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During the production process aminus signwasmistakenly removed from equation (70). The correct equation
should read as follows
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Abstract
The BB84 quantumkey distribution protocol is semi device independent in the sense that it can be
shown to be secure if just one of the users’ devices is restricted to a qubitHilbert space.Here, we derive
an analytic lower bound on the asymptotic secret key rate for the entanglement-based version of BB84
assuming only that one of the users performs unknown qubit POVMs. The result holds against the
class of collective attacks and reduces to thewell known Shor–Preskill key rate for correlations
corresponding to the ideal BB84 correlationsmixedwith any amount of randomnoise.

1. BB84 anddevice independence

Quantumkey distribution (QKD) [1, 2]protocols allow cooperating users to generate cryptographic keys in
such away that unauthorised eavesdropping can be detected. This is achieved by exploiting features of quantum
physics, such as the general inability tomeasure a quantum state without disturbing it, in away that guarantees
that any attempt at eavesdropping on the protocol will introduce detectable errors.

One of aQKDprotocol’s differentiating features is the degree towhich it is device independent [3–5] i.e., the
extent towhich the protocol can be proved secure independently of assumptions about the internal functioning
of the devices in the physical setup. This is of practical interest as device-independent protocols are intrinsically
more robust, ensuring that both unintended andmaliciously introduced implementation faults are detected
automatically. Protocols can range from fully characterised (the exact quantum state preparations and/or
measurementsmust be known) to fully device independent (security is established based only on the detection of
Bell-nonlocal [6, 7] correlations, independently of themechanism that produced them). Between these
extremes, partially device-independent protocols have also been proposed inwhich only some of the devices are
fully characterised [8–10] and inwhich only aHilbert space dimension bound is assumed for the source of
quantum states [11, 12].

The BB84 protocol [13]was originally introduced as a fully characterised protocol. A commonly considered
prepare-and-measure version runs as follows. One user (‘Alice’) generates a string of randombits that shewishes
to transmit to another distant user (‘Bob’). Alice sequentially encodes each bit onto one of two corresponding
orthogonal sz eigenstates ñ∣0 and ñ∣1 which she transmits to Bob. In order to be able to detect eavesdropping,
Alice inserts instances of the sx eigenstates +ñ∣ and -ñ∣ , with ñ = ñ  ñ∣ (∣ ∣ )0 1 2 , at some random locations
in the sequence of quantum states to be transmitted to Bob. Bobmeasuresmost of the states he receives from
Alice in the s = ñá - ñá∣ ∣ ∣ ∣0 0 1 1z basis and the remainingminority of cases in the s = +ñá+ - -ñá-∣ ∣ ∣ ∣x

basis. Afterwards, the record of cases where Alice and Bob usedmismatched bases (Alice prepared a sz state and
Bobmeasured sx or vice versa) are discarded. The cases where Alice and Bob both used the sx basis and a
randomly chosen subset of cases where they both used the sz basis are used to estimate the x- and z-basis error
rates dx and dz and then likewise discarded. Finally, if the error rates are not too high, classical postprocessing
allows a (generally shorter) secret key to be generatedwith the relative errors betweenAlice’s and Bob’s versions
corrected andwith any knowledge of the key by an adversary effectively erased.

There is also an entanglement-based version of BB84, inwhich a central source prepares and distributes
entangled states whichAlice, as well as Bob,measures in the sz and sx bases. In this case, the initial bitstring is
obtained from themeasurement results rather than froma separate randomness generation procedure. Since
Alice’s sz or sx measurement can be thought of as effectively preparing a state for Bob [14], there is some
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equivalence between the two versions of the protocol. In particular, in both versions, one-way classical
postprocessing allows a secret key to be extracted at an asymptotic rate given by the Shor–Preskill key rate [15],

d d- -( ) ( ) ( )r h h1 , 1x z

where = - - - -( ) ( ) ( ) ( )h x x x x xlog 1 log 12 2 is the binary entropy function, depending on the error rates
dx and dz.

Since its original proposal, it has become apparent that the BB84 protocol exhibits a significant degree of
device independence. BB84was first found to be one-sided device independent, i.e., the explicit characterisation of
one of the devices can be dropped. This was already indicated by some early security results [16–18] for the
prepare-and-measure version of BB84which do not explicitly depend onBob’smeasurements, and later
analyses [19, 20] found that the Shor–Preskill key-rate bound (1) still holds at the one-sided-device-independent
level if Alice’s source prepares the sz and sx eigenstates (in the prepare-and-measure version) or just one of the
usersmeasures in the sz and sx bases (in the entanglement-based version).

Recent analyses have started to exploit results from themismatched bases cases, which are usually discarded,
in order to improve the security certification [21, 22], and some authors have further pointed out that this can
reduce the level of characterisation required to just a dimension bound for one of the devices. In [23] it wasfirst
shown that the Shor–Preskill rate still holds if no correlations are observed in themismatched bases cases
assuming that Alice performs unknown projective qubitmeasurements. A similar result was recovered
numerically in [24] for general qubit POVMs onAlice’s side, assuming that Bob also performs qubit
measurements. The prepare-and-measure version of BB84was also studied numerically in [25] at a similar level
of device independence, where Alice’s source prepares unknown pure qubit states and Bob performs unknown
projective qubitmeasurements.

Here, we study the BB84 protocol in this semi-device-independent scenario (borrowing the name from [11]),
wherewe assume only that Alice’s device acts on a two-dimensionalHilbert space. Themain result will be an
analytic lower bound on the asymptotic secret key rate for the entanglement-based version of BB84wherewe
allowAlice’smeasurements to be arbitrary qubit POVMs andBob’smeasurements are left uncharacterised. The
result holds against the class of collective attacks [17] (i.e., assuming that Alice’s and Bob’smeasurements are
always performed on the same entangled state), which is known to imply unconditional security at least if the
measurements arememoryless and if theHilbert-space dimension is bounded [26].

The qubit device assumption is taken here tomean that Alice’s result depends only on themeasurement of a
qubit state. In particular, similar to [27, 28], we assume that Alice’smeasurement result does not depend on
additional classical information that could also be available to Bob’s device (so-called ‘shared randomness’ [11]).
This is necessary as the ideal (entanglement-based)BB84 correlations can be simulatedwith two shared classical
randombits—a special case of what an adversary could prepare with a shared classical bit and an entangled qubit
which is completely insecure from a cryptographic perspective. A consequence is that, unusually for aQKD
security result, any (nontrivial) lower bound on the key rate cannot be a convex function of the probabilities
P(ab ∣uv) at this level of device independence.

2. Scenario andmain result

In the entanglement-based version of the BB84 protocol, Alice and Bob share a state rAB on someHilbert space

Ä A B, onwhich they can performPOVMs { }( ) ( )M M,u u
0 1 and { }( ) ( )N N,v v

0 1 indexed bymeasurement choices
Î { }u v, z, x and yielding results Î { }a b, 0, 1 with probability

r= Ä( ∣ ) [( ) ] ( )( ) ( )P ab uv M NTr . 2a
u

b
v

AB

In the semi-device-independent level of security that we consider, we assume that =dim 2A . The state rAB

andmeasurements are otherwise treated as unknown. Setting = -ˆ ( ) ( )A M Mu
u u

0 1 and = -ˆ ( ) ( )B N Nv
v v

0 1 , a
convenient summary of the probabilities ( ∣ )P ab uv that wewill use is given by the eight parameters

= á Ä ñˆ ( )A A , 3u u B

= á Ä ñˆ ( )B B , 4v vA

= á Ä ñˆ ˆ ( )E A B , 5uv u v

with rá ñ =· [ · ]Tr AB . Note that Ezz and Exx here are related to themore conventional z- and x-basis error
rates dz and dx by d= -E 1 2uu u .

The full security analysis of the protocol will be undertaken in the next section, but it is worth already
sketching a result for the special case where Alice performs rank-one projectivemeasurements since one can be
derived directly from the Shor–Preskill rate. In this scenario, where Alice’s z and xmeasurements simply project
into orthogonal bases ñ ñ{∣ ∣ }0 , 1z z and ñ ñ{∣ ∣ }0 , 1x x , essentially the only relevant parameter differentiating the

2
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measurements is the Bloch-sphere angle between them. For some suitable basis ñ ñ{∣ ∣ }0 , 1w w conjugate to
ñ ñ{∣ ∣ }0 , 1z z , wemaywrite

j j= +ˆ ( ) ˆ ( ) ˆ ( )A A Acos sin , 6x z w

where = ñá - ñáˆ ∣ ∣ ∣ ∣A 0 0 1 1w w w w w andj is the (unknown)Bloch-sphere angle between Âz and Âx. Setting
= á Ä ñˆ ˆE A Bwx w x , linearity of the quantum expectation value implies the relation

j j= +( ) ( ) ( )E E Ecos sin . 7xx zx wx

The conjugate ‘wbasis’ introduced here is useful because the (one-sided-device-independent) Shor–Preskill
key rate applies to it. Introducing, for convenience, the function

f = - + + - - -( ) ( ) ( ) ( ) ( ) ( )x x x x x1 1 log 1 1 log 1 81

2 2
1

2 2

(related to the binary entropy by f = ( )( )x h x1

2

1

2
), the Shor–Preskill rate can be expressed as

f f- -( ) ( ) ( )r E E1 . 9wx zz

Fromhere, it is a simplematter to obtain a key-rate bound depending only on the observed correlations. From
the relation (7) between the correlators, we obtain

j j+

+

∣ ∣ ∣ ( )∣∣ ∣ ∣ ( )∣∣ ∣

( )





E E E

E E

cos sin

, 10

xx zx wx

zx
2

wx
2

which rearranges to

- ( )E E E . 11wx
2

xx
2

zx
2

As long as ∣ ∣ ∣ ∣E Exx zx , this implies the lower bound

f f- - -( ) ( ) ( )r E E E1 12xx
2

zx
2

zz

for the key rate.
More generally, it is clear that the key-rate bound (12) cannot hold against arbitrary POVMs onAlice’s side.

A simple counterexample is that if we allowAlice to perform the degenerate projectivemeasurement
0={ } { }( ) ( ) M M, ,0

z
1

z
A A , it is possible for Alice and Bob to obtain the result = =a b 0 deterministically (which

is completely insecure)while observing the correlations = =E E 1xx zz and =E 0zx (for which (12)would
imply r= 1). Of course, this particular pathological case is easily detected sinceAlice and Bob could notice that
they keep getting the samemeasurement results. In terms of the parameterisation given above, we thus do not
expect (12) to still apply if =A 1z .

There is a significant parameter range inwhich the rate (12) still holds, though. Themain result of this article
is that the asymptotic rate (12) still applies, at least against collective attacks, if the correlations satisfy >∣ ∣ ∣ ∣E Bxx x

and

+ - - +∣ ∣ ( )E E A E B A1 2 . 13xx
2

zx
2

z zx x z
2

This is proved in the next section. As a special case, we recover the Shor–Preskill rate

f f- -( ) ( ) ( )r E E1 14xx zz

if there are no correlations in themismatched bases cases (so that =E 0zx ) and if < -∣ ∣ ∣ ∣ ∣ ∣B E A1 ;x xx z the
latter constraint reduces to >∣ ∣E 0xx (which is necessary to certify a nonzero key rate anyway) if Alice’s and
Bob’smarginal results are equiprobable (so that = =A B 0z x ).

In principle, the derivation given in the next section could be pursued further in order to derive a lower
bound for the key rate in the case that the condition (13) is not satisfied. There is an easier way of getting a result
for this case, though. Since the condition (13) and key rate (12) are device independent onBob’s side, we can
simply apply the result theywould imply if Bob’smeasurement operator B̂x were scaled down to lB̂x for some
scaling factor 0�λ�1. This way, we can use themodified bound

f l f- - -( ) ( ) ( )r E E E1 , 15xx
2

zx
2

zz

taking forλ the highest number between zero and one satisfying

l l+ = - - +( ) ∣ ∣ ( )E E A E B A1 2 . 162
xx

2
zx

2
z

2
zx x z

2

3
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3. Proof ofmain result

3.1. Problemdefinition
In theworst-case scenario, Alice, Bob, and the adversary Eve share a purification Yñ Î Ä Ä∣   A B E,
prepared by Eve, of the state rAB responsible for the observed correlations according to (2).WhenAlicemeasures
u= z, the system in Ä B E is projected to the (unnormalised) state

r = Ä Y[( ) ] ( )( ) MTr 17A 0
z

BE

or

r¢ = Ä Y[( ) ] ( )( ) MTr , 18A 1
z

BE

depending, respectively, onwhether Alice gets the result a=0 or a=1. (Wewill in general write, e.g.,Ψ as a
shorthand for the density operator YñáY∣ ∣associated to some pure state Yñ∣ .)The normalisations of these states
are related to the probabilities withwhich they are prepared according to r =[ ] ( ∣ )PTr 0 zA and

r¢ =[ ] ( ∣ )PTr 1 zA . The correlation betweenAlice’s result a and the state available to Eve is summarised by the
classical-quantum state

t r r= ñá Ä + ñá Ä ¢∣ ∣ ∣ ∣ ( )0 0 1 1 , 19AE E E

in terms of Eve’s parts r r= [ ]TrE B and r r¢ = ¢[ ]TrE B of the possible density operators ρ and r¢.
We consider the case where the key is extracted from the = =u v z measurement results. In this case, the

one-way asymptotic key rate secure against collective attacks is lower bounded by theDevetak–Winter rate [29],
which can be expressed as the difference of two entropies

= -( ∣ ) ( ∣ ) ( )r H A H A BE . 20

In (20), ( ∣ )H A B is the Shannon entropy of Alice’s outcome conditioned onBob’s and can either be computed
directly or approximated by d f=( ∣ ) ( ) ( )H A B h Ez zz . Themain problem, and themain goal of this section, is
to derive a lower bound for the conditional vonNeumann entropy ( ∣ )H A E , which is given by

t t
r r r r

= -
= + ¢ - + ¢

( ∣ ) ( ) ( )
( ) ( ) ( ) ( )

H A S S

S S S

E

, 21
AE E

E E E E

where r r r= -( ) [ ( )]S Tr log2 , when computed on the classical-quantum state (19).
The derivation followed in the remainder of this section uses a fewmathematical tools (two ofwhich are

minor restatements of results in [30])which are presented here as lemmas. Proofs for these are supplied as
appendices to this article.

3.2. General proof outline
The starting point is the following relation for the conditional vonNeumann entropy, which simplifies the
problem to that of lower bounding the fidelity between themarginal states available to Eve.

Lemma1.The conditional vonNeumann entropy, computed on the classical-quantum state
r rñá Ä + ñá Ä ¢∣ ∣ ∣ ∣0 0 1 1E E, is lower bounded by

f f r r- + ¢( )( ∣ ) ( ) ( ) ( )H A A A FE 4 , 22z z
2

E E
2

in terms of the fidelity r r¢( )F ,E E between rE and r¢E. Furthermore, for fixed r r¢( )F ,E E , the right-hand side of (22) is
convex in Az and isminimised with =A 0z .

Here, we take thefidelity to be defined by r s r s=( )F , 1  , where = =[∣ ∣] [ ]†A A A ATr Tr1 
denotes the trace normof an operatorA, for (generally unnormalised) density operators ρ andσ. Note that the
minimisation of (22) at =A 0z allows the bound for the vonNeumann entropy to be simplified to

f r r- ¢( ∣ ) ( ( )) ( )H A FE 1 2 , , 23E E

though this step is optional, since Az is an observed parameter.
The approachwe follow involves reducing the problem to considering pure states. To this end, we introduce

orthonormal bases ñ ñ{∣ ∣ }0 , 1u u , Î { }u z, x , inwhichAlice’s (qubitHermitian)POVMelements ( )Ma
u are

diagonal. In these bases, Alice’s POVMs can be expressed as convex sums

0 0= + + +{ } { } { } { } { } ( )( ) ( ) ( ) ( ) ( ) ( ) M M m m m m, 0 , 1 1 , 0 , , 24u u u
u u

u
u u

u u
0 1 1 2 3 A A 4 A A

4
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of the four projectivemeasurements { }0 , 1u u , { }1 , 0u u , 0{ } ,A A , and 0{ },A A for convex coefficients satisfying
( ) m 0i
u andå =( )m 1

i i
u . (Here, 0u and1u are shorthand for ñá∣ ∣0 0u u and ñá∣ ∣1 1u u , and A and0A denote the

identity and null operators onA.)
Concentrating on the zmeasurement, we can express the entangled state as

a aYñ = ñ ñ + ñ ¢ñ∣ ∣ ∣ ∣ ∣ ( )0 1 25z z

for (unnormalised andnot necessarily orthogonal) states a añ ¢ñ Î Ä∣ ∣  , B E. Thefidelity between Eve’s parts
aE and a¢E of the states añ∣ and a¢ñ∣ introduced this way can, according to the following relation, be bounded in
terms of an operator WB onBob’sHilbert space.

Lemma2.The fidelity between Eve’s partial traces aE and a¢E of the pure states añ∣ and a¢ñ∣ satisfies

a a¢( ) ( )F W2 , , 26E E B 1 

where = [ ]W WTrB E and a a a a= ñá ¢ + ¢ñá∣ ∣ ∣ ∣W .

Weapproach the problemof lower bounding WB 1  in the followingway. Similar to (25), we express the
entangled state as

b bYñ = ñ ñ + ñ ¢ñ∣ ∣ ∣ ∣ ∣ ( )0 1 27x x

for the =u x measurement. In an appropriate phase convention, the diagonalising bases are related by

ñ = ñ - ñj j( ) ( )∣ ∣ ∣ ( )0 cos 0 sin 1 , 28z 2 x 2 x

ñ = ñ + ñj j( ) ( )∣ ∣ ∣ ( )1 sin 0 cos 1 29z 2 x 2 x

for some anglej. From this and requiring that (25) and (27) are the same state, we extract

b a añ = ñ + ¢ñj j( ) ( )∣ ∣ ∣ ( )cos sin , 30
2 2

b a a¢ñ = - ñ + ¢ñj j( ) ( )∣ ∣ ∣ ( )sin cos . 31
2 2

Introducing the correlators

a a= - ¢¯̄ [ ˆ ( )] ( )E BTr , 32zx x B B

b b= - ¢¯̄ [ ˆ ( )] ( )E BTr 33xx x B B

for the pure states and

=¯̄ [ ˆ ] ( )E B WTr 34wx x B

for the operatorW appearing in lemma 2, the relations (30) and (31) imply

j j= +¯̄ ( ) ¯̄ ( ) ¯̄ ( )E E Ecos sin , 35xx zx wx

and applying theCauchy–Schwarz inequality and rearranging, we obtain

-¯̄ ¯̄ ¯̄ ( )E E E , 36wx
2

xx
2

zx
2

similar the outline of the previous section. Finally, since B̂x is the difference of two POVMelements, it satisfies
the operator inequalities- ˆ  B ;B x B this allows ¯̄Ewx to be used as a lower bound on the trace norm WB 1 
ofWB:

= ¥¯̄ [ ˆ ] ˆ ( ) E B W W B WTr , 37wx x B B 1 x B 1     

fromwhichwe finally obtain

a a¢ -( ) ¯̄ ¯̄ ( )F E E4 , . 38E E
2

xx
2

zx
2

The remaining problem is to convert (38) into a lower bound on r r¢( )F ,E E depending on the observed
parametersAu,Bv, andEuvwhich can be used in lemma 1 (or (23)). Part of the problem is to relate these
parameters to the pure-state versions ¯̄Exx and ¯̄Ezx appearing in (38). From the POVMdecomposition (24)we
can deduce

= - + -( ) ¯̄ ( ) ( )( ) ( ) ( ) ( )E m m E m m B , 39uv
u u

uv
u u

v1 2 3 4

whichwill allow the ¯̄E suv to be related to theEuvs andBvs. For the zmeasurement, wewill also need to be able to
relate the fidelity a a¢( )F ,E E in (38) to r r¢( )F ,E E . For this, wewill need the following general bound for the
fidelity betweenmixtures of two states.

5
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Lemma3. Let r, s, t0, and t1 be (not necessarily normalised) density operators related by

r t t= + ( )p p , 400 0 1 1

s t t= + ( )q q 410 0 1 1

for parameters p p q q, , , 00 1 0 1 . Then,

r s t t t t+ + -( ) ( )( ) ( ) ( )F p q p q p q p q F, , . 422
0 0 0 1 1 1 1 1

2
0 1 1 0

2
0 1

2   

3.3. Alice’s x POVM
The =u x measurement is the simplest to handle, since it is not used for key generation, sowe deal with itfirst.
Rewriting the decomposition (39) for Exx as

l m= +¯̄ ( )E E B , 43xx xx x

with l = -( ) ( )m m1
x

2
x and m = -( ) ( )m m3

x
4

x , the triangle inequality and the constraint m l-∣ ∣ ∣ ∣ 1 together
imply

l l+ -∣ ∣ ∣ ∣∣ ¯̄ ∣ ( ∣ ∣)∣ ∣ ( )E E B1 , 44xx xx x

which rearranges to

l l- - -∣ ∣(∣ ¯̄ ∣ ∣ ∣) ( ∣ ∣)(∣ ∣ ∣ ∣) ( )E E E B1 . 45xx xx xx x

If >∣ ∣ ∣ ∣E Bxx x then the onlyway that (45) can be satisfied is if l >∣ ∣ 0 and if ∣ ¯̄ ∣ ∣ ∣E Exx xx . In this case Exx can
safely be substituted in place of ¯̄Exx in the pure-state fidelity bound (38). Otherwise, it is perfectly possible for the
x measurement POVMdecomposition (43) to be satisfiedwith =¯̄E 0xx . In the following, wewill assume that

>∣ ∣ ∣ ∣E Bxx x , since (38) becomes trivial otherwise.

3.4. Alice’s z POVM
The POVMdecomposition (24) implies that the states ρ and r¢ prepared on Ä B E are related toα and a¢ by

r a a a a= + ¢ + + ¢( ) ( )( ) ( ) ( )m m m , 461
z

2
z

3
z

r a a a a¢ = ¢ + + + ¢( ) ( )( ) ( ) ( )m m m . 471
z

2
z

4
z

In general, the decomposition (24) for POVMs is not unique, sowe have some freedom to choose a
decompositionwhichwill simplify the problemof turning the fidelity bound

a a¢ -( ) ¯̄ ( )F E E4 , 48E E
2

xx
2

zx
2

into a lower bound for r r¢( )F ,E E depending on observed parametersAu,Bv, andEuv. Specifically, the identity

0 0+ = +{ } { } { } { } ( ) 0 , 1 1 , 0 , , 49z z z z A A A A

implies that one of the POVMs 0{ } ,A A or 0{ },A A can always be eliminated,meaningwe can assume that one
of m3

z and m4
z in (24) is zerowithout loss of generality.

We proceed in two steps,first consideringmixtures of themeasurements { }0 , 1z z and { }1 , 0z z , before
accounting for a contribution fromone of themeasurements 0{ } ,A A or 0{ },A A . In anticipation, and
assuming a contribution from 0{ },A A for example, we re-express (46) and (47) as

r a a= + ¢ ¢( ) ( )p q q , 50

r a a a a¢ = ¢ + ¢ + ¢ + ¢( ) ( ) ( )p q q p , 51

where the nonnegative parameters p, ¢p , q, ¢q are related to the ( )m si
z by = +( ) ( )p m m1

z
2

z , ¢ = ( )p m4
z ,

= ( )pq m1
z , and ¢ = ( )pq m2

z and satisfy + ¢ = + ¢ =p p q q 1.
For the contribution from { }0 , 1z z and { }1 , 0z z , we set

r a a= + ¢ ¢¯ ( )q q , 52

r a a¢ = ¢ + ¢¯ ( )q q , 53

and, applying lemma 3 and the pure-state fidelity bound (48), we have

r r a a¢ ¢ + - ¢ ¢

¢ + - ¢ -

( ¯ ¯ ) ( ) ( )

( ) ( ¯̄ ) ( )





F qq q q F

qq q q E E

4 , 4 4 ,

4 . 54

E E
2 2

E E
2

2
xx

2
zx

2

Introducing the correlator

r r= - ¢¯ [ ˆ ( ¯ ¯ )] ( )E BTr , 55zx x B B
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related to ¯̄Ezx by = - ¢¯ ( ) ¯̄E q q Ezx zx, and using that ¢ ¢qq qq E4 4 xx
2,

r r ¢ ¢ + - ¢ -

= + ¢ -

( ¯ ¯ ) ( ( ) ) ¯

( ) ¯ ( )

F qq q q E E

q q E E

4 , 4

56
E E

2 2
xx

2
zx

2

2
xx

2
zx

2

or

r r ¢ -( ¯ ¯ ) ¯ ( )F E E4 , , 57E E
2

xx
2

zx
2

which shows that allowingmixtures of themeasurements { }0 , 1z z and { }1 , 0z z alonewill not affect the key-rate
formula.

Finally, we account for the effect of a contribution fromone of the degeneratemeasurements 0{ } ,A A or
0{ },A A . Assuming first a contribution from 0{ },A A , according to (50) and (51) and using that
r r a a+ ¢ = + ¢¯ ¯ , ρ and r¢ are related to the states r̄ and r¢¯ defined above by

r r= ¯ ( )p , 58

r r r¢ = ¢ + ¢¯ ¯ ( )p . 59

Applying lemma 3 again,

r r r r r¢ ¢ + ¢( ) ¯ ( ¯ ¯ ) ( )F pp pF, , . 60E E
2

1
2

E E
2 

Inserting the lower bound (57) for r r ¢( ¯ ¯ )F ,E E and recognising that

r r= = = +¯ ( ∣ ) ( ) ( )p P A0 z 1 2, 611 1 A z   

the lower bound for r r¢( )F ,E E becomes

r r¢ - + + -( )( ) ( ) ¯ ( )F A pE pE4 , 1 1 . 62
pE E

2 1
z

2
xx

2
zx

2

The observed parameters

r r= - ¢[ ˆ ( )] ( )E BTr 63zx x B B

and

r r r r= + ¢ = + ¢[ ˆ ( )] [ ˆ ( ¯ ¯ )] ( )B B BTr Tr 64x x B B x B B

are related to Ēzx by

= - ¢¯ ( )E pE p B . 65zx zx x

Rearranging for Ēzx and inserting in (62), we obtain

r r¢ - + + - + -( )( ) ( )( ) ( ) ( )F A pE p E B4 , 1 1 1 66
p p pE E

2 1
z

2
xx

2 1
zx

1
x

2

or, subtracting -E Exx
2

zx
2 fromboth sides,

r r¢ - - - + - - - +( )( ) ( ) ( ) ( ) ( ) ( ) ⎡⎣ ⎤⎦F E E A p E B E B4 , 1 1 . 67
pE E

2
xx

2
zx

2 1
z

2
xx

2
x

2
zx x

2

By following similar reasoning starting from the decomposition

r r r= + ¢ ¢¯ ¯ ( )p , 68

r r¢ = ¢¯ ( )p , 69

assuming a contribution from 0{ } ,A A instead of 0{ },A A , we obtain the same result as (67) except with the sign
changes  -A Az z and  -B Bx x. Theworst of the two bounds obtained this way is

r r¢ - - - - - +

- - +

( )( ) ( ) ∣ ∣

( ) ( ) ( )

 ⎡⎣
⎤⎦

F E E A E B A

p E B E B

4 , 1 1 2

. 70

p zE E
2

xx
2

zx
2 1

z zx x
2

xx
2

x
2

zx
2

x
2

Themultiplicative factor -p1 1 is nonnegative, so the right-hand side of (70) is nonnegative if

- + + - - +( ) ( ) ∣ ∣ ( )p E B E B A E B A1 2 . 71xx
2

x
2

zx
2

x
2

z zx x z
2

Finally, sincewe are assuming >∣ ∣ ∣ ∣E Bxx x , the term -( )p E Bxx
2

x
2 is nonnegative and ismaximisedwith p= 1.

This implies that (71) is satisfied for all p 1 if it is satisfied for p=1, i.e., if

+ - - +∣ ∣ ( )E E A E B A1 2 , 72xx
2

zx
2

z zx x z
2
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which is the condition given in the previous section. If this condition ismet then the lower bound

r r¢ -( ) ( )F E E4 , 73E E
2

xx
2

zx
2

can be used for thefidelity in lemma 1.

4. Conclusion

The preceding section proves that the key rate asymptotically secure against collective attacks for BB84 is lower
bounded by

f f f- + - -( )( ) ( ) ( )r A A E E E 74z z
2

xx
2

zx
2

zz

if >∣ ∣ ∣ ∣E Bxx x and if the condition (72) is satisfied. This is never less than the simpler bound (12) claimed in
section 2. If (72) is not satisfied, device independence onBob’s side still allows themain result to be usedwith the
replacements lE Exx xx and lE Ezx zx, with the scaling factorλ determined by (16) above. Together, these
give a general semi-device-independent security result for the BB84 protocol against collective (and possibly [26]
more general) attacks. The traditional set of assumptions used to prove the security of the BB84 protocol can
thus be relaxed to a significant degree. It is still necessary to trust that one of the users’measurements are
restricted to a two-dimensional Hilbert space, but exact knowledge of themeasurements beyond this is not
required.

In the scenario considered, aside from the qubit restriction onAlice’s side, Alice’s andBob’smeasurements
were allowed to be arbitrary POVMs.One could go further, similar to [27, 28], and imagine that Evemay have
more detailed knowledge of themeasurements. Specifically, the approach followed in this article could probably
bemodified to allowEve to know the indices i and j in decompositions of the form = å( ) ( )M p Ma

u
i i a i

u
; and

= å( ) ( )N q Na
v

j j a j
v
; for the POVMelements, although the resulting key ratewill probably not include the Shor–

Preskill rate as a special case if the adversary is granted this extra power.
Finally, themain result was derived for the entanglement-based version of BB84. It is likely that a similar

result should hold for the prepare-and-measure BB84 variant assuming a sourcewhich is restricted to emitting
qubit states, whichwas tested in a recent implementation [31]. Adapting the approach followed here for the
prepare-and-measure scenario is thus an obvious problem for futurework.
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Appendix

A.1. Proof of lemma1
The conditional vonNeumann entropy satisfies ¢( ∣ ) ( ∣ )H A H AE EE for any extension Ä ¢ E E of Eve’s
Hilbert spaceE.We use this to replace the (unnormalised)density operators rE and r¢E appearing in the
classical-quantum state (19)with purifications yñ∣ and y¢ñ∣ ; byUhlmann’s theorem (which still holds for
unnormalised states), these can be chosen such that y y r rá ¢ñ = ¢∣ ( )F ,E E .We this way obtain

y y y y
l

+ ¢ - + ¢
= - +

( ∣ ) ( ) ( ) ( )
( ( ∣ )) ( ) ( )

H A S S S

h P h

E

0 z , 75A

where

l y y r r=  - ¢ + ¢ ( ) ( ) ( )F4 , 761

2

1

2 1 1
2

E E
2   

are the eigenvalues of y y+ ¢. Recognising that

y y r r- ¢ = - ¢
= -
=

( ∣ ) ( ∣ )
( )

P P
A

0 z 1 z
, 77

1 1 1 1

A A

z
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we obtain

f f r r- + ¢( )( ∣ ) ( ) ( ) ( )H A A A FE 4 , , 78z z
2

E E
2

which is the lower bound claimed in the statement of lemma 1.
The right-hand side of (78)has the form

f f= - +( )( ) ( ) ( )f x x x y , 792 2

wherewe treat y as afixed parameter and x should satisfy + x y 12 2 .We show that this function is convex by
lower bounding its second derivative. First, the first and second derivatives off are

f¢ = -
+
-

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠x

x

x

1

2
log

1

1
802

and

f = -
-

( )
( )

( )x
x

1

ln 2

1

1
. 81

2

Applying the product rule, the first and second derivatives of f are

f f¢ = ¢ - ¢ +
+

( )( ) ( ) ( )f x x x y
x

x y
822 2

2 2

and

f f f =  -  +
+

- ¢ +
+( ) ( )( ) ( )

( )
( )f x x x y

x

x y
x y

y

x y
. 832 2

2

2 2
2 2

2

2 2 3 2

Using that +
-( ) ∣ ∣∣ ∣

∣ ∣
 xln 2x

x

1

1
, the last term can be replacedwith

f- ¢ +
+ +( ) ( ) ( )

( )x y
y

x y

y

x y

1

ln 2
, 842 2

2

2 2 3 2

2

2 2

so that

¢¢ -
-

+
- - +

+
+

= -
-

+
-

- -

=
- - -

( )
( )

( )

( ) ( )( )
( )





⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

f x
x x y

x

x y

y

x y

x

y

x y

x y

x x y

1

ln 2

1

1

1

1

1

ln 2

1

1

1

1

1

ln 2 1 1

0, 85

2 2 2

2

2 2

2

2 2

2

2

2 2

2 2

2 2 2

which shows that f is convex.Noticing that ¢ =( )f 0 0 (or just that f is an even function) implies that x=0 is the
globalminimum.

A.2. Proof of lemma2
Abasic property of the trace norm is that = [ ]W U WTrB 1 B B  for some unitary operatorUB; furthermore, since
WB isHermitian,UB can also be taken to beHermitian. Fromhere and using that a a a a= ñá ¢ + ¢ñá∣ ∣ ∣ ∣W ,

a a
a a
a a

=
= Ä
= á Ä ¢ñ

á Ä ¢ñ
¢

[ ]
[( ) ]

[ ∣ ∣ ]
∣ ∣ ∣ ∣
( ) ( )










W U W

U W

U

U

F

Tr

Tr

2 Re

2

2 , . 86

B 1 B B

B E

B E

B E

E E

 

Thefinal line follows, byUhlmann’s theorem, fromnoticing that añ∣ and aÄ ¢ñ∣UB E are purifications of aE

and a¢E.
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A.3. Proof of lemma3
We introduce purifications c ñ∣ 0 and c ñ∣ 1 of t0 and t1 such that t t c c= á ñ( ) ∣F ,0 1 0 1 . In terms of these, note that

y c g c gñ = ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )p p , 870 0 0 1 1 1

f c d c dñ = ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )q q , 880 0 0 1 1 1

where g gñ ñ{∣ ∣ },0 1 and d dñ ñ{∣ ∣ },0 1 are orthonormal bases, are purifications of ρ andσ. UsingUhlmann’s theorem
and expanding, the fidelity between ρ andσ is lower bounded by

å

å

r s y f

c c g d

t t

á ñ

= á ñá ñ

=

=

( ) ∣ ∣ ∣

∣ ∣

( )

∣ [ ]∣ ( )

F

p q

p q F U

UT

,

,

Tr , 89

ij
i j i j i j

ij
i j i j ji

whereU andT are thematrices of elements g d= á ñ∣Uji i j and t t= ( )T p q F ,ij i j i j . By exploiting the freedom to

choose the bases g gñ ñ{∣ ∣ },0 1 and d dñ ñ{∣ ∣ },0 1 ,U can bemade to be any 2×2 unitarymatrix.Maximising the
right-hand side overU, we obtain

r s( ) ( )F T, , 901 

with

t t t

t t t
=

( )
( )

( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥T

p q p q F

p q F p q

,

,
, 91

0 0 0 1 0 1 0 1

1 0 0 1 1 1 1 1

 
 

inwhichwe inserted that t t t=( )F ,i i i 1  .

In general, the trace normof a 2×2matrix
a b
g d

=
⎡
⎣⎢

⎤
⎦⎥M is given by

= + ( )M T D2 , 921 

where

a b g d= + + +∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )T , 932 2 2 2

ad bg= -∣ ∣ ( )D 94

are respectively the trace of =∣ ∣ †M M M2 and the root of its determinant. Applying this to obtain an explicit
expression for the trace normof (91) and using that t t t t( ) F ,0 1 0 1 1 1    produces the result

r s t t t t+ + -( ) ( )( ) ( ) ( )F p q p q p q p q F, , . 952
0 0 0 1 1 1 1 1

2
0 1 1 0

2
0 1

2   
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