probing the validity of an effective-one-particle description of granular dampers in

microgravityGranularMatter 17 73–82
[18] Kollmer J, TupyM,HeckelM, SackA andPöschel T 2015Absence of subharmonic response in vibrated granular systems under

microgravity conditions Phys. Rev. Appl. 3 024007
[19] SalueñaC, Esipov S E, Pöschel T and Simonian S 1998Dissipative properties of granular ensembles Proc. SPIE 3327 19–26
[20] ChenW,HouM, LuK, Jiang Z and LamL 2001Granularflows through vertical pipes controlled by an electric fieldPhys. Rev.E 64

061305
[21] Marhadi K S andKinraVK2005 Particle impact damping: effect ofmass ratio,material, and shape J. SoundVib. 283 433–48
[22] Bai XM,Keer LM,WangQL and Snurr RQ2009 Investigation of particle dampingmechanism via particle dynamics simulations

GranularMatter 11 417–29

10

New J. Phys. 18 (2016) 073049 HPourtavakoli et al

http://dx.doi.org/10.1115/1.2930221
http://dx.doi.org/10.1115/1.2930221
http://dx.doi.org/10.1115/1.2930221
http://dx.doi.org/10.1177/1077546306063257
http://dx.doi.org/10.1177/1077546306063257
http://dx.doi.org/10.1177/1077546306063257
http://dx.doi.org/10.1177/1077546306063257
http://dx.doi.org/10.1504/IJVNV.2011.040573
http://dx.doi.org/10.1504/IJVNV.2011.040573
http://dx.doi.org/10.1504/IJVNV.2011.040573
http://dx.doi.org/10.1016/j.physa.2012.04.007
http://dx.doi.org/10.1016/j.physa.2012.04.007
http://dx.doi.org/10.1016/j.physa.2012.04.007
http://dx.doi.org/10.1016/j.physa.2012.04.007
http://dx.doi.org/10.1016/j.jsv.2015.12.014
http://dx.doi.org/10.1016/j.jsv.2015.12.014
http://dx.doi.org/10.1016/j.jsv.2015.12.014
http://dx.doi.org/10.1016/j.jsv.2015.12.034
http://dx.doi.org/10.1103/PhysRevE.59.4422
http://dx.doi.org/10.1103/PhysRevE.59.4422
http://dx.doi.org/10.1103/PhysRevE.59.4422
http://dx.doi.org/10.1103/PhysRevE.84.011301
http://dx.doi.org/10.1007/s10035-014-0539-8
http://dx.doi.org/10.1007/s10035-014-0539-8
http://dx.doi.org/10.1007/s10035-014-0539-8
http://dx.doi.org/10.1103/PhysRevApplied.3.024007
http://dx.doi.org/10.1103/PhysRevE.64.061305
http://dx.doi.org/10.1103/PhysRevE.64.061305
http://dx.doi.org/10.1016/j.jsv.2004.04.013
http://dx.doi.org/10.1016/j.jsv.2004.04.013
http://dx.doi.org/10.1016/j.jsv.2004.04.013
http://dx.doi.org/10.1007/s10035-009-0150-6
http://dx.doi.org/10.1007/s10035-009-0150-6
http://dx.doi.org/10.1007/s10035-009-0150-6


[23] SánchezM, Rosenthal G and Pugnaloni LA 2012 universal response of optimal granular damping devices J. SoundVib. 331 4389–94
[24] Kanzaki T,Higaldo RC,MazaD andPagonabarraga I 2010Cooling dynamics of a granular gas of elongated particles J. Stat.Mech.

P06020
[25] HarthK,KornekU, Trittel T, StrachauerU,Hörne S,Will K and Stannarius R 2013Granular gases of rod-shaped grains in

microgravity Phys. Rev. Lett. 110 144102
[26] Pöschel T and Schwager T 2005Computational GranularDynamics (Heidelberg: Springer)
[27] SánchezM,CarlevaroCMandPugnaloni L A 2014 Effect of particle shape and fragmentation on the response of particle dampers

J. Vib. Control 20 1846–54
[28] SackA,HeckelM, Kollmer J, Zimber F and Pöschel T 2013 Energy dissipation in driven granularmatter in the absence of gravity Phys.

Rev. Lett. 111 018001
[29] SackA,HeckelM, Kollmer J and Pöschel T 2015 Probing the validity of an effective-one-particle description of granular dampers in

microgravityGranularMatter 17 73–82
[30] Pöschel T andBuchholtz V 1993 Static friction phenomena in granularmaterials: coulomb law versus particle geometry Phys. Rev. Lett.

71 3964–6
[31] Gallas J AC and Sokołowski S 1993Grain non-sphericity effects on the angle of repose of granularmaterial Int. J.Mod. Phys. 7 2037–46
[32] Parteli E J R 2013DEMsimulation of particles of complex shapes using themultispheremethod: application for additive

manufacturingAIPConf. Proc. 1542 185–8
[33] Parteli E J R and Pöschel T 2016 Particle-based simulation of powder application in additivemanufacturing Powder Technol. 288

96–102
[34] Kruggel-EmdenH,Wirtz S and Scherer V 2008A study on tangential force laws applicable to the discrete elementmethod (DEM) for

materials with viscoelastic or plastic behaviorChem. Eng. Sci. 63 1523–41
[35] Kudrolli A, LumayG, VolfsonD andTsimring L S 2008 Swarming and swirling in self-propelled polar granular rods Phys. Rev. Lett. 100

058001
[36] ISO 9276-6:2008Representation of Results of Particle Size Analysis—Part 6: Descriptive andQuantitative Representation of Particle Shape

andMorphology ISO,Geneva (www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39389)
[37] Olson E 2011 Particle shape factors and their use in image analysis: I. Theory J. GXPCompliance 15 85–96
[38] Kidokoro T, Arai R and SaekiM2015 Investigation of dynamics simulation of granular particles using spherocylindermodelGranular

Matter 17 743–51
[39] Schröder-TurkGE et al 2011Minkowski tensor shape analysis of cellular, granular and porous structuresAdv.Mater. 23 2535–53
[40] SzabóT,DomokosG,Grotzinger J P and JerolmackD J 2015Reconstructing the transport history of pebbles onMarsNat. Commun.

6 8366
[41] Schäfer J, Dippel S andWolf DE 1996 Force schemes in simulations of granularmaterials J. Phys. I 6 5–20
[42] Kruggel-EmdenH, Simsek E, Rickelt S,Wirtz S and Scherer V 2007Review and extension of normal forcemodels for the discrete

elementmethod Powder Technol. 171 157–73
[43] BrilliantovNV, Spahn F,Hertzsch J-M and Pöschel T 1996Amodel for collision in granular gasesPhys. Rev.E 53 5382–92
[44] Schwager T and Pöschel T 2008Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery Phys. Rev.E 78 051304
[45] Schwager T and Pöschel T 1998Coefficient of restitution of viscous particles and cooling rate of granular gasesPhys. Rev.E 57 650–4
[46] Ramírez R, Pöschel T, BrilliantovNV and Schwager T 1999Coefficient of restitution of colliding viscoelastic spheresPhys. Rev.E 60

4465–72
[47] Müller P and Pöschel T 2011Collision of viscoelastic sphere: compact expressions for the coefficient of normal restitution Phys. Rev.E

84 021302
[48] Parteli E J R, Schmidt J, Blümel C,WirthK- E, PeukertW andPöschel T 2014Attractive particle interaction forces and packing density

offine glass powders Sci. Rep. 4 6227
[49] Verbücheln F, Parteli E J R and Pöschel T 2015Helical inner-wall texture prevents jamming in granular pipe flows SoftMatter 11

4295–305
[50] Kloss C,Goniva C,Hager A, Amberger S and Pirker S 2012Models, algorithms and validation for opensourceDEMandCFD-DEM

Prog. Comput. FluidDyn. 12 140–52
[51] Silbert L E, ErtaşD,Grest G S,Halsey TC, LevineD andPlimpton S J 2001Granular flowdown an inclined plane: bagnold scaling and

rheology Phys. Rev.E 64 051302
[52] Grasselli Y, Bossis G andMorini R 2015Translational and rotational temperatures of a 2d vibrated granular gas inmicrogravity Eur.

Phys. J.E 38 8
[53] ZhaoY, ZhongY,HeY and SchalbergH 2014 Boundary conditions for collisional granular flows of frictional and rotational particles at

flat wallsAICHE J. 60 4065–75
[54] Gnoli A, SarracinoA, Puglisi A and Petri A 2013Nonequilibriumfluctuations in a frictional granularmotor: experiments and kinetic

theoryPhys. Rev.E 87 052209
[55] YuAB, Bridgwater J and Burbidge A 1997On themodelling of the packing offine particlesPowder Technol. 92 185–94
[56] DengXL andDavé RN2013Dynamic simulation of particle packing influenced by size, aspect ratio and surface energyGranular

Matter 15 401–15

11

New J. Phys. 18 (2016) 073049 HPourtavakoli et al

http://dx.doi.org/10.1016/j.jsv.2012.05.001
http://dx.doi.org/10.1016/j.jsv.2012.05.001
http://dx.doi.org/10.1016/j.jsv.2012.05.001
http://dx.doi.org/10.1088/1742-5468/2010/06/P06020
http://dx.doi.org/10.1103/PhysRevLett.110.144102
http://dx.doi.org/10.1177/1077546313480544
http://dx.doi.org/10.1177/1077546313480544
http://dx.doi.org/10.1177/1077546313480544
http://dx.doi.org/10.1103/PhysRevLett.111.018001
http://dx.doi.org/10.1007/s10035-014-0539-8
http://dx.doi.org/10.1007/s10035-014-0539-8
http://dx.doi.org/10.1007/s10035-014-0539-8
http://dx.doi.org/10.1103/PhysRevLett.71.3963
http://dx.doi.org/10.1103/PhysRevLett.71.3963
http://dx.doi.org/10.1103/PhysRevLett.71.3963
http://dx.doi.org/10.1142/S0217979293002754
http://dx.doi.org/10.1142/S0217979293002754
http://dx.doi.org/10.1142/S0217979293002754
http://dx.doi.org/10.1063/1.4811898
http://dx.doi.org/10.1063/1.4811898
http://dx.doi.org/10.1063/1.4811898
http://dx.doi.org/10.1016/j.powtec.2015.10.035
http://dx.doi.org/10.1016/j.powtec.2015.10.035
http://dx.doi.org/10.1016/j.powtec.2015.10.035
http://dx.doi.org/10.1016/j.powtec.2015.10.035
http://dx.doi.org/10.1016/j.ces.2007.11.025
http://dx.doi.org/10.1016/j.ces.2007.11.025
http://dx.doi.org/10.1016/j.ces.2007.11.025
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39389
http://dx.doi.org/10.1007/s10035-015-0595-8
http://dx.doi.org/10.1007/s10035-015-0595-8
http://dx.doi.org/10.1007/s10035-015-0595-8
http://dx.doi.org/10.1002/adma.201100562
http://dx.doi.org/10.1002/adma.201100562
http://dx.doi.org/10.1002/adma.201100562
http://dx.doi.org/10.1038/ncomms9366
http://dx.doi.org/10.1051/jp1:1996129
http://dx.doi.org/10.1051/jp1:1996129
http://dx.doi.org/10.1051/jp1:1996129
http://dx.doi.org/10.1016/j.powtec.2006.10.004
http://dx.doi.org/10.1016/j.powtec.2006.10.004
http://dx.doi.org/10.1016/j.powtec.2006.10.004
http://dx.doi.org/10.1103/PhysRevE.53.5382
http://dx.doi.org/10.1103/PhysRevE.53.5382
http://dx.doi.org/10.1103/PhysRevE.53.5382
http://dx.doi.org/10.1103/PhysRevE.78.051304
http://dx.doi.org/10.1103/PhysRevE.57.650
http://dx.doi.org/10.1103/PhysRevE.57.650
http://dx.doi.org/10.1103/PhysRevE.57.650
http://dx.doi.org/10.1103/PhysRevE.60.4465
http://dx.doi.org/10.1103/PhysRevE.60.4465
http://dx.doi.org/10.1103/PhysRevE.60.4465
http://dx.doi.org/10.1103/PhysRevE.60.4465
http://dx.doi.org/10.1103/PhysRevE.84.021302
http://dx.doi.org/10.1038/srep06227
http://dx.doi.org/10.1039/C5SM00760G
http://dx.doi.org/10.1039/C5SM00760G
http://dx.doi.org/10.1039/C5SM00760G
http://dx.doi.org/10.1039/C5SM00760G
http://dx.doi.org/10.1504/PCFD.2012.047457
http://dx.doi.org/10.1504/PCFD.2012.047457
http://dx.doi.org/10.1504/PCFD.2012.047457
http://dx.doi.org/10.1103/PhysRevE.64.051302
http://dx.doi.org/10.1140/epje/i2015-15008-5
http://dx.doi.org/10.1002/aic.14596
http://dx.doi.org/10.1002/aic.14596
http://dx.doi.org/10.1002/aic.14596
http://dx.doi.org/10.1103/PhysRevE.87.052209
http://dx.doi.org/10.1016/S0032-5910(97)03219-1
http://dx.doi.org/10.1016/S0032-5910(97)03219-1
http://dx.doi.org/10.1016/S0032-5910(97)03219-1
http://dx.doi.org/10.1007/s10035-013-0413-0
http://dx.doi.org/10.1007/s10035-013-0413-0
http://dx.doi.org/10.1007/s10035-013-0413-0

	1. Introduction
	2. Numerical experiments
	2.1. Particle shapes
	2.2. Inter-particle force model
	2.3. Simulation of the granular damper
	2.4. Model parameters and numerical integration

	3. Results and discussion
	4. Conclusions
	Acknowledgments
	References



