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Abstract

Zigzag paths in sports ball trajectories are exceptional events. They have been reported in baseball
(from where the word knuckleball comes from), in volleyball and in soccer. Such trajectories are
associated with intermittent breaking of the lateral symmetry in the surrounding flow. The different
scenarios proposed in the literature (such as the effect of seams in baseball) are first discussed and
compared to existing data. We then perform experiments on zigzag trajectories and propose a new
explanation based on unsteady lift forces. In a second step, we exploit wind tunnel measurements of
these unsteady lift forces to solve the equations of motion for various sports and deduce the
characteristics of the zigzags, pointing out the role of the drag crisis. Finally, the conditions for the
observation of such trajectories in sports are discussed.

1. Introduction

In many sports, players use acrodynamic effects to lure opponents and score. For example in soccer, a free kick
may get around the defensive wall thanks to a side spin [1]. Among the different paths [2], one of the most
intriguing paths is probably the zigzagging knuckleball. This rare event was first introduced in baseball by the
Major League Baseball pitcher E Cicotte, in 1908 [3]. By mastering this pitch, Cicotte deserved the nickname
‘Knuckles’ and finished his career with more than 200 wins [4]. After Cicotte, several pitchers mastered
knuckleballs and the pitch became a nightmare for batters. Despite this old history, the scientific observation of
zigzag paths on a baseball pitch has only been done recently by Nathan et al [5]. In this article, the authors
measured the angular direction of pitches as observed by the batter as a function of the ball releasing speed for a
‘normal’ pitcher and a pitcher mastering knuckleballs. Nathan et al observe that the ‘normal’ pitcher Jon Lester is
able to send the baseball with different techniques characterized by a precise releasing speed and a precise
angular direction. This feature is different from the one observed with Tim Wakefield, famous for his
knuckleballs. In his case, the ball is launched at a precise speed of 66 mph (=~ 29.5 m s~!) and follows a random
angular direction characteristic of the knuckle effect. The releasing speed of knuckleballs is far below the
maximal launching speed of baseballs observed in the field (105 mph ~ 47 ms~"). Nathan also determined that
lateral deviations of knuckleballs are smaller than 1.2 cm which is 0.17 ball diameter [5]. Despite the slenderness
of zigzag motions, the randomness of this pitch explains the difficulty for batters to hit them. Apart from
baseball, zigzagging paths have been reported in volleyball and observed when the ball is launched with no spin
[6]. Depra and co-workers measured these trajectories on a volleyball field and observed lateral deviations of the
order of the ball diameter for a velocity of about 16 m s ™' [7]. Again, this velocity is far below the maximal
velocity observed in volleyball, which is 37 m s ~'. Similar trajectories have finally been observed in soccer by
Barber et al [8]. In this sport, zigzag paths occur with particular balls (such as the official match ball of the 2010
FIFA World Cup, Jabulani) when kicked with no spin [9]. Finally, knuckleballs have also been reported in cricket
for a delivering speed of about 30 m s [10].

Welist in table 1 sports which involve balls of different diameters (4cm < D < 24cm) and different
velocities (10 m s™! < Upayx < 91 m s71). The corresponding Reynolds numbers (Re = DU,,,,/v) based on
the air viscosity v are indicated in column 6 and observed to be in the range 3 x 10* — 6 x 10°. Despite the
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Table 1. Characteristics of different ball games. Sports in which knuckleballs are observed are indicated in red (column 1). Ball
diameter D (column 2) and mass M (column 3), ball to air density ratio p,/p with p = 1.2 kg m~3 (column 4), maximal speed of
the ball Uy, recorded on sport fields (column 5), corresponding Reynolds number Re = DU, /v with v the kinematic viscosity of
air (? = 1.5 x 10~° m s~2)(column 6). For sports where zigzag paths are reported (in red), the range of ball velocity U for which
knuckleballs are obtained is reported in column 7 together with the typical length X of a zigzag (column 8) and the range of normal-
ized lateral deviation 6 /D (column 9). Data are extracted from [2, 58, 11].

Sport D (cm) M(g) P/ P Unax (ms™") Re = DUppoy /v U(ms™") A(m) 6/D
Table tennis 4 2.5 62 32 3 x 104 - - -
Bocce 8 700 2200 10 5 x 104 - - -
Tennis 6.5 55 318 73 1 x 10° - - -
Squash 4 24 597 78 1 x 10° - - -
Golf 4.2 45 967 91 2 x 10° - - -
Baseball 7.0 145 672 54 2 x 10° 28-36 <18 <0.3
Cricket 7.2 160 681 53 3 x 10° 25-35 <20 -
Volleyball 21 210 36 37 4 x 10° 16-18 8-15 <15
Soccer 21 450 78 51 5 x 10° 20-25 10-20 <15
Handball 19 450 104 27 6 x 10° - - -
Basketball 24 650 75 16 6 x 10° - - -

possible impact of aerodynamic forces in many of the sports listed in table 1 [2], knuckleballs are only reported
for baseball, cricket, volleyball and soccer. Our goal is to understand why. The typical conditions and
characteristics of zigzagging paths are gathered in the last columns of table 1. We notice that knuckleballs mostly
occur in a narrow range of velocities (column 7), significantly below Uy, the maximum speed of each game
(column 5). The typical length A and amplitude 6 of a zigzag are reported in the last two columns of table 1. Even
if the lateral deviations 6 are small, the unpredictability of this effect hinders receivers and goalkeepers. This
phenomenon led one of the greatest baseball players, Willie Stargell, to describe knuckleballs as ‘ a butterfly with
hiccups’.

The purpose of this paper is to identify a scenario able to account for these characteristics including the
rareness of knuckleballs in sports. We first discuss the possible origins of the zigzags (section 2) including seams
(section 2.1) and other sources of asymmetry (section 2.2). The experimental set-up able to produce
knuckleballs is presented in section 3 together with the experimental results on zigzags. The equations of motion
for sport balls are solved in section 4 taking into account unsteady lift forces. The different asymptotic regimes
are discussed together with predictions of the mean lateral deviation and the typical wavelength of the zigzag
path for various initial conditions (angles and velocities). We then propose a phase diagram in which sports
where a knuckle effect may impact the game are identified (section 5).

2. Several possible origins

2.1. Effect of seams
A zigzag path is obtained provided a lateral unsteady asymmetry of the flow surrounding the ball exists. The first
source of asymmetry considered to account for knuckleballs in baseball was the seams [12], a scenario recently
revisited by Morissey et al [13].

Watts and Sayers measured the steady lift force in a wind tunnel for a baseball, as a function of its orientation
0 with the flow (figure 1). They showed that lift oscillates with the ball orientation (figure 1(b)). Thus, when the
ball slowly rotates in air, it undergoes an alternative lift, which leads to a zigzag path. The lateral deviations
expected from this scenario can be estimated. We consider the ball motion along a direction z perpendicular to
the baseball velocity U and to the gravitational acceleration g (figure 1(a)) and we assume along this direction a
lift force F, = Fp o sin(wt) e, with w = 40 (for a single rotation of the ball, the lift experiences about four
oscillations due to the presence of four seams, as shown in figure 1(b)). The equation of motion of the ball
projected along the z-direction is

d’z .
M— = Fpsin(wt 1
a2 1,0 sin(wt) @8
where M = 7p, D?/6 is the mass of a ball of diameter D and density p,. Equation (1) yields the lateral deviation
of the ball
z(t) = — Fio sin(wr) )
Muw?

AtU = 20.7 m s~ the measurements by Watts and Sayers provide F; , ~ 0.4 N (figure 1(c)). In order to
produce a complete zigzag on a distance A corresponding to the distance between the pitcher and the batter
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Figure 1. (a) Notations used to describe the deviation of a spinning baseball due to seams orientation. The axis of rotation is parallel to
yand s the angle of a baseball ball symmetry plane relative to the velocity direction U. This image has been obtained by the author
from the Wikimedia website https://commons.wikimedia.org/wiki/File:Baseball.svg, where it is stated to have been released into the
public domain. Itis included within this article on that basis. (b) Lift force F; as a function of the angle § for U = 20.7 m s™'. (c)
Variation of the difference 2 F; o between maximum and minimum lateral forces, as a function of the ball speed U. Data are extracted
from [12].

(A = 18.4 m), therelation w = 27U /A has to be satisfied and it yields § ~ 1.8 rad s~ Insuch asituation, the
amplitude of the deviation is § = F; o/Mw? which gives § =~ 0.4/0.145 x 72 ~ 0.06 m, on the order of the
ball diameter. This scenario may explain the zigzag paths reported on the pitch. However, it does not predict why
knuckleballs are observed in a narrow window of ball velocity significantly below the maximal velocity
achievable in game (table 1). Indeed, a shot at Uy = Upax will maximize F; o and thus § as determined by Watts
and Sayers (figure 1(c)). In addition, knuckleballs were also reported for balls without seams, which suggests that
another scenario could be at play to explain this phenomenon.

2.2. Other possible origins

Other sources of asymmetry can be considered to account for knuckleballs. The flow profile around a sphere
depends on the Reynolds number. Two characteristic features are generally stressed in the flow past a sphere:
first, the stagnation points where the flow stops; secondly, the separation points where the boundary layer
separates from the sphere. These characteristic points are represented in figure 2 with blue and red dots
respectively. The up-down asymmetry of stagnation or separation points relative to the flow direction indicates
the existence of alift. For a smooth sphere and Reynolds numbers lower than unity, the flow profile is symmetric
(figure 2(a)) and the particle experiences no lift force. In this case, the stagnation points are located at the poles of
the sphere and there is no separation of the flow from the solid. When Re < 300, a symmetric recirculation zone
appears behind the sphere (figure 2(b)). In this case, the flow separates from the sphere close to the equator as
symbolized by red dots. For Re > 300, the alternate vortex shedding breaks the up-down symmetry and
generates unsteady lift forces (figure 2(c)) [14]. If the sphere spins, its rotation also breaks the flow lateral
symmetry, displaces the stagnation points and induces a steady lift force referred as a Magnus effect (figure 2(d))
[15]. As considered previously, the presence of surface roughnesses (seams for example) delays the separation of
the boundary layer, moves the separation points out from the equator and provokes a lateral force (figure 2(e))
[16). Finally, at Re ~ 3 x 10°, an intermediate value between 10* and 10° (table 1) the boundary layer transits
from laminar to turbulent state and the separation point moves downstream [17]. In the drag crisis, intermittent
reattachments of the boundary layer generate temporarily asymmetric situations as shown in figure 2(f). Among
these different sources of asymmetry, we try to identify the one which is likely to produce knuckleballs with the
characteristics displayed in table 1.

3. Experimental setup and results

3.1.Set-up

In order to launch a ball with a minimum amount of spin, we developed a kicking machine composed of an
electric motor, a steel arm and a flat plate as presented in figures 3(a) and (b). The power of the DC motor is 400
W, the arm has alength of 1.2 m and the dimensions of the flat plate are 20 x 20 cm?. The rotational speed of the
motor and the initial position of the ball imposes the launching conditions of the ball (initial speed and angle).
Theballis alight and smooth beach ball of diameter D = 20 cm, mass M = 120 g and density

py = 29 kg m~3. Our set-up allows to launch the ball with an initial velocity U, between 0 and 16 ms™~ ' and an
initial angle 6, between 0° and 45°. Moreover, the kicking machine launched the ball with a very small amount of
spin, less than a tenth of a rotation along the entire trajectories (w < 0.5 rads™ ).
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Figure 2. Sketch of the air flow surrounding a sphere at different Reynolds numbers and for various situations. Blue dots represent
stagnation points whereas red dots represent separation points. (a) Atlow Reynolds number (Re < 1), the flow is symmetric. (b) For

1 < Re < 300, arecirculation area exists behind the sphere, but the lateral symmetry is preserved. (c) For Re > 300, vortex shedding
generates unsteady lift forces. (d) The sphere rotation breaks the flow lateral symmetry, which leads to a steady lift force known as the
Magnus force. (e) The presence of a seam delays the boundary layer separation and gives a lift. (f) Asymmetry due to the boundary
layer transition: the bottom layer is in a turbulent state whereas the upper one is still laminar.
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Figure 3. Image (a) and sketch (b) of the kicking machine used to shoot balls with no spin. This image has been obtained by the authors
from the Wikimedia website https://commons.wikimedia.org/wiki/File:Soccerball.svg, where it is stated to have been released into
the public domain. It is included within this article on that basis.

3.2. Experimental results

We recorded the motion of the ball with two high-speed cameras Photron SA3 looking from the front and from
the side of the trajectory. The two cameras were synchronized with an external trigger and recorded the sequence
at 1000 Hz in full resolution (1280 x 1024 pixels). Figure 4(a) shows the recorded trajectory from the side. One
observes that the trajectory is slightly asymmetric with respect of the maximum, consistently with predictions of
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Figure 4. (a) Blue dots correspond to the side view of an experimental trajectory of abeach ball (D = 20 cm, M = 120 g and

pp/p = 24)launched with the initial conditions: Uy = 12 m s, §, = 18° and no spin. the time interval between two ball positions is
24 ms. We estimate the terminal velocity of the ball U,, = 12 ms~!, which leads to Uy/U,, = 1. Lines correspond to the numerical
solutions of equations (3), (4) and (5) with D = 20 cm, p,/p = 24and Cp = 0.4 thatis detailed in section 4. Initial launching
conditions are the same as the experiment, Uy = 12 ms™ ', §, = 18° and v = 0°. The dotted line shows the path of the ball without
lift forces [Cp ¢ (t) = 0and Cp () = 0] whereas the trajectory drawn with the solid line takes lift forces into account. (b) Blue dots
represent the experiment Reynolds number Re = DU /v of the flow around the ball as a function of its position along the x-direction.
The time interval between two positions is 24 ms. The blue solid line corresponds to the numerical solution presented in section 4 with
the same ball properties and initial conditions as the experiment (D = 20 cm, p,/p = 24and Cp = 0.4,U; = 12 m s 6 =18°
and 1y = 0°).

Cohen et al [18] when the initial velocity of the ball U, is comparable to its free fall velocity U, (in the present
case Up/U,, =~ 1.0).From the side trajectory, we deduce the Reynolds number as a function of the horizontal
distance x as shown in figure 4(b). The decrease of the Reynolds number along the trajectory is due to the drag
which acts on the characteristic length Dp,/p ~ 6 m [18].

A front chronophotography of the ball till it reaches the top of the trajectory is shown in figure 5(a), revealing
the non-straight path followed by the ball. Using the ball as a scale evolving over time, we deduced its lateral
deviation along the z-direction as a function of the horizontal distance x and we report the data in figure 5(b).
Initial conditions are similar, yet trajectories are different. This erratic behavior is the signature of knuckleballs.
Lateral deviations of the ball are typically 0.1 to 0.4 ball diameter, that is, a few centimeters. Zigzags are observed
on atraveled distance along the x-direction of about 7 m. Even if lateral deviations are small, they can strongly
disturb volleyball receivers or soccer goalkeepers who are used to Magnus effect, but not to erratic phenomena.

4. Model

4.1. Equation of motion
The goal of this section is to solve the trajectory of a ball experiencing a drag Fp, and an unsteady lift force F in
addition to its weight Mg. At large Reynolds numbers the drag force is expressed as Fy = —pw (D/2)?Cp, UU /2
with p the fluid density, D the ball diameter, U the ball velocity (U = ||U||) and Cp, the drag coefficient. In this
regime, thelift force is defined as Fy = pm (D/2)?U?(Cp ¢ (t)ep + Cp (1) ey)/2 with G (1) and G 4, (¢) the
instantaneous lift coefficients along ey and e,;, as defined in figure 6.

The equations of motion of the ball in the (U /U, ey, e,;) frame are

dU U?
—_— = — 1 9 _— — 3
m g sin Z 3)
do gcosf U
—_ = - + = 4
dt U Lo )
dy U
- == 5
dt £¢ ©)

where £ = 2M/pm (D/2)*Cp, Ly = 2M/pr(D/2)*Cy(t)and L, = 2M /pr (D/2)*Cp4(t) are the character-
istic lengths associated to drag and lift forces. Without lift, equations (3), (4) and (5) reduce to a * Tartaglia’ path
[18]. In the general case, solving these equations requires to know the time evolution of the lift coefficients Cpy (t)
and C; , (t). Lift coefficients typically reported in the literature are time-averaged quantities. However, owning
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Figure 5. (a) Chronophotography of a beach ball launched with the kicking machine described in section 3.1. The camera faces the
kicking machine and the time interval between two positions is 33 ms. For the sake of clarity, the chronophotography only shows the
first part of the trajectory where the ball undergoes an upward motion. (b) Lines with symbols correspond to top view of experimental
trajectories for abeach ball (D = 20 cm, M = 120 g and p;,/p = 24)launched four times with same initial conditions

Uo = 12m 71, §, = 18° and no spin). Lines without symbols represent the numerical solutions of the model presented in section 4
for same ball properties and initial conditions as in the experiment. The difference between the four numerical trajectories arises from
the choice of the phase W in the lift coefficient decomposition.

Figure 6. Conventions used in the trajectory calculation.

to the complex time-dependent interactions in the boundary layer, the real lift coefficients are not constant in
time. Rather than solving the turbulent fluid equation in the boundary layer, we propose to use an effective time-
dependent lift coefficient that mirrors this measured spectrum. From experimental data presented in figure 5(b),
we evaluate the characteristic time of a deviationas \/U =~ 8/16 = 0.5 s where A ~ 8 m is the typical
wavelength of a zigzag. This time is long compared to the convective time D/U ~ 0.2/16 =~ 10 ms. For the
flow, the lateral motion of the ball is thus quasi-steady. We thus use the spectrum of lift force fluctuations
measured using wind tunnel tests in order to solve the equations of motion. Norman and McKeon reported the
spectral density ® of the lift as a function of the dimensionless frequency St = fD/U (also known as Strouhal
number) and the Reynolds number for a smooth sphere in the sub-critical, critical and super-critical regimes
[19]. Examples of these measurements are shown in figures 7(a) and (b). These data allow us to express the
instantaneous lift coefficients by the way of a Fourier decomposition

G = [ C(fsin@af+ ) df ©)

where C; = +/® and ¥ are the amplitude and phase of each spectral component that possibly depend on
Strouhal and Reynolds numbers.

4.2. Comparison of the numerical trajectories with the experiments
We now solve numerically the equations of motion introduced in the previous section. The properties of the ball
considered for the numerical method are the same as in section 3 (D = 20 cm, p,/p =30and Cp = 0.4)in
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Figure 7. (a) Normalized spectral power density ® oflift forces as a function of the Strouhal number St = fD/U measured by Norman
and McKeon for a smooth sphere [19]. Blue dots correspond to Re = 8.0 x 10, green squares to Re = 2.3 x 10°, orange diamonds
to Re = 3.8 x 10° andred triangles to Re = 5.0 x 10°. (b) Variance over time of the drag coefficient (green triangles) and lift
coefficients along the two transverse directions y and z (respectively purple dots and blue squares) as a function of the Reynolds
number. Data are extracted from [19].

order to compare numerics with experiments. Concerning the numerical method, we first solve equations (3),
(4) and (5) without lift in order to determine the evolution of the Reynolds number along the trajectory. Then,
we include fluctuating lift forces associated to the local Reynolds number as measured by Norman and McKeon
with equation (6) [19]. Note that as the phase U of each spectral component was not reported, we choose this
parameter randomly. Such a choice made each solution unique but does not impact, statistically, the zigzagging
phenomenon. Figures 4(a) and 5(b) show a side view and a top view of the numerical trajectories.

One observes in figure 4(a) that lift forces have little impact on the overall ball trajectory (plane (O, x, ¥)) but a
visible effect in the (O, x, z) plane (figure 5(b)). By performing several numerical simulations with the same initial
conditions, we estimate the mean lateral amplitude and the typical wavelength of the zigzag. Lateral deviations
are about 0.3 ball diameter and zigzag occurs on a distance of about 8 m, which is of the same order of magnitude
as the experimental observations described in section 3. In conclusion, the wind tunnel measurements of
unsteady lift made by Norman and McKeon for a smooth sphere lead to a qualitative agreement with
observations of the trajectories of free moving spheres.

However, the numerical reproduction of zigzag trajectories does not allow us to make any prediction on the
moment they occur, or why we only observe them in a few sports. In order to understand more deeply what
provokes knuckleballs, we consider below the different contributions of the lift force spectrum separately.
Indeed, we observe in figure 7(a) that the spectral density @ of the lift force for Re < 3 x 10’ exhibits three
distinct features: a white noise behavior in the range St < 0.1,apeakat St ~ 0.2 which corresponds to vortex
shedding [14] and a power law decrease at large Strouhal numbers (St > 0.3). For Re > 3 X 10°, the peak
corresponding to vortex shedding disappears but both the low frequency white noise and the large frequency
decrease remain (figure 7(b)).

4.3. The vortex shedding limit
For the sake of clarity, the impact of vortex shedding on the trajectory is considered in the naive case where the
ball moves at a constant velocity U = U e, with only alift force along the z-direction. In such a situation, the
equations of motion (3), (4) and (5) reduce to

dz 3 pU?

o1 () )
where p, = M /(D3 /6) is the ball density. Assuming that the spectrum of lift is a single peak for St ~ 0.2,
equation (6) becomes

C(t) = Cysin(2nft) (8)
with f= 0.2 U/Dand C; = C; (St = 0.2). In this context, the equation of motion (7) yields
&z 3pU? . .
— = ———C( sin(27ft 9
& 1 G ©
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Figure 8. Mean normalized lateral deviation 6,,/ D of the trajectory along the z-direction as a function of the normalized traveled
distance x/D. The plot results from the solution of equations (3), (4) and (5) with D = 20 cm, p,/p = 24and Cp = 0.4 and initial
conditions Uy = 12 ms ™', f, = 18°and 1)y = 0°. Amean over N = 1000 trajectories is calculated in order to get this plot thanks to
the expression 6, (r)) = %Zf\i W (ri — 19)* where r; and r; are the positions of the ball iflift forces are considered or not.

The amplitude 6 of the zigzag along the z-direction can be deduced to be

6b_ 532G

D 1672 p, St?

(10)

The normalized lateral deviation § /D produced by vortex shedding at St ~ 0.2 depends on the inverse of the
ball-air density ratio p,/p. Horowitz and Williamson proved that for light spheres (p,/p < 1), this
phenomenon provokes alternate deviations of about a ball diameter [20]. A review of rising and falling non-
rectilinear trajectories of a sphere in a fluid was proposed by Ern et al [21]. In sports, the ratio p,/p is much larger
than unity (46 < p,/p < 570, see table 1), so that we expect negligible lateral deviations (6/D < 1).In
conclusion, the classical vortex shedding is not responsible for knuckleballs.

4.4. The white noise limit

In this section, we consider the low frequency limit of the spectrum of lift force, which is close to a white noise
(figures 7(a) and (b)). As in section 4.3, each frequency fin the lift force is associated to a normalized maximal
deviation

2
é = 5 » C v (11)
D 167%p, D
For a traveled distance x, the minimal frequency corresponding to a complete zigzagis f = U /x; combining it

with equation (11), we get
2
i = 3 ﬁCL(ﬁ) (12)
D 1672 p,

The lateral deviation & still depends on the inverse of the density ratio p,/p and on the lift coefficient C; but
itis also a function of the distance x over which balls are observed: the larger x, the larger the lateral deviations, in
agreement with what can be observed in figure 5(b). This behavior is verified more quantitatively in figure 8
where the mean lateral deviation 6, is presented as a function of the ball position along the x-axis. The quantity
O s calculated over N = 1000 trajectories obtained with numerical methods presented in section 4.1 by the way
of the relation: 6,, (ry) = %Efi W (ri — 1y)* where r; and r are the positions of the ball iflift forces are
considered or not. One notices in figure 8 the square dependence of 6,,,/D on x/D predicted by relation (12).
Hence, we expect lateral deviations to become significant only if the trajectory is long enough, so that field size
and gravity are limiting factors for the observation of zigzags. Moreover, Norman and McKeon reported that the
value of the lift coefficient C; at low frequency (St < 0.1) has a non-trivial variation with the Reynolds number
(figure 7(c)). The variance oflift coefficients over time \/ (C7 (¢)) shows a maximum closeto Re ~ 3 x 103
which corresponds to the drag crisis regime. The intermittent reattachment of the boundary layer is responsible
for this effect [19]. Thereby, if a ball is launched in the range of velocity corresponding to the drag crisis
(Re =~ 3 x 10° for asmooth sphere), we expect lateral deviations to be increased.
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Figure 9. Numerical trajectories computed with equations (3), (4) and (5) for different sports balls. The trajectories are projected in the
(x, z) plane, which corresponds to a top view. In each case, four trajectories are computed with the same set of parameters and initial
conditions. (a) Soccer ball: D = 21 cm, p,/p = 78 and Cp = 0.24. Initial conditionsare Uy = 25 m s~!, fy = 5° and ¢y = 0°. This
image has been obtained by the authors from https://pixabay.com/fr/soccer-boule-le-sport-jeu-l-équipe-34898 /, where it is stated
to have been released into the public domain. Itis included within this article on that basis. (b) Volleyball: D = 21 cm, p,/p = 36
and Cp, = 0.25.Initial conditions are Uy = 18 m s, §, = 20° and 1)y = 0°. This image has been obtained by the authors from the
Wikimedia website https://commons.wikimedia.org/wiki/File:Volleyball.jpg, where it is stated to have been released into the public
domain. Itis included within this article on that basis. (c) Baseball ball: D = 7.0 cm, p,/p = 672 and Cp, = 0.38. Initial conditions
are Uy = 30 m s, 6 = 5% and ¥y = 0°. The inset shows the same trajectories with the lateral deviations normalized by the diameter
of thebat (Dpy = 7 cm). This image has been obtained by the authors from the Wikimedia website https://commons.wikimedia.
org/wiki/File:Baseball.svg, where it is stated to have been released into the public domain. It is included within this article on that
basis. (d) Table tennis ball: D = 4.0 cm, p,/p = 62 and Cp = 0.36. Initial conditions are Uy = 30 m s71, 0y = 0°and ¢y = 0°. The
inset shows the same trajectories with the lateral deviations normalized by the diameter of the racket (Dy,cket=17 cm). This image has
been obtained by the authors from the Wikimedia website https://commons.wikimedia.org/wiki/File:Table_tennis_ball.png, where
itis stated to have been released into the public domain. It is included within this article on that basis.

5. Knuckleballs in sports

5.1. Numerical trajectories
The numerical integration of the equations of motion (3), (4) and (5) is done for the ball properties listed in

table 1. Figure 9 shows the numerical results in the (O, x, z) plane (top view) for soccer, volleyball, baseball and
table tennis. In each situation, the numerical method has been driven four times with a different choice in the
spectral phase W, which allows us to appreciate the mean lateral deviation produced by the lift forces and the
typical zigzagging wavelength.

For asoccer ball (figure 9(a)), lateral deviations are about a ball diameter after 30 m. Between one and two
changes in transverse direction are observed. Compared to soccer, lateral deviations are increased for a volleyball
while wavelengths are reduced (figure 9(b)). On the distance which separates the batter and the pitcher in
baseball, balls have about one change in lateral direction and typical excursions are about 0.5 ball diameter
(about 3 cm) (figure 9(c)). The predictions show qualitative agreement with observations of knuckleballs in the
field (see table 1), which confirms that the unsteady lift experienced by a sphere can be responsible for
knuckleballs. Numerical solutions for a table tennis ball exhibit transverse deviations lower than 0.5 ball
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Table 2. Characteristics of knuckle trajectories deduced from the numerical method presented in section 4 (column
1): ball diameter D (column 2), solid-air density ratio p,/p (column 3), typical length L, from which a shot s
performed to score (column 4), ball velocity Uy, for which the zigzag effect is larger (0 = Omax) (column 5), zigzag
wavelength A = 27D,/4p,/3p (column 6), ratio between the typical shot distance and the wavelength Lo,/ A (col-
umn 7) and maximal normalized mean deviation §,,,x/D in the range of Reynolds number encountered in the game
and for a traveled distance corresponding to A (column 8), ratio between the characteristics time of a zigzag and the
reaction time Tyyuckle/ T = A/ Ushot 7 (column 9). Sports highlighted in red are those where knuckleballs are expected
to be observed according to our model.

Sport D /P Lihot Ushot A Lot/ A Omax/D Tknuckle/ T
(cm) (m) (ms™") (m)

Table tennis 4.0 62 3 32 2.3 1.2 0.5 0.07
Bocce 8.0 2200 15 10 27 0.5 0.01 2.7
Tennis 6.5 318 24 73 8 3.0 0.3 0.11
Squash 4 597 10 78 7 14 0.2 0.09
Golf 4.2 967 100 91 9.5 10.6 1.2 0.10
Baseball 7.0 672 18.4 54 13.1 1.4 0.8 0.24
Cricket 7.2 681 20 53 13.6 1.5 0.6 0.26
Volleyball 21 36 18 28 9.1 2.0 2.5 0.33
Soccer 21 78 30 20 13.5 2.2 1.7 0.70
Handball 19 104 6 13 14 0.4 0.3 1.1
Basketball 24 75 8 8 15 0.5 0.1 1.9

diameter over a distance corresponding to the table length (figure 9(d)). Baseball and table tennis have about the
same amplitude of lateral deviations. However if these deviations are compared with the dimensions of the sweet
spot of bats and table tennis rackets [22, 23], one can infer that zigzagging balls are more difficult to catch in
baseball than in table tennis (see insets in figures 9(c) and (d) where the lateral deviations are normalized by the
bat or racket diameter).

5.2. Conditions for observation

Asknuckleballs are not observed in all sports, we finally discuss the conditions to observe zigzags. Assuming that
this phenomenon comes from the white noise present in the spectrum of lift forces described in section 4.4, we
use equation (12) for the prediction of the lateral deviation 6 of a ball which has followed a zigzag motion by a
distance x. The equation can be written in the following way

o ~ (x )
D C ( A ) 3
where A = 27D, /4p,/3p is a typical distance fixed by the ball diameter D and the solid-fluid density ratio p,/p
and reported for the different sports in table 2. One deduces from equation (13) that zigzag with a significant
lateral deviation (6 > D) requires trajectories longer than A\. However, the distance traveled by the ball is not the
only criterion needed to observe a tortuous path. Indeed, equation (13) shows that the spectral intensity C; must
be large enough in order to produce a significant deviation. More precisely, it is the spectral intensity of lift
components of frequencies lower than f = U/ thatis important. The two conditions are discussed in what
follows.

The criteria for long trajectories can be approached by comparing the minimal zigzag wavelength A to the
typical distance Lo from which the different sport balls are shot to score. The distances A and Ly, and their
ratio are reported in table 2. For sports where Lg,,./A > 1, it will be possible to observe a complete zigzag and
most sports (except bocce, handball and basketball) satisfy this criterion.

As for the spectral intensity C; oflift forces at low frequency (f < A/U), Norman and McKeon showed that
C; reaches a maximum for Re ~ 3 x 10° (figure 7(c)). Thereby, the ball velocity will impact non-trivially the
zigzag properties and we try here to estimate how. We study numerically the effect of the initial velocity of the
ball Uy on the mean lateral deviation 6, respectively to the trajectory expected without lift. The quantity 6,, is
calculated over N = 1000 trajectories obtained from numerical solutions of equations (3), (4) and (5) with the
procedure described in section 4.4. Figure 10(a) shows the evolution of the mean normalized lateral deviation
8/ D for aball having the characteristics of a soccer ball (D = 21 cm, p,/p = 90and Cp = 0.23) asa function
of the initial Reynolds number Rey = DU,/v. Theratio 6,,/D is estimated for different distances traveled by the
ball along the x-direction.

Asseenin figure 10(a), 6,, increases with the traveled distance x as expected from equation (12). The
evolution of 8, with Re, is non-monotonic and it reaches a maximum for Re =~ 3.0 x 10°. This observation
directly results from the fact that fluctuations of the lift coefficients reach a maximum at the drag crisis
(figure 7(c)). We evidenced the asymmetry of the flow past a sphere in the drag crisis with an experiment
achieved in the wind tunnel of the LME laboratory in Valenciennes. We measure the angle 6,, of the wake pasta
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Figure 10. (a) Mean normalized lateral deviations 6,,/D of a soccer ball trajectory compared with the trajectory expected without lift
forces, as a function of the initial Reynolds number Rey, = DU,/ v for various traveled distances along the x-direction. The quantity
O 1s derived by solving equations (3), (4) and (5) and using the definition ¢ (r)) = %Zfi W (i — 19)* with N = 1000. The ball
characteristics correspond to the one of asoccer ball: D = 21 cm, p,/p=90and Cp = 0.23. (b) Picture of the experiment made ina
wind tunnel. A smooth sphere of diameter D = 30 cm is placed in an air flow and the injection of smoke at the rear of the sphere
allows us to visualize the mean direction of its wake 6, relatively to the direction of the air flow. (c) Angle 6,, of the wake as a function
of the Reynolds number.

smooth sphere relatively with the direction of the flow U (defined in figure 10(b)) as a function of the Reynolds
number. One observes in figure 10(c) that the asymmetry in the wake dramatically increases when

Re ~ 3 x 10°. Thereby, the knuckle effect of a non-spinning ball is enhanced if the range of initial velocity
corresponds to the drag crisis. One knows that the critical Reynolds number of the drag crisis strongly depends
on the texture of the ball [24]. This effect occurs in a range of velocity between 15 m's ™' and 25 ms ™ for soccer
[25], between 16 ms™ ' and 18 ms™ ! for volleyball [6] and between 30 and 35 m s~ ! for baseball [16]. All these
ranges of velocity are in good agreement with the ones where knuckleballs are observed [table 1]: increase of
lateral deviations in the drag crisis regime appears to be essential to observe zigzag paths in sports.

5.3. Phase diagram for knuckleballs

The minimal flight length and the speed required to observe a knuckle effect in sport can be summarized in a
phase diagram. We reported in table 2 the maximal normalized deviation 0,/ D experienced when the
projectile has traveled by a distance A from its releasing point. The quantity .y is the maximal value of the
mean deviation of the ball §,, in the range of Reynolds number encountered in the considered sport (see table 1).
One notices that d,,, /D is lower than 0.5 in bocce, handball, basketball, squash, tennis and table tennis. For
such balls, a zigzag path never disturbs players. The two criteria to obtain a knuckle effect are gathered in

figure 11, where the coordinates are the ratios 6,/ D and Lo/ A for each sport.

In this plot, sports where knuckleballs may perturb the game are located in the domain where Lg,oi/ A > 1
and 8,,c/D > 1.Inthe others domains of the diagram, knuckleballs cannot be observed, either because of small
transverse deviations or because wavelengths are longer than the field. For sports producing knuckleballs, it is
required to launch the ball at very low spin and in the good range of initial velocities. These conditions may be
difficult to obtain, especially in sports where the time of execution of a technical movement has to be minimized.
Also, one may guess that it will be easier to launch a ball without spin by kicking it with a flat surface such as a
racket rather than with a curved surface such as a bat. Despite that the link between the shape of the impactor and
the easiness to produce knuckleballs is out of the scoop of this study, one may think that zigzag trajectories are
simpler to produce in volleyball than in baseball for such a reason.

Surprisingly, golf balls belong to sports where knuckleballs may occur while no study reports such a
behavior. Several arguments can be advanced to explain this enigma: first golf balls always experience a large
spin, which produces a Magnus lift force much larger than the lift force unsteadiness discussed in this paper;
secondly the resolution of the human vision does not allow to distinguish the lateral motion of the ball at a large
distance; and of course there is no catcher in golf to be disturbed by a zigzag flight.

5.4. Characteristic time

So far, the characteristics time over which knuckleballs occur have not been discussed. Such a time can be
estimated as Tiyucade = A/ Ushor and compared with the typical reaction time of a player 7 ~ 1 sasintroduced
earlier by Darbois Texier et al [11]. One expects that if 7iuge > 7, players can react to ball motions and catch
zigzagging paths. On the contrary, if the reaction time 7 is longer than the characteristics zigzagging time 7juckie>
knuckleballs can lure players. The ratio of the two characteristics times 7y,qqe/ 7 18 reported in the last column
of table 2. One notices that in all sports where knuckle effect plays a role, the ratio 7iycxe/ 7 is smaller than one.
Such an observation implies that in sports where zigzag paths can be observed, they systematically disturb the
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Figure 11. Maximal normalized mean lateral deviation ép,,.x/D observed in each sport as a function of the ratio of field length Lo
and zigzag wavelength \. Data are obtained from the two final columns of table 2. Golf ball: this image has been obtained by the
authors from www.publicdomainpictures.net/view-image.php?image=36592&picture=golf-ball, where it is stated to have been
released into the public domain. Itis included within this article on that basis. Tennis ball: this image has been obtained by the authors
from the Wikimedia website https://commons.wikimedia.org/wiki/File:Tennis_ball_3.svg, where it is stated to have been released
into the public domain. It is included within this article on that basis. Bocce ball: this image has been obtained by the authors from
https://pixabay.com/fr/pétanque-boule-sport-jouer-boules-381155/, where itis stated to have been released into the public
domain. It is included within this article on that basis. Cricket ball: this image has been obtained by the author from https://pixabay.
com/fr/balle-de-cricket-cricket-boule-295206/, where it is stated to have been released into the public domain. It is included within
this article on that basis. Squash ball: this image has been obtained by the authors from the Wikimedia website https://commons.
wikimedia.org/wiki/File:Squash_Ball_Dunlop_Revelation_Pro_2.jpg, where it is stated to have been released into the public domain.
Itis included within this article on that basis. Basketball: this image has been obtained by the author from the Wikimedia website
https://commons.wikimedia.org/wiki/File:Basketball_Ball_Icon.png, where it is stated to have been released into the public
domain. It is included within this article on that basis. Handball: this image has been obtained by the authors from the Wikimedia
website https://commons.wikimedia.org/wiki/File:Handball_the_ball2.png, where itisstated to have been released into the public
domain. It is included within this article on that basis. Soccer ball: this image has been obtained by the authors from https://pixabay.
com/fr/soccer-boule-le-sport-jeu-l-équipe-34898 /, where it is stated to have been released into the public domain. It is included
within this article on that basis. Volleyball: this image has been obtained by the authors from the Wikimedia website https://
commons.wikimedia.org/wiki/File:Volleyball.jpg, where it is stated to have been released into the public domain. It is included
within this article on that basis. Baseball: this image has been obtained by the authors from the Wikimedia website https://commons.
wikimedia.org/wiki/File:Baseball.svg, where it is stated to have been released into the public domain. It is included within this article
on that basis. Table tennis ball: this image has been obtained by the authors from the Wikimedia website https: //commons.
wikimedia.org/wiki/File:Table_tennis_ball.png, where itis stated to have been released into the public domain. Itis included within
this article on that basis.

game. More particularly, one remarks that the ratio of the zigzagging time over the reaction time is smaller in
baseball than in volleyball and soccer. Catching a knuckleball in baseball requires shorter reflexes than in
volleyball and soccer and may explain why such phenomenon were first reported in baseball.

Conclusion

We have considered different possible origins for knuckleballs. These zigzag trajectories are associated to
asymmetric and unsteady flows of air around the ball. We first quantified zigzags with an experiment, and then
modeled them theoretically. Using unsteady lift forces, we obtain a quasi-quantitative agreement with
experimental trajectories of a non-spinning ball traveling through the air. Using the numerical integration, we
estimated the lateral deviations and the wavelengths expected for each sport ball, and predict how the
unsteadiness oflift forces can produce a change in lateral directions within a field and with a sufficient
magnitude to disturb players. In these sports, we showed that the obtention of a large knuckle effect requires the
ball to be launched in a particular range of initial velocities corresponding to the drag crisis of the ball. This
criterion, plus the absence of initial spin, explains the rareness of knuckleballs in sport. It also explain why the
effectis only observed in a narrow range of ball velocities.

In baseball, the proposed scenario and the one involving the seams are both compatible. Knuckleballs in this
sport may thus have two different origins, keeping their complexity veiled and remaining a nightmare for
batters.
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