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Abstract
Zigzag paths in sports ball trajectories are exceptional events. They have been reported in baseball
(fromwhere theword knuckleball comes from), in volleyball and in soccer. Such trajectories are
associatedwith intermittent breaking of the lateral symmetry in the surrounding flow. The different
scenarios proposed in the literature (such as the effect of seams in baseball) arefirst discussed and
compared to existing data.We then perform experiments on zigzag trajectories and propose a new
explanation based on unsteady lift forces. In a second step, we exploit wind tunnelmeasurements of
these unsteady lift forces to solve the equations ofmotion for various sports and deduce the
characteristics of the zigzags, pointing out the role of the drag crisis. Finally, the conditions for the
observation of such trajectories in sports are discussed.

1. Introduction

Inmany sports, players use aerodynamic effects to lure opponents and score. For example in soccer, a free kick
may get around the defensive wall thanks to a side spin [1]. Among the different paths [2], one of themost
intriguing paths is probably the zigzagging knuckleball. This rare eventwas first introduced in baseball by the
Major League Baseball pitcher ECicotte, in 1908 [3]. Bymastering this pitch, Cicotte deserved the nickname
‘Knuckles ’ andfinished his career withmore than 200wins [4]. After Cicotte, several pitchersmastered
knuckleballs and the pitch became a nightmare for batters. Despite this old history, the scientific observation of
zigzag paths on a baseball pitch has only been done recently byNathan et al [5]. In this article, the authors
measured the angular direction of pitches as observed by the batter as a function of the ball releasing speed for a
‘normal’ pitcher and a pitchermastering knuckleballs. Nathan et al observe that the ‘normal’ pitcher Jon Lester is
able to send the baseball with different techniques characterized by a precise releasing speed and a precise
angular direction. This feature is different from the one observedwith TimWakefield, famous for his
knuckleballs. In his case, the ball is launched at a precise speed of 66mph ( -29.5 m s 1) and follows a random
angular direction characteristic of the knuckle effect. The releasing speed of knuckleballs is far below the
maximal launching speed of baseballs observed in the field (105mph ; 47 m s−1). Nathan also determined that
lateral deviations of knuckleballs are smaller than 1.2 cmwhich is 0.17 ball diameter [5]. Despite the slenderness
of zigzagmotions, the randomness of this pitch explains the difficulty for batters to hit them. Apart from
baseball, zigzagging paths have been reported in volleyball and observedwhen the ball is launchedwith no spin
[6]. Depra and co-workersmeasured these trajectories on a volleyball field and observed lateral deviations of the
order of the ball diameter for a velocity of about 16m s−1 [7]. Again, this velocity is far below themaximal
velocity observed in volleyball, which is 37 m s−1. Similar trajectories havefinally been observed in soccer by
Barber et al [8]. In this sport, zigzag paths occurwith particular balls (such as the officialmatch ball of the 2010
FIFAWorld Cup, Jabulani)when kickedwith no spin [9]. Finally, knuckleballs have also been reported in cricket
for a delivering speed of about 30m s−1 [10].

We list in table 1 sports which involve balls of different diameters (  D4cm 24cm) and different
velocities (  - -U10 m s 91 m s1

max
1). The corresponding Reynolds numbers ( n=Re DUmax ) based on

the air viscosity ν are indicated in column 6 and observed to be in the range ´ - ´3 10 6 104 5. Despite the

OPEN ACCESS

RECEIVED

18December 2015

REVISED

6 June 2016

ACCEPTED FOR PUBLICATION

20 June 2016

PUBLISHED

13 July 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/7/073027
mailto:clanet@ladhyx.polytechnique.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/7/073027&domain=pdf&date_stamp=2016-07-13
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/7/073027&domain=pdf&date_stamp=2016-07-13
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


possible impact of aerodynamic forces inmany of the sports listed in table 1 [2], knuckleballs are only reported
for baseball, cricket, volleyball and soccer. Our goal is to understandwhy. The typical conditions and
characteristics of zigzagging paths are gathered in the last columns of table 1.We notice that knuckleballsmostly
occur in a narrow range of velocities (column 7), significantly belowUmax, themaximum speed of each game
(column 5). The typical lengthλ and amplitude δ of a zigzag are reported in the last two columns of table 1. Even
if the lateral deviations δ are small, the unpredictability of this effect hinders receivers and goalkeepers. This
phenomenon led one of the greatest baseball players,Willie Stargell, to describe knuckleballs as ‘ a butterflywith
hiccups ’.

The purpose of this paper is to identify a scenario able to account for these characteristics including the
rareness of knuckleballs in sports.Wefirst discuss the possible origins of the zigzags (section 2) including seams
(section 2.1) and other sources of asymmetry (section 2.2). The experimental set-up able to produce
knuckleballs is presented in section 3 together with the experimental results on zigzags. The equations ofmotion
for sport balls are solved in section 4 taking into account unsteady lift forces. The different asymptotic regimes
are discussed togetherwith predictions of themean lateral deviation and the typical wavelength of the zigzag
path for various initial conditions (angles and velocities).We then propose a phase diagram inwhich sports
where a knuckle effectmay impact the game are identified (section 5).

2. Several possible origins

2.1. Effect of seams
A zigzag path is obtained provided a lateral unsteady asymmetry of the flow surrounding the ball exists. Thefirst
source of asymmetry considered to account for knuckleballs in baseball was the seams [12], a scenario recently
revisited byMorissey et al [13].

Watts and Sayersmeasured the steady lift force in awind tunnel for a baseball, as a function of its orientation
θwith theflow (figure 1). They showed that lift oscillates with the ball orientation (figure 1(b)). Thus, when the
ball slowly rotates in air, it undergoes an alternative lift, which leads to a zigzag path. The lateral deviations
expected from this scenario can be estimated.We consider the ballmotion along a direction z perpendicular to
the baseball velocityU and to the gravitational acceleration g (figure 1(a)) andwe assume along this direction a
lift force ( )w=F eF tsinL L z,0 with ˙w q= 4 (for a single rotation of the ball, the lift experiences about four
oscillations due to the presence of four seams, as shown infigure 1(b)). The equation ofmotion of the ball
projected along the z-direction is

( ) ( )w=M
z

t
F t

d

d
sin 1L

2

2 ,0

where pr=M D 6b
3 is themass of a ball of diameterD and density rb. Equation (1) yields the lateral deviation

of the ball

( ) ( ) ( )
w

w= -z t
F

M
tsin 2L,0

2

At = -U 20.7 m s 1, themeasurements byWatts and Sayers provide F 0.4 NL,0 (figure 1(c)). In order to
produce a complete zigzag on a distanceλ corresponding to the distance between the pitcher and the batter

Table 1.Characteristics of different ball games. Sports in which knuckleballs are observed are indicated in red (column 1). Ball
diameterD (column 2) andmassM (column3), ball to air density ratio r rb with r = -1.2 kg m 3 (column4), maximal speed of
the ballUmax recorded on sport fields (column 5), corresponding Reynolds number n=Re DUmax with ν the kinematic viscosity of
air (n = ´ - -1.5 10 m s5 2)(column6). For sports where zigzag paths are reported (in red), the range of ball velocityU for which
knuckleballs are obtained is reported in column7 together with the typical lengthλ of a zigzag (column8) and the range of normal-
ized lateral deviation d D (column9). Data are extracted from [2, 5–8, 11].

Sport D (cm) M (g) r rb Umax (ms−1) n=Re DUmax U (ms−1) λ (m) d D

Table tennis 4 2.5 62 32 ´3 104 – – –

Bocce 8 700 2200 10 ´5 104 – – –

Tennis 6.5 55 318 73 ´1 105 – – –

Squash 4 24 597 78 ´1 105 – – –

Golf 4.2 45 967 91 ´2 105 – – –

Baseball 7.0 145 672 54 ´2 105 28–36 < 18 <0.3

Cricket 7.2 160 681 53 ´3 105 25–35 < 20 –

Volleyball 21 210 36 37 ´4 105 16–18 8–15 <1.5

Soccer 21 450 78 51 ´5 105 20–25 10–20 <1.5

Handball 19 450 104 27 ´6 105 – – –

Basketball 24 650 75 16 ´6 105 – – –

2
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(l = 18.4 m), the relation w p l= U2 has to be satisfied and it yields  q -1.8 rad s 1. In such a situation, the
amplitude of the deviation is d w= F ML,0

2 which gives  d ´0.4 0.145 7 0.06 m2 , on the order of the
ball diameter. This scenariomay explain the zigzag paths reported on the pitch.However, it does not predict why
knuckleballs are observed in a narrowwindowof ball velocity significantly below themaximal velocity
achievable in game (table 1). Indeed, a shot at =U U0 max willmaximize FL,0 and thus δ as determined byWatts
and Sayers (figure 1(c)). In addition, knuckleballs were also reported for balls without seams, which suggests that
another scenario could be at play to explain this phenomenon.

2.2.Other possible origins
Other sources of asymmetry can be considered to account for knuckleballs. Theflowprofile around a sphere
depends on the Reynolds number. Two characteristic features are generally stressed in the flowpast a sphere:
first, the stagnation points where the flow stops; secondly, the separation points where the boundary layer
separates from the sphere. These characteristic points are represented infigure 2with blue and red dots
respectively. The up-down asymmetry of stagnation or separation points relative to the flowdirection indicates
the existence of a lift. For a smooth sphere andReynolds numbers lower than unity, the flowprofile is symmetric
(figure 2(a)) and the particle experiences no lift force. In this case, the stagnation points are located at the poles of
the sphere and there is no separation of the flow from the solid.When <Re 300, a symmetric recirculation zone
appears behind the sphere (figure 2(b)). In this case, the flow separates from the sphere close to the equator as
symbolized by red dots. For >Re 300, the alternate vortex shedding breaks the up-down symmetry and
generates unsteady lift forces (figure 2(c)) [14]. If the sphere spins, its rotation also breaks theflow lateral
symmetry, displaces the stagnation points and induces a steady lift force referred as aMagnus effect (figure 2(d))
[15]. As considered previously, the presence of surface roughnesses (seams for example)delays the separation of
the boundary layer,moves the separation points out from the equator and provokes a lateral force (figure 2(e))
[16]. Finally, at  ´Re 3 105, an intermediate value between 104 and 106 (table 1) the boundary layer transits
from laminar to turbulent state and the separation pointmoves downstream [17]. In the drag crisis, intermittent
reattachments of the boundary layer generate temporarily asymmetric situations as shown infigure 2(f). Among
these different sources of asymmetry, we try to identify the onewhich is likely to produce knuckleballs with the
characteristics displayed in table 1.

3. Experimental setup and results

3.1. Set-up
In order to launch a ball with aminimumamount of spin, we developed a kickingmachine composed of an
electricmotor, a steel arm and aflat plate as presented infigures 3(a) and (b). The power of theDCmotor is 400
W, the armhas a length of 1.2 m and the dimensions of theflat plate are 20× 20 cm2. The rotational speed of the
motor and the initial position of the ball imposes the launching conditions of the ball (initial speed and angle).
The ball is a light and smooth beach ball of diameter =D 20 cm, mass =M 120 g and density
r = -29 kg mb

3. Our set-up allows to launch the ball with an initial velocityU0 between 0 and 16 m s−1 and an
initial angle q0 between 0° and 45°.Moreover, the kickingmachine launched the ball with a very small amount of
spin, less than a tenth of a rotation along the entire trajectories (w < 0.5 rad s−1).

Figure 1. (a)Notations used to describe the deviation of a spinning baseball due to seams orientation. The axis of rotation is parallel to
y and θ is the angle of a baseball ball symmetry plane relative to the velocity directionU . This image has been obtained by the author
from theWikimediawebsite https://commons.wikimedia.org/wiki/File:Baseball.svg, where it is stated to have been released into the
public domain. It is includedwithin this article on that basis. (b) Lift force FL as a function of the angle θ for = -U 20.7 m s 1. (c)
Variation of the difference F2 L,0 betweenmaximumandminimum lateral forces, as a function of the ball speedU. Data are extracted
from [12].

3
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3.2. Experimental results
We recorded themotion of the ball with two high-speed cameras Photron SA3 looking from the front and from
the side of the trajectory. The two cameras were synchronizedwith an external trigger and recorded the sequence
at 1000 Hz in full resolution (1280× 1024 pixels). Figure 4(a) shows the recorded trajectory from the side. One
observes that the trajectory is slightly asymmetric with respect of themaximum, consistently with predictions of

Figure 2. Sketch of the air flow surrounding a sphere at different Reynolds numbers and for various situations. Blue dots represent
stagnation points whereas red dots represent separation points. (a)At lowReynolds number ( <Re 1), theflow is symmetric. (b) For
< <Re1 300, a recirculation area exists behind the sphere, but the lateral symmetry is preserved. (c) For >Re 300, vortex shedding

generates unsteady lift forces. (d)The sphere rotation breaks theflow lateral symmetry, which leads to a steady lift force known as the
Magnus force. (e)The presence of a seamdelays the boundary layer separation and gives a lift. (f)Asymmetry due to the boundary
layer transition: the bottom layer is in a turbulent state whereas the upper one is still laminar.

Figure 3. Image (a) and sketch (b) of the kickingmachine used to shoot balls with no spin. This image has been obtained by the authors
from theWikimediawebsite https://commons.wikimedia.org/wiki/File:Soccerball.svg, where it is stated to have been released into
the public domain. It is includedwithin this article on that basis.

4
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Cohen et al [18]when the initial velocity of the ballU0 is comparable to its free fall velocity ¥U (in the present
case ¥U U 1.00 ). From the side trajectory, we deduce the Reynolds number as a function of the horizontal
distance x as shown infigure 4(b). The decrease of the Reynolds number along the trajectory is due to the drag
which acts on the characteristic length r r ~D 6 mb [18].

A front chronophotography of the ball till it reaches the top of the trajectory is shown infigure 5(a), revealing
the non-straight path followed by the ball. Using the ball as a scale evolving over time, we deduced its lateral
deviation along the z-direction as a function of the horizontal distance x andwe report the data infigure 5(b).
Initial conditions are similar, yet trajectories are different. This erratic behavior is the signature of knuckleballs.
Lateral deviations of the ball are typically 0.1 to 0.4 ball diameter, that is, a few centimeters. Zigzags are observed
on a traveled distance along the x-direction of about 7 m. Even if lateral deviations are small, they can strongly
disturb volleyball receivers or soccer goalkeepers who are used toMagnus effect, but not to erratic phenomena.

4.Model

4.1. Equation ofmotion
The goal of this section is to solve the trajectory of a ball experiencing a drag FD and an unsteady lift force FL in
addition to its weight gM . At large Reynolds numbers the drag force is expressed as ( )rp= -F UD C U2 2D D

2

with ρ thefluid density,D the ball diameter,U the ball velocity (  = UU ) andCD the drag coefficient. In this
regime, the lift force is defined as ( ) ( ( ) ( ) )rp= +q q y yF e eD U C t C t2 2L L L

2 2 with ( )qC tL and ( )yC tL the
instantaneous lift coefficients along qe and ye , as defined infigure 6.

The equations ofmotion of the ball in the ( )q yU e eU , , frame are

( )


q= - -
U

t
g

Ud

d
sin 3

2

( )


q q
= - +

qt

g

U

Ud

d

cos
4

( )


y
=

ft

Ud

d
5

where ( ) rp= M D C2 2 D
2 , ( ) ( ) rp=q qM D C t2 2 L

2 and ( ) ( ) rp=f fM D C t2 2 L
2 are the character-

istic lengths associated to drag and lift forces.Without lift, equations (3), (4) and (5) reduce to a ‘Tartaglia ’ path
[18]. In the general case, solving these equations requires to know the time evolution of the lift coefficients ( )qC tL

and ( )yC tL . Lift coefficients typically reported in the literature are time-averaged quantities. However, owning

Figure 4. (a)Blue dots correspond to the side view of an experimental trajectory of a beach ball ( =D 20 cm, =M 120 g and
r r = 24b ) launchedwith the initial conditions: = -U 12 m s0

1, q = 180 and no spin. the time interval between two ball positions is
24ms.We estimate the terminal velocity of the ball =¥

-U 12 ms 1, which leads to =¥U U 10 . Lines correspond to the numerical
solutions of equations (3), (4) and (5)withD=20 cm, r rb =24 andCD=0.4 that is detailed in section 4. Initial launching
conditions are the same as the experiment,U0=12 m s−1, q = 180 and y = 00 . The dotted line shows the path of the ball without
lift forces [ ( ) =qC t 0L and ( ) ]=yC t 0L whereas the trajectory drawnwith the solid line takes lift forces into account. (b)Blue dots
represent the experiment Reynolds number n=Re DU of theflow around the ball as a function of its position along the x-direction.
The time interval between two positions is 24ms. The blue solid line corresponds to the numerical solution presented in section 4with
the same ball properties and initial conditions as the experiment (D=20 cm, r rb =24 andCD=0.4,U0=12 m s−1, q = 180

and y = 00 ).

5
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to the complex time-dependent interactions in the boundary layer, the real lift coefficients are not constant in
time. Rather than solving the turbulent fluid equation in the boundary layer, we propose to use an effective time-
dependent lift coefficient thatmirrors thismeasured spectrum. From experimental data presented in figure 5(b),
we evaluate the characteristic time of a deviation as l =U 8 16 0.5 s where l ~ 8 m is the typical
wavelength of a zigzag. This time is long compared to the convective time  D U 0.2 16 10 ms. For the
flow, the lateralmotion of the ball is thus quasi-steady.We thus use the spectrumof lift force fluctuations
measured usingwind tunnel tests in order to solve the equations ofmotion.Norman andMcKeon reported the
spectral densityΦ of the lift as a function of the dimensionless frequency St=fD/U (also known as Strouhal
number) and theReynolds number for a smooth sphere in the sub-critical, critical and super-critical regimes
[19]. Examples of thesemeasurements are shown in figures 7(a) and (b). These data allowus to express the
instantaneous lift coefficients by theway of a Fourier decomposition

( ) ˜ ( ) ( ) ( )ò p= + Y
¥

C t C f ft fsin 2 d 6L L
0

where ˜ = FCL andΨ are the amplitude and phase of each spectral component that possibly depend on
Strouhal andReynolds numbers.

4.2. Comparison of the numerical trajectorieswith the experiments
Wenow solve numerically the equations ofmotion introduced in the previous section. The properties of the ball
considered for the numericalmethod are the same as in section 3 (D=20 cm, r r =b 30 andCD=0.4) in

Figure 5. (a)Chronophotography of a beach ball launchedwith the kickingmachine described in section 3.1. The camera faces the
kickingmachine and the time interval between two positions is 33ms. For the sake of clarity, the chronophotography only shows the
first part of the trajectorywhere the ball undergoes an upwardmotion. (b) Lineswith symbols correspond to top view of experimental
trajectories for a beach ball ( =D 20 cm, =M 120 g and r r = 24b ) launched four timeswith same initial conditions
( = -U 12 m s0

1, q = 180 and no spin). Lines without symbols represent the numerical solutions of themodel presented in section 4
for same ball properties and initial conditions as in the experiment. The difference between the four numerical trajectories arises from
the choice of the phaseΨ in the lift coefficient decomposition.

Figure 6.Conventions used in the trajectory calculation.

6
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order to compare numerics with experiments. Concerning the numericalmethod, we first solve equations (3),
(4) and (5)without lift in order to determine the evolution of the Reynolds number along the trajectory. Then,
we includefluctuating lift forces associated to the local Reynolds number asmeasured byNorman andMcKeon
with equation (6) [19]. Note that as the phaseΨ of each spectral component was not reported, we choose this
parameter randomly. Such a choicemade each solution unique but does not impact, statistically, the zigzagging
phenomenon. Figures 4(a) and 5(b) show a side view and a top view of the numerical trajectories.

One observes infigure 4(a) that lift forces have little impact on the overall ball trajectory (plane (O, x, y)) but a
visible effect in the (O, x, z) plane (figure 5(b)). By performing several numerical simulationswith the same initial
conditions, we estimate themean lateral amplitude and the typical wavelength of the zigzag. Lateral deviations
are about 0.3 ball diameter and zigzag occurs on a distance of about 8 m,which is of the same order ofmagnitude
as the experimental observations described in section 3. In conclusion, thewind tunnelmeasurements of
unsteady liftmade byNorman andMcKeon for a smooth sphere lead to a qualitative agreement with
observations of the trajectories of freemoving spheres.

However, the numerical reproduction of zigzag trajectories does not allowus tomake any prediction on the
moment they occur, or whywe only observe them in a few sports. In order to understandmore deeplywhat
provokes knuckleballs, we consider below the different contributions of the lift force spectrum separately.
Indeed, we observe in figure 7(a) that the spectral densityΦ of the lift force for < ´Re 3 105 exhibits three
distinct features: a white noise behavior in the range <St 0.1, a peak at St 0.2 which corresponds to vortex
shedding [14] and a power law decrease at large Strouhal numbers ( >St 0.3). For > ´Re 3 105, the peak
corresponding to vortex shedding disappears but both the low frequencywhite noise and the large frequency
decrease remain (figure 7(b)).

4.3. The vortex shedding limit
For the sake of clarity, the impact of vortex shedding on the trajectory is considered in the naive case where the
ballmoves at a constant velocity =U eU x with only a lift force along the z-direction. In such a situation, the
equations ofmotion (3), (4) and (5) reduce to

( ) ( )r
r

=
z

t

U

D
C t

d

d

3

4
7

b
L

2

2

2

where ( )r p= M D 6b
3 is the ball density. Assuming that the spectrumof lift is a single peak for St 0.2,

equation (6) becomes

( ) ˜ ( ) ( )p=C t C ftsin 2 8L L

with =f U D0.2 and ˜ ˜ ( )= =C C St 0.2L L . In this context, the equation ofmotion (7) yields

˜ ( ) ( )r
r

p=
z

t

U

D
C ft

d

d

3

4
sin 2 9

b
L

2

2

2

Figure 7. (a)Normalized spectral power densityΦ of lift forces as a function of the Strouhal number St=fD/Umeasured byNorman
andMcKeon for a smooth sphere [19]. Blue dots correspond to = ´Re 8.0 104, green squares to = ´Re 2.3 105, orange diamonds
to = ´Re 3.8 105 and red triangles to = ´Re 5.0 10 .5 (b)Variance over time of the drag coefficient (green triangles) and lift
coefficients along the two transverse directions y and z (respectively purple dots and blue squares) as a function of the Reynolds
number. Data are extracted from [19].
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The amplitude δ of the zigzag along the z-direction can be deduced to be

˜
( )d

p
r
r

=
D

C

St

3

16
10

b

L
2 2

The normalized lateral deviation d D produced by vortex shedding at St 0.2 depends on the inverse of the
ball-air density ratio r rb . Horowitz andWilliamson proved that for light spheres (r r < 1b ), this
phenomenon provokes alternate deviations of about a ball diameter [20]. A review of rising and falling non-
rectilinear trajectories of a sphere in afluidwas proposed by Ern et al [21]. In sports, the ratio r rb ismuch larger
than unity ( r r< <46 570b , see table 1), so that we expect negligible lateral deviations ( d D 1). In
conclusion, the classical vortex shedding is not responsible for knuckleballs.

4.4. Thewhite noise limit
In this section, we consider the low frequency limit of the spectrumof lift force, which is close to awhite noise
(figures 7(a) and (b)). As in section 4.3, each frequency f in the lift force is associated to a normalizedmaximal
deviation

˜ ( )d
p

r
r

=
⎛
⎝⎜

⎞
⎠⎟D

C
U

fD

3

16
11

b
L2

2

For a traveled distance x, theminimal frequency corresponding to a complete zigzag is =f U x; combining it
with equation (11), we get

˜ ( )d
p

r
r

= ⎜ ⎟⎛
⎝

⎞
⎠D

C
x

D

3

16
12

b
L2

2

The lateral deviation δ still depends on the inverse of the density ratio r rb and on the lift coefficient C̃L but
it is also a function of the distance x over which balls are observed: the larger x, the larger the lateral deviations, in
agreementwithwhat can be observed infigure 5(b). This behavior is verifiedmore quantitatively infigure 8
where themean lateral deviation dm is presented as a function of the ball position along the x-axis. The quantity
dm is calculated overN=1000 trajectories obtainedwith numericalmethods presented in section 4.1 by theway

of the relation: ( ) ( )d = å -=r r rm N i
N

i0
1

1 0
2 where ri and r0 are the positions of the ball if lift forces are

considered or not. One notices infigure 8 the square dependence of d Dm on x/D predicted by relation (12).
Hence, we expect lateral deviations to become significant only if the trajectory is long enough, so that field size
and gravity are limiting factors for the observation of zigzags.Moreover, Norman andMcKeon reported that the
value of the lift coefficient C̃L at low frequency ( <St 0.1) has a non-trivial variationwith the Reynolds number

(figure 7(c)). The variance of lift coefficients over time ( )á ñC tL
2 shows amaximum close to  ´Re 3 105

which corresponds to the drag crisis regime. The intermittent reattachment of the boundary layer is responsible
for this effect [19]. Thereby, if a ball is launched in the range of velocity corresponding to the drag crisis
(  ´Re 3 105 for a smooth sphere), we expect lateral deviations to be increased.

Figure 8.Mean normalized lateral deviation d Dm of the trajectory along the z-direction as a function of the normalized traveled
distance x/D. The plot results from the solution of equations (3), (4) and (5)withD=20 cm, r rb =24 andCD=0.4 and initial
conditionsU0=12 m s−1, q = 180 and y = 00 . Amean overN=1000 trajectories is calculated in order to get this plot thanks to
the expression ( ) ( )d = å -=r r rm N i

N
i0

1
1 0

2 where ri and r0 are the positions of the ball if lift forces are considered or not.
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5. Knuckleballs in sports

5.1. Numerical trajectories
The numerical integration of the equations ofmotion (3), (4) and (5) is done for the ball properties listed in
table 1. Figure 9 shows the numerical results in the (O, x, z) plane (top view) for soccer, volleyball, baseball and
table tennis. In each situation, the numericalmethod has been driven four timeswith a different choice in the
spectral phaseΨ, which allows us to appreciate themean lateral deviation produced by the lift forces and the
typical zigzagging wavelength.

For a soccer ball (figure 9(a)), lateral deviations are about a ball diameter after 30 m. Between one and two
changes in transverse direction are observed. Compared to soccer, lateral deviations are increased for a volleyball
while wavelengths are reduced (figure 9(b)). On the distance which separates the batter and the pitcher in
baseball, balls have about one change in lateral direction and typical excursions are about 0.5 ball diameter
(about 3 cm) (figure 9(c)). The predictions showqualitative agreement with observations of knuckleballs in the
field (see table 1), which confirms that the unsteady lift experienced by a sphere can be responsible for
knuckleballs. Numerical solutions for a table tennis ball exhibit transverse deviations lower than 0.5 ball

Figure 9.Numerical trajectories computedwith equations (3), (4) and (5) for different sports balls. The trajectories are projected in the
(x, z) plane, which corresponds to a top view. In each case, four trajectories are computedwith the same set of parameters and initial
conditions. (a) Soccer ball:D=21 cm, r r = 78b andCD=0.24. Initial conditions are = -U 25 m s0

1, q = 50 and y = 00 . This
image has been obtained by the authors fromhttps://pixabay.com/fr/soccer-boule-le-sport-jeu-l-équipe-34898/, where it is stated
to have been released into the public domain. It is includedwithin this article on that basis. (b)Volleyball:D=21 cm, r r = 36b
andCD=0.25. Initial conditions are = -U 18 m s0

1, q = 200 and y = 00 .This image has been obtained by the authors from the
Wikimedia website https://commons.wikimedia.org/wiki/File:Volleyball.jpg, where it is stated to have been released into the public
domain. It is includedwithin this article on that basis. (c)Baseball ball:D=7.0 cm, r r = 672b andCD=0.38. Initial conditions
are = -U 30 m s0

1, q = 50 and y = 00 . The inset shows the same trajectories with the lateral deviations normalized by the diameter
of the bat ( =D 7bat cm). This image has been obtained by the authors from theWikimedia website https://commons.wikimedia.
org/wiki/File:Baseball.svg, where it is stated to have been released into the public domain. It is includedwithin this article on that
basis. (d)Table tennis ball:D=4.0 cm, r r = 62b andCD=0.36. Initial conditions are = -U 30 m s0

1, q = 00 and y = 00 . The
inset shows the same trajectories with the lateral deviations normalized by the diameter of the racket (Dracket=17 cm). This image has
been obtained by the authors from theWikimediawebsite https://commons.wikimedia.org/wiki/File:Table_tennis_ball.png, where
it is stated to have been released into the public domain. It is includedwithin this article on that basis.
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diameter over a distance corresponding to the table length (figure 9(d)). Baseball and table tennis have about the
same amplitude of lateral deviations.However if these deviations are comparedwith the dimensions of the sweet
spot of bats and table tennis rackets [22, 23], one can infer that zigzagging balls aremore difficult to catch in
baseball than in table tennis (see insets infigures 9(c) and (d)where the lateral deviations are normalized by the
bat or racket diameter).

5.2. Conditions for observation
As knuckleballs are not observed in all sports, wefinally discuss the conditions to observe zigzags. Assuming that
this phenomenon comes from thewhite noise present in the spectrumof lift forces described in section 4.4, we
use equation (12) for the prediction of the lateral deviation δ of a ball which has followed a zigzagmotion by a
distance x. The equation can bewritten in the followingway

˜ ( )d
l

= ⎜ ⎟⎛
⎝

⎞
⎠D

C
x

13L

2

where l p r r= D2 4 3b is a typical distancefixed by the ball diameterD and the solid-fluid density ratio r rb
and reported for the different sports in table 2.One deduces from equation (13) that zigzagwith a significant
lateral deviation (d > D) requires trajectories longer thanλ. However, the distance traveled by the ball is not the
only criterion needed to observe a tortuous path. Indeed, equation (13) shows that the spectral intensity C̃L must
be large enough in order to produce a significant deviation.More precisely, it is the spectral intensity of lift
components of frequencies lower than l=f U that is important. The two conditions are discussed inwhat
follows.

The criteria for long trajectories can be approached by comparing theminimal zigzag wavelengthλ to the
typical distance Lshot fromwhich the different sport balls are shot to score. The distancesλ and Lshot and their
ratio are reported in table 2. For sports where l >L 1shot , it will be possible to observe a complete zigzag and
most sports (except bocce, handball and basketball) satisfy this criterion.

As for the spectral intensity C̃L of lift forces at low frequency ( l<f U ), Norman andMcKeon showed that
C̃L reaches amaximum for  ´Re 3 105 (figure 7(c)). Thereby, the ball velocity will impact non-trivially the
zigzag properties andwe try here to estimate how.We study numerically the effect of the initial velocity of the
ballU0 on themean lateral deviation dm respectively to the trajectory expectedwithout lift. The quantity dm is
calculated overN=1000 trajectories obtained fromnumerical solutions of equations (3), (4) and (5)with the
procedure described in section 4.4. Figure 10(a) shows the evolution of themean normalized lateral deviation
d Dm for a ball having the characteristics of a soccer ball (D=21 cm, r r =b 90 and =CD 0.23) as a function
of the initial Reynolds number n=Re DU0 0 . The ratio d Dm is estimated for different distances traveled by the
ball along the x-direction.

As seen infigure 10(a), dm increases with the traveled distance x as expected from equation (12). The
evolution of dm withRe0 is non-monotonic and it reaches amaximum for  ´Re 3.0 105. This observation
directly results from the fact that fluctuations of the lift coefficients reach amaximumat the drag crisis
(figure 7(c)).We evidenced the asymmetry of the flowpast a sphere in the drag crisis with an experiment
achieved in thewind tunnel of the LME laboratory inValenciennes.Wemeasure the angle qw of thewake past a

Table 2.Characteristics of knuckle trajectories deduced from the numericalmethod presented in section 4 (column
1): ball diameterD (column 2), solid-air density ratio r rb (column 3), typical length Lshot fromwhich a shot is
performed to score (column4), ball velocityUshot for which the zigzag effect is larger (d d= max) (column 5), zigzag
wavelength l p r r= D2 4 3b (column 6), ratio between the typical shot distance and thewavelength lLshot (col-
umn 7) andmaximal normalizedmean deviation d Dmax in the range of Reynolds number encountered in the game
and for a traveled distance corresponding toλ (column8), ratio between the characteristics time of a zigzag and the
reaction time t t l t= Uknuckle shot (column9). Sports highlighted in red are thosewhere knuckleballs are expected
to be observed according to ourmodel.

Sport D r rb Lshot Ushot λ lLshot d Dmax t tknuckle

(cm) (m) (ms−1) (m)

Table tennis 4.0 62 3 32 2.3 1.2 0.5 0.07

Bocce 8.0 2200 15 10 27 0.5 0.01 2.7

Tennis 6.5 318 24 73 8 3.0 0.3 0.11

Squash 4 597 10 78 7 1.4 0.2 0.09

Golf 4.2 967 100 91 9.5 10.6 1.2 0.10

Baseball 7.0 672 18.4 54 13.1 1.4 0.8 0.24

Cricket 7.2 681 20 53 13.6 1.5 0.6 0.26

Volleyball 21 36 18 28 9.1 2.0 2.5 0.33

Soccer 21 78 30 20 13.5 2.2 1.7 0.70

Handball 19 104 6 13 14 0.4 0.3 1.1

Basketball 24 75 8 8 15 0.5 0.1 1.9
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smooth sphere relatively with the direction of the flowU (defined infigure 10(b)) as a function of the Reynolds
number. One observes infigure 10(c) that the asymmetry in thewake dramatically increases when

~ ´Re 3 105. Thereby, the knuckle effect of a non-spinning ball is enhanced if the range of initial velocity
corresponds to the drag crisis. One knows that the critical Reynolds number of the drag crisis strongly depends
on the texture of the ball [24]. This effect occurs in a range of velocity between 15ms−1 and 25 m s−1 for soccer
[25], between 16 m s−1 and 18 m s−1 for volleyball [6] and between 30 and 35ms−1 for baseball [16]. All these
ranges of velocity are in good agreement with the oneswhere knuckleballs are observed [table 1]: increase of
lateral deviations in the drag crisis regime appears to be essential to observe zigzag paths in sports.

5.3. Phase diagram for knuckleballs
Theminimal flight length and the speed required to observe a knuckle effect in sport can be summarized in a
phase diagram.We reported in table 2 themaximal normalized deviation d Dmax experiencedwhen the
projectile has traveled by a distanceλ from its releasing point. The quantity dmax is themaximal value of the
mean deviation of the ball dm in the range of Reynolds number encountered in the considered sport (see table 1).
One notices that d Dmax is lower than 0.5 in bocce, handball, basketball, squash, tennis and table tennis. For
such balls, a zigzag path never disturbs players. The two criteria to obtain a knuckle effect are gathered in
figure 11, where the coordinates are the ratios d Dmax and lLshot for each sport.

In this plot, sports where knuckleballsmay perturb the game are located in the domainwhere l >L 1shot

and d >D 1max . In the others domains of the diagram, knuckleballs cannot be observed, either because of small
transverse deviations or becausewavelengths are longer than the field. For sports producing knuckleballs, it is
required to launch the ball at very low spin and in the good range of initial velocities. These conditionsmay be
difficult to obtain, especially in sports where the time of execution of a technicalmovement has to beminimized.
Also, onemay guess that it will be easier to launch a ball without spin by kicking it with a flat surface such as a
racket rather thanwith a curved surface such as a bat. Despite that the link between the shape of the impactor and
the easiness to produce knuckleballs is out of the scoop of this study, onemay think that zigzag trajectories are
simpler to produce in volleyball than in baseball for such a reason.

Surprisingly, golf balls belong to sports where knuckleballsmay occurwhile no study reports such a
behavior. Several arguments can be advanced to explain this enigma:first golf balls always experience a large
spin, which produces aMagnus lift forcemuch larger than the lift force unsteadiness discussed in this paper;
secondly the resolution of the human vision does not allow to distinguish the lateralmotion of the ball at a large
distance; and of course there is no catcher in golf to be disturbed by a zigzag flight.

5.4. Characteristic time
So far, the characteristics time over which knuckleballs occur have not been discussed. Such a time can be
estimated as t l= Uknuckle shot and comparedwith the typical reaction time of a player t 1 s as introduced
earlier byDarbois Texier et al [11]. One expects that if t t>knuckle , players can react to ballmotions and catch
zigzagging paths. On the contrary, if the reaction time τ is longer than the characteristics zigzagging time tknuckle,
knuckleballs can lure players. The ratio of the two characteristics times t tknuckle is reported in the last column
of table 2.One notices that in all sports where knuckle effect plays a role, the ratio t tknuckle is smaller than one.
Such an observation implies that in sports where zigzag paths can be observed, they systematically disturb the

Figure 10. (a)Meannormalized lateral deviations d Dm of a soccer ball trajectory comparedwith the trajectory expectedwithout lift
forces, as a function of the initial Reynolds number n=Re DU0 0 for various traveled distances along the x-direction. The quantity

dm is derived by solving equations (3), (4) and (5) and using the definition ( ) ( )d = å -=r r r
N i

N
i0

1
1 0

2 withN=1000. The ball
characteristics correspond to the one of a soccer ball:D=21 cm, r r=b 90 and =CD 0.23. (b)Picture of the experimentmade in a
wind tunnel. A smooth sphere of diameterD=30 cm is placed in an air flow and the injection of smoke at the rear of the sphere
allows us to visualize themean direction of its wake qw relatively to the direction of the airflow. (c)Angle qw of thewake as a function
of the Reynolds number.
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game.More particularly, one remarks that the ratio of the zigzagging time over the reaction time is smaller in
baseball than in volleyball and soccer. Catching a knuckleball in baseball requires shorter reflexes than in
volleyball and soccer andmay explainwhy such phenomenonwerefirst reported in baseball.

Conclusion

Wehave considered different possible origins for knuckleballs. These zigzag trajectories are associated to
asymmetric and unsteady flows of air around the ball.Wefirst quantified zigzags with an experiment, and then
modeled them theoretically. Using unsteady lift forces, we obtain a quasi-quantitative agreement with
experimental trajectories of a non-spinning ball traveling through the air. Using the numerical integration, we
estimated the lateral deviations and thewavelengths expected for each sport ball, and predict how the
unsteadiness of lift forces can produce a change in lateral directions within afield andwith a sufficient
magnitude to disturb players. In these sports, we showed that the obtention of a large knuckle effect requires the
ball to be launched in a particular range of initial velocities corresponding to the drag crisis of the ball. This
criterion, plus the absence of initial spin, explains the rareness of knuckleballs in sport. It also explainwhy the
effect is only observed in a narrow range of ball velocities.

In baseball, the proposed scenario and the one involving the seams are both compatible. Knuckleballs in this
sportmay thus have two different origins, keeping their complexity veiled and remaining a nightmare for
batters.
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