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Abstract

The BB84 quantum key distribution protocol is semi device independent in the sense that it can be
shown to be secure if just one of the users’ devices is restricted to a qubit Hilbert space. Here, we derive
an analytic lower bound on the asymptotic secret key rate for the entanglement-based version of BB84
assuming only that one of the users performs unknown qubit POVMs. The result holds against the
class of collective attacks and reduces to the well known Shor—Preskill key rate for correlations
corresponding to the ideal BB84 correlations mixed with any amount of random noise.

1. BB84 and device independence

Quantum key distribution (QKD) [1, 2] protocols allow cooperating users to generate cryptographic keys in
such a way that unauthorised eavesdropping can be detected. This is achieved by exploiting features of quantum
physics, such as the general inability to measure a quantum state without disturbing it, in a way that guarantees
that any attempt at eavesdropping on the protocol will introduce detectable errors.

One of a QKD protocol’s differentiating features is the degree to which it is device independent [3—5] i.e., the
extent to which the protocol can be proved secure independently of assumptions about the internal functioning
of the devices in the physical setup. This is of practical interest as device-independent protocols are intrinsically
more robust, ensuring that both unintended and maliciously introduced implementation faults are detected
automatically. Protocols can range from fully characterised (the exact quantum state preparations and/or
measurements must be known) to fully device independent (security is established based only on the detection of
Bell-nonlocal [6, 7] correlations, independently of the mechanism that produced them). Between these
extremes, partially device-independent protocols have also been proposed in which only some of the devices are
fully characterised [8—10] and in which only a Hilbert space dimension bound is assumed for the source of
quantum states [11, 12].

The BB84 protocol [13] was originally introduced as a fully characterised protocol. A commonly considered
prepare-and-measure version runs as follows. One user (‘Alice’) generates a string of random bits that she wishes
to transmit to another distant user (‘Bob’). Alice sequentially encodes each bit onto one of two corresponding
orthogonal o, eigenstates |0) and |1) which she transmits to Bob. In order to be able to detect eavesdropping,
Alice inserts instances of the o, eigenstates |+ )and | —), with |£) = (|0) £ |1))/~/2, atsome random locations
in the sequence of quantum states to be transmitted to Bob. Bob measures most of the states he receives from
Aliceinthe o, = [0) (0] — |1) (1| basis and the remaining minority of cases in the oy = |+) (+] — |—) (—|
basis. Afterwards, the record of cases where Alice and Bob used mismatched bases (Alice prepared a g, state and
Bob measured oy or vice versa) are discarded. The cases where Alice and Bob both used the o, basis and a
randomly chosen subset of cases where they both used the o, basis are used to estimate the x- and z-basis error
rates Oy and 6, and then likewise discarded. Finally, if the error rates are not too high, classical postprocessing
allows a (generally shorter) secret key to be generated with the relative errors between Alice’s and Bob’s versions
corrected and with any knowledge of the key by an adversary effectively erased.

There is also an entanglement-based version of BB84, in which a central source prepares and distributes
entangled states which Alice, as well as Bob, measures in the ¢, and oy bases. In this case, the initial bitstring is
obtained from the measurement results rather than from a separate randomness generation procedure. Since
Alice’s 0, or o, measurement can be thought of as effectively preparing a state for Bob [14], there is some
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equivalence between the two versions of the protocol. In particular, in both versions, one-way classical
postprocessing allows a secret key to be extracted at an asymptotic rate given by the Shor—Preskill key rate [15],

r>1— h(6y) — h(5,), €]

where ki (x) = —x log,(x) — (1 — x)log,(1 — x)is the binary entropy function, depending on the error rates
by and 6,.

Since its original proposal, it has become apparent that the BB84 protocol exhibits a significant degree of
device independence. BB84 was first found to be one-sided device independent, i.e., the explicit characterisation of
one of the devices can be dropped. This was already indicated by some early security results [16—18] for the
prepare-and-measure version of BB84 which do not explicitly depend on Bob’s measurements, and later
analyses [19, 20] found that the Shor—Preskill key-rate bound (1) still holds at the one-sided-device-independent
level if Alice’s source prepares the o, and oy eigenstates (in the prepare-and-measure version) or just one of the
users measures in the o, and oy bases (in the entanglement-based version).

Recent analyses have started to exploit results from the mismatched bases cases, which are usually discarded,
in order to improve the security certification [21, 22], and some authors have further pointed out that this can
reduce the level of characterisation required to just a dimension bound for one of the devices. In [23] it was first
shown that the Shor—Preskill rate still holds if no correlations are observed in the mismatched bases cases
assuming that Alice performs unknown projective qubit measurements. A similar result was recovered
numerically in [24] for general qubit POVM:s on Alice’s side, assuming that Bob also performs qubit
measurements. The prepare-and-measure version of BB84 was also studied numerically in [25] at a similar level
of device independence, where Alice’s source prepares unknown pure qubit states and Bob performs unknown
projective qubit measurements.

Here, we study the BB84 protocol in this semi-device-independent scenario (borrowing the name from [11]),
where we assume only that Alice’s device acts on a two-dimensional Hilbert space. The main result will be an
analytic lower bound on the asymptotic secret key rate for the entanglement-based version of BB84 where we
allow Alice’s measurements to be arbitrary qubit POVMs and Bob’s measurements are left uncharacterised. The
result holds against the class of collective attacks [17] (i.e., assuming that Alice’s and Bob’s measurements are
always performed on the same entangled state), which is known to imply unconditional security at least if the
measurements are memoryless and if the Hilbert-space dimension is bounded [26].

The qubit device assumption is taken here to mean that Alice’s result depends only on the measurement of a
qubit state. In particular, similar to [27, 28], we assume that Alice’s measurement result does not depend on
additional classical information that could also be available to Bob’s device (so-called ‘shared randomness’ [11]).
This is necessary as the ideal (entanglement-based) BB84 correlations can be simulated with two shared classical
random bits—a special case of what an adversary could prepare with a shared classical bit and an entangled qubit
which is completely insecure from a cryptographic perspective. A consequence is that, unusually for a QKD
security result, any (nontrivial) lower bound on the key rate cannot be a convex function of the probabilities
P(ab | uv) at this level of device independence.

2. Scenario and main result

In the entanglement-based version of the BB84 protocol, Alice and Bob share a state p,; on some Hilbert space
‘Hs ® Hp, on which they can perform POVMs {Mé“), Ml(“)} and {Név), Nl(")} indexed by measurement choices
u, v € {z, x} andyieldingresults a, b € {0, 1} with probability

P(abluv) = Tr[(M{" & N") pys]. )

In the semi-device-independent level of security that we consider, we assume that dimH, = 2. The state p,
and measurements are otherwise treated as unknown. Setting A, = M{¥ — M and B, = N’ — N{"),a
convenient summary of the probabilities P (ab|uv) that we will use is given by the eight parameters

Au = <Au ® J1B>> (3)
B, = (1, ® B,), 4)
Euv - <Au & §v>’ (5)

with ( - ) = Tr[ - p,zl- Note that E,, and Ey, here are related to the more conventional z- and x-basis error
rates 6, and 6, by E,;, = 1 — 20,,.

The full security analysis of the protocol will be undertaken in the next section, but it is worth already
sketching a result for the special case where Alice performs rank-one projective measurements since one can be
derived directly from the Shor—Preskill rate. In this scenario, where Alice’s z and x measurements simply project
into orthogonal bases {|0,), |1,) } and {|0y), |1;)}, essentially the only relevant parameter differentiating the
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measurements is the Bloch-sphere angle between them. For some suitable basis {|0,}, |1,y) } conjugate to
{10,), |1,)}, we may write

Ac = cos(p)A, + sin(p)A., (6)
where A,, = [0w) (Ow] — |1w) (1| and is the (unknown) Bloch-sphere angle between A, and A,. Setting
Eywx = (A, ® By),linearity of the quantum expectation value implies the relation

Ex = cos ((p)EZX + sin (SD)EWX (7)

The conjugate ‘w basis’ introduced here is useful because the (one-sided-device-independent) Shor—Preskill
key rate applies to it. Introducing, for convenience, the function

$(x) =1 — 21 + x)log,(1 + x) — (1 — x)log,(1 — x) (8)

(related to the binary entropy by ¢ (x) = h (% + %x)), the Shor—Preskill rate can be expressed as
r=21— ¢Ew) — ¢(En). ©)]

From here, it is a simple matter to obtain a key-rate bound depending only on the observed correlations. From
the relation (7) between the correlators, we obtain

|Exxl < lcos () ||Exx| + [sin () ||Evwxl
<VE, 2+ Ey’, (10)

which rearranges to
E,>>E *—E, (11)

Aslongas |Ey| > |E|, this implies the lower bound

r>1-— qb(w/Exxz — EZXZ) — ¢ (Ep) (12)

for the key rate.

More generally, it is clear that the key-rate bound (12) cannot hold against arbitrary POVMs on Alice’s side.
A simple counterexample is that if we allow Alice to perform the degenerate projective measurement
(M, M{®} = {1, Oy}, itis possible for Alice and Bob to obtain the result a = b = 0 deterministically (which
is completely insecure) while observing the correlations Ey, = E,, = 1and E,x = 0 (for which (12) would
imply r = 1). Of course, this particular pathological case is easily detected since Alice and Bob could notice that
they keep getting the same measurement results. In terms of the parameterisation given above, we thus do not
expect (12)tostillapplyif A, = 1.

There is a significant parameter range in which the rate (12) still holds, though. The main result of this article
is that the asymptotic rate (12) still applies, at least against collective attacks, if the correlations satisfy |Ex,| > |By|
and

E >+ E,*<1—2|A, — ExB,| + A% (13)

This is proved in the next section. As a special case, we recover the Shor—Preskill rate
r21—¢(Ex) — ¢(E) (14)

if there are no correlations in the mismatched bases cases (so that E,, = 0)andif|By| < |Ex| < 1 — |A,|; the
latter constraint reduces to |[E,| > 0 (which is necessary to certify a nonzero key rate anyway) if Alice’s and
Bob’s marginal results are equiprobable (so that A, = B, = 0).

In principle, the derivation given in the next section could be pursued further in order to derive alower
bound for the key rate in the case that the condition (13) is not satisfied. There is an easier way of getting a result
for this case, though. Since the condition (13) and key rate (12) are device independent on Bob’s side, we can
simply apply the result they would imply if Bob’s measurement operator B, were scaled down to AB, for some
scaling factor 0 <A <1. This way, we can use the modified bound

> 1 - 6(MWEL — Ex’) = (B, (15)

taking for A the highest number between zero and one satisfying

N(EL2+E ) =1—2|A, — XE By +A,°. (16)
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3. Proof of main result

3.1. Problem definition

In the worst-case scenario, Alice, Bob, and the adversary Eve share a purification |¥) € Hy ® Hp ® H,
prepared by Eve, of the state p,, responsible for the observed correlations according to (2). When Alice measures
u =1z, thesystemin Hy ® Hg is projected to the (unnormalised) state

p=TiA [(M? @ Iy) V] (17)
or
P =T [(M? @ lgp) V], (18)

depending, respectively, on whether Alice gets the resulta = Oora = 1. (We will in general write, e.g., P asa
shorthand for the density operator |¥) (U] associated to some pure state |¥).) The normalisations of these states
are related to the probabilities with which they are prepared according to Tr [p] = P4 (0|z) and

Tr[p'] = Py (1]z). The correlation between Alice’s result a and the state available to Eve is summarised by the
classical-quantum state

7ak = 10)(01 @ py; + 1) (1] @ p, (19)
in terms of Eve’s parts p, = Trg[p]and p;a = Trg[p'] of the possible density operators pand p’.
We consider the case where the key is extracted from the # = v = z measurement results. In this case, the

one-way asymptotic key rate secure against collective attacks is lower bounded by the Devetak—Winter rate [29],
which can be expressed as the difference of two entropies

r = H(A|E) — H(A|B). (20)

In (20), H (A|B) is the Shannon entropy of Alice’s outcome conditioned on Bob’s and can either be computed
directly or approximated by H (A|B) < h(8,) = ¢ (E,,). The main problem, and the main goal of this section, is
to derive alower bound for the conditional von Neumann entropy H (A|E), which is given by

H(A[E) = S(7ag) — S(7e)
= S(pp) + S(0}) — S(pg + Pl 21)
where S(p) = —Tr[p log,(p) ], when computed on the classical-quantum state (19).
The derivation followed in the remainder of this section uses a few mathematical tools (two of which are

minor restatements of results in [30]) which are presented here as lemmas. Proofs for these are supplied as
appendices to this article.

3.2. General proof outline
The starting point is the following relation for the conditional von Neumann entropy, which simplifies the
problem to that of lower bounding the fidelity between the marginal states available to Eve.

Lemma 1. The conditional von Neumann entropy, computed on the classical-quantum state
10) (0] ® pg + 1) (1] ® py, is lower bounded by

HAB) > 0(A) — 6(JA7 + 4F oy p)? ) (22)

in terms of the fidelity F (p, py,) between p, and p,. Furthermore, for fixed F (p, py), the right-hand side of (22) is
convexin A, and is minimised with A, = 0.

Here, we take the fidelity to be defined by F (p, o) = || \/p /7 ||i, where ||A[; = Tr[|A]] = Tr[VATA]
denotes the trace norm of an operator A, for (generally unnormalised) density operators p and . Note that the
minimisation of (22) at A, = 0 allows the bound for the von Neumann entropy to be simplified to

H(AIE) > 1 — ¢ 2F (py, p1))s (23)

though this step is optional, since A, is an observed parameter.

The approach we follow involves reducing the problem to considering pure states. To this end, we introduce
orthonormal bases {]0,), |1,)}, u € {z, x}, in which Alice’s (qubit Hermitian) POVM elements MM are
diagonal. In these bases, Alice’s POVMs can be expressed as convex sums

(M, M} = m™ {0, 1,} + m{ {1, 0,} + m{” {ln, Op} + m{* {Oy, I} (24)
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of the four projective measurements {0,, 1,}, {1,, 0,}, {lx, Or},and {Qy, 14} for convex coefficients satisfying
mi(”) > 0and Zi mi(“) = 1. (Here, 0, and 1, are shorthand for |0,) (0,| and |1,,) (1], and 1, and @, denote the
identity and null operators on H,.)

Concentrating on the z measurement, we can express the entangled state as

) = [0,)|a) + |1,)]d) (25)

for (unnormalised and not necessarily orthogonal) states |a), |a') € Hp ® Hg. The fidelity between Eve’s parts
ag and o, of the states |) and |a) introduced this way can, according to the following relation, be bounded in
terms of an operator Wy on Bob’s Hilbert space.

Lemma 2. The fidelity between Eve’s partial traces avy and o, of the pure states o) and |’ satisfies
where Wy = Trg [W]and W = |a) (/| + |&') (al.

We approach the problem of lower bounding || W ||; in the following way. Similar to (25), we express the
entangled state as

10) = 102)18) + 11:)18") @7)
for the u = x measurement. In an appropriate phase convention, the diagonalising bases are related by
|0,) = cos (§)|OX> — sin (%)Hx), (28)
[1,) = sin (§)|0X> + cos (%)ll,{) (29)
for some angle . From this and requiring that (25) and (27) are the same state, we extract
|8) = cos (%)Ia> + sin (%)la’), (30)
18" = —sin(%)|a> + cos(%)la’>. (31)
Introducing the correlators
Ey = Tr[By(ag — ap)], (32)
Ex = Tr[Bc (B — 5p)] (33)
for the pure states and
Eyy = Tr[B, Wy (34)

for the operator Wappearing in lemma 2, the relations (30) and (31) imply

Exx = COoS (SO)E=ZX + Sin((p)ﬁwxa (35)
and applying the Cauchy—Schwarz inequality and rearranging, we obtain
E. ' >E ' —E, (36)

similar the outline of the previous section. Finally, since 1§x is the difference of two POVM elements, it satisfies
the operator inequalities — g < By < lp; this allows E, to be used as alower bound on the trace norm || Wy ||;
of Wh:

Eyx = Tr By Wa] < ||[Walh||Bxllo < [[Walhs (37)

from which we finally obtain
AF (o, &) > B> — B, °. (38)

The remaining problem is to convert (38) into alower bound on F (py, p;) depending on the observed
parameters A,, B,, and E,,, which can be used in lemma 1 (or (23)). Part of the problem is to relate these
parameters to the pure-state versions Ey, and E,, appearingin (38). From the POVM decomposition (24) we
can deduce

Ew = (m* — m{")Ey, + (m{" — m{")B,, (39)

which will allow the E,, s to be related to the E,,,s and B,s. For the z measurement, we will also need to be able to
relate the fidelity F (a, ag)in(38)to F (Pp> pg). For this, we will need the following general bound for the
fidelity between mixtures of two states.
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Lemma 3. Let p, 0, Ty, and 7 be (not necessarily normalised) density operators related by
p = PyTo + P T (40)
T=4q,To+ 4T (41)
for parameters py, p,, 4, q, = 0. Then,

F(p, 0)* > (\/PO% [7olh + JPiay HTIHI)Z + (\/ Pody — \/p1QO)2F(7—0’ ™)’ (42)

3.3. Alice’s x POVM
The u = x measurement is the simplest to handle, since it is not used for key generation, so we deal with it first.
Rewriting the decomposition (39) for Ey as

Ex = AE + 1By, (43)
with A = m® — m{and y = m{® — m, the triangle inequality and the constraint || < 1 — || together
imply

|Bxsl < IMIEl + (1 = [ADIBl, (44)
which rearranges to
IN(Ed = |Exd) = (1= IAD(Ess| — |Bs))- (45)

If|Exx| > |Bx| then the only way that (45) can be satisfied isif |\| > 0 and if |Exx| > |Exy/- In this case Eyy can
safely be substituted in place of Ey in the pure-state fidelity bound (38). Otherwise, it is perfectly possible for the
x measurement POVM decomposition (43) to be satisfied with E. = 0.Inthe following, we will assume that
|Exx] > |Bxl, since (38) becomes trivial otherwise.

3.4. Alice’s zPOVM
The POVM decomposition (24) implies that the states pand p’ prepared on Hy ® Hj are related to v and o’ by

p=mPa+ mPa + m?(a+ o), (46)
p=mPa + mPa + m? (a + o). (47)
In general, the decomposition (24) for POVMs is not unique, so we have some freedom to choose a

decomposition which will simplify the problem of turning the fidelity bound

= 2
4F (o, o)? > E* — E, (48)

into alower bound for F (py, pé) depending on observed parameters A,,, B,, and E,,,.. Specifically, the identity
{0, L.} + {1, 0.} = {la, G:DA} + {®Aa 14} (49)

implies that one of the POVMs {15, @4 } or {Qy, 1} can always be eliminated, meaning we can assume that one
of my and mj in (24) is zero without loss of generality.

We proceed in two steps, first considering mixtures of the measurements {0,, 1,} and {1,, 0,}, before
accounting for a contribution from one of the measurements {15, Q4 } or {Qy, 14 }. In anticipation, and
assuming a contribution from {Qj, 5} for example, we re-express (46) and (47) as

p=pQa+q'a), (50)
pl=p@a+ qd) + p'(a+ o), (51)

where the nonnegative parameters p, p’, g, q" are related to the m@sby p = m® + m{?, p' = m{?,

pq = m®,and pq' = mi{? andsatisfy p + p' =q +4q = 1.
For the contribution from {0,, 1,}and {1,, 0,}, we set

p=qa+ q'd, (52)
P =qa+qd, (53)
and, applying lemma 3 and the pure-state fidelity bound (48), we have
4F (Py, pp)* = 499’ + (q — q))*4F (ag, ap)?
> 490’ + (@ — 9 (B’ — E). (54)
Introducing the correlator

sz =Tr [Bx (pB - pé)]) (55)
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2

AF By, pp)? > (499’ + (q — ) Ey” — E°
= (q + q,)zEXXZ - E‘zx2 (56)

related to E,, by E,x = (q — q')E,x, and using that 4gq" > 4qq'E

or
4F (bg> pp)? = E” — B (57)

which shows that allowing mixtures of the measurements {0,, 1, }and {1,, 0,} alone will not affect the key-rate
formula.
Finally, we account for the effect of a contribution from one of the degenerate measurements {l, O } or
{ Oy, 14}. Assuming first a contribution from { @}, 1, }, according to (50) and (51) and using that
p+ p = a+ o, pand p arerelated to the states p and p defined above by

p = pp (58)
p'=pp+p (59)
Applying lemma 3 again,
F(pg pp)* = pp" 121> + pF (P )™ (60)
Inserting the lower bound (57) for F (p, ﬁé) and recognising that
plalh = llplh = PaOlz) = (1 + A,)/2, (61)
the lower bound for F (py, p%) becomes
4F (py, pi)? = (% — 1)(1 + A,)? + pE_* — pE,*. (62)
The observed parameters
Exx = Tr[Bx (py — pp)] (63)
and
By = Tr[By (py + pp)] = Tr[By(py + )] (64)
arerelated to E,, by
Epx = pEn — p'Bx. (65)
Rearranging for E,, and inserting in (62), we obtain
s 1 > (5= 1)+ 40 4 pE* — p(SEa+ (4 - 1)Bx)2 (66)
or, subtracting E,,* — E,, * from both sides,
4F (o ) = B’ = B, > (2= )[4+ 407 = p(E = B = (Ba + B (67)
By following similar reasoning starting from the decomposition
p=p+p'p, (68)
p'=pp', (69)

assuming a contribution from {ll,, Oy } instead of { @y, 4 }, we obtain the same result as (67) except with the sign
changes A, — —A, and B, — —By. The worst of the two bounds obtained this way is

4F(pE’ Pia)z - (Exxz - szz) 2 (% - 1)[1 - 2|Az - szBxl + A22
p(Ey’ = B — (B’ + B |- (70)
The multiplicative factor 1/p — 1is nonnegative, so the right-hand side of (70) is nonnegative if

p(Eg’® — BD) + (x> + BH) <1 —2/A, — ExBy + A% (71)

Finally, since we are assuming |Ey,| > |By|, theterm p(E,* — B, ?) is nonnegative and is maximised with p = 1.
This implies that (71) is satisfied for all p < 1ifitissatisfied forp = 1,i.e.,if

E >+ E,*<1—2|A, — ExB,| + A% (72)
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which is the condition given in the previous section. If this condition is met then the lower bound
4F (p, p)* > By’ — B, (73)

can be used for the fidelity in lemma 1.

4, Conclusion

The preceding section proves that the key rate asymptotically secure against collective attacks for BB84 is lower
bounded by

r> o) — (YA, + BT~ E7) - 6 (B (74)

if|[Ex,| > |By|andifthe condition (72) is satisfied. This is never less than the simpler bound (12) claimed in
section 2. If (72) is not satisfied, device independence on Bob’s side still allows the main result to be used with the
replacements Eyy — AEy and E,x — AE,, with the scaling factor A determined by (16) above. Together, these
give a general semi-device-independent security result for the BB84 protocol against collective (and possibly [26]
more general) attacks. The traditional set of assumptions used to prove the security of the BB84 protocol can
thus be relaxed to a significant degree. It is still necessary to trust that one of the users’ measurements are
restricted to a two-dimensional Hilbert space, but exact knowledge of the measurements beyond this is not
required.

In the scenario considered, aside from the qubit restriction on Alice’s side, Alice’s and Bob’s measurements
were allowed to be arbitrary POVMs. One could go further, similar to [27, 28], and imagine that Eve may have
more detailed knowledge of the measurements. Specifically, the approach followed in this article could probably
be modified to allow Eve to know the indices i and j in decompositions of the form M{* = ¥, p.M, a(“l) and
NV =¥y i aN, cf"]) for the POVM elements, although the resulting key rate will probably not include the Shor—
Preskill rate as a special case if the adversary is granted this extra power.

Finally, the main result was derived for the entanglement-based version of BB84. It is likely that a similar
result should hold for the prepare-and-measure BB84 variant assuming a source which is restricted to emitting
qubit states, which was tested in a recent implementation [31]. Adapting the approach followed here for the
prepare-and-measure scenario is thus an obvious problem for future work.
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Appendix

A.1.Proofoflemma 1

The conditional von Neumann entropy satisfies H (A|E) > H (A|EE’) for any extension H ® Hy of Eve’s
Hilbert space Hg. We use this to replace the (unnormalised) density operators p;, and pg appearingin the
classical-quantum state (19) with purifications |1) and |1/’); by Uhlmann’s theorem (which still holds for
unnormalised states), these can be chosen such that (1[¢)') = F (py, p,). We this way obtain

H(AIE) 2 S() + S(@) — S + ¢")
= h(Px(012)) — h(A1), (75)

where

Ao =2 LAl — ¥/ + 4F oy p})? (76)
are the eigenvalues of ) + 1’. Recognising that
[l = 11¢" = 1lolh = (1ol
=P (0l2) — PA(1]2)
=A,, (77)
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we obtain

HAIE) > 6(4) — 6(|J4,% + 4F (py, p)? ), (78)

which is the lower bound claimed in the statement of lemma 1.
The right-hand side of (78) has the form

f@ = 6@ - o(J&+7?), (79

where we treat y as a fixed parameter and x should satisfy x? + y? < 1. We show that this function is convex by
lower bounding its second derivative. First, the first and second derivatives of ¢ are

’ __l 1+ x

¢ (x) = 2logz(l_x) (80)
and

" _ 1 1

1) = In(2)1 — x2° (81)

Applying the product rule, the first and second derivatives of fare

f@=dw - () =— (82)

x% + y?

and

2 2

— o' () L (83)

(xz + )’2)3/2

116 = 9" () = ¢ (V¥ + 77

.X2+}/2

Using that In ( t : i : ) > 2|x], the last term can be replaced with

2 2

() L >t (89)

(x2 + y2)3/2 In(2) x4+ yz’

so that

1 1 1 x? y?
"(x) > — + +
f ( ) 11‘1 (2)|: 1 — xz 1 — xZ _ yZ x2 + yZ xz + y2:|

1 1 1—y2
= - +
In@2)| 1—x* 1-—x2—y2
1 x2y2

T @ (-0 -2y
>0, (85)

which shows that fis convex. Noticing that f'(0) = 0 (or just that fis an even function) implies that x = 0is the
global minimum.

A.2.Proof oflemma 2
Abasic property of the trace norm is that || W |l; = Tr [Ug W] for some unitary operator Ug; furthermore, since
Wy is Hermitian, U can also be taken to be Hermitian. From here and using that W = |a) (a/| + |a/) (al,
[[Walh = Tr [Us Wl

=Tr[(Us ® Ig) W]

= 2Re[(a|Us ® lgla’)]

<2 [{alUp ® Igla')]

< 2F (ag, af). (86)
The final line follows, by Uhlmann’s theorem, from noticing that |o) and Ug ® Ig|a’) are purifications of g
and o
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A.3.Proof oflemma 3

We introduce purifications | x,) and | x;) of 7 and 7 such that F (75, 73) = (X,|);). In terms of these, note that
[v) = JPo X0 7o) + P Ix) ) (87)
o) = Jdo1x0)160) + 4, 1x1) 161)> (83)

where {|,), |v) } and {|6y), |61) } are orthonormal bases, are purifications of p and 0. Using Uhlmann’s theorem
and expanding, the fidelity between p and o is lower bounded by

F(p, o) 2 [{¢1)]
2B (xibxg) (i)
ij

Zﬂlpiqu(Tb 7)) Ui
ij

=|Tr[UT]|, (89)

where Uand T are the matrices of elements U; = (v|6;)and T;; = /p; q; F (7, 7). By exploiting the freedom to

choose the bases {|,), |7;) } and {|6o), |61)}, U canbe made tobeany2 X 2 unitary matrix. Maximising the
right-hand side over U, we obtain

E(p, o) = || T|h, (90)
with
JPo4o 170l \/Po%F(TOa )
= ) on
JPi@oF (o, 1) oy [l
in which we inserted that F (7, ;) = || 7).

In general, the tracenorm ofa2 X 2 matrix M = [a g] is given by
v

M|, = VT + 2D, (92)

where
T = o + 161> + > + |6, (93)
VD = |aé — By] (94)

are respectively the trace of [M|> = MM and the root of its determinant. Applying this to obtain an explicit
expression for the trace norm of (91) and using that F (79, 71) < +/||70||1 +/|| 71| produces the result

E(p, 0)* =2 (\/P()qo 7olh + NIZTN Hﬁ”l)2 + (\/ bty — \lplqO)ZF(TO’ )’ (95)
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