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Abstract
The goal of two-party cryptography is to enable two parties, Alice andBob, to solve common tasks
without the need formutual trust. Examples of such tasks are private access to a database, and secure
identification. Quantum communication enables security for all of these problems in the noisy-
storagemodel by sendingmore signals than the adversary can store in a certain time frame.Here, we
initiate the study of device-independent (DI) protocols for two-party cryptography in the noisy-
storagemodel. Specifically, we present a relatively easy to implement protocol for a cryptographic
building block known asweak string erasure and prove its security even if the devices used in the
protocol are prepared by the dishonest party. DI two-party cryptography ismade challenging by the
fact that Alice and Bob do not trust each other, which requires new techniques to establish security.
We fully analyse the case ofmemoryless devices (for which sequential attacks are optimal) and the case
of sequential attacks for arbitrary devices. The key ingredient of the proof, whichmight be of
independent interest, is an explicit (and tight) relation between the violation of the Clauser–Horne–
Shimony–Holt inequality observed byAlice andBob and uncertainty generated byAlice against Bob
who is forced tomeasure his systembeforefinding out Alice’s setting (guessingwith postmeasurement
information). In particular, we show that security is possible for arbitrarily small violation.

1. Introduction

Quantumkey distribution (QKD) [BB84, Eke91] allows two honest parties, Alice and Bob, to protect their
communication from anosy eavesdropper. Yet, there aremany other tasks that Alice and Bobmaywish to solve,
inwhich they themselves do not trust each other and secure identification is one such example. Here, Alice wants
to identify herself to Bobwithout revealing her password. Bit commitment and oblivious transfer constitute
otherwell-known examples of such tasks.

It is intuitive that security for two-party cryptographic protocols ismore difficult to achieve than forQKD,
sinceAlice and Bob cannot help each other to check on the eavesdropper. Instead, every party has to fend for
himself. It turns out that even using quantum communication Alice and Bob cannot achieve security without
making additional assumptions [Col07, LC97, Lo97,May97]. Usually one relies on computational assumptions,
i.e.that solving a computational puzzle requires a large amount of computing resources, namelymore than is
available to the adversary. Instead of relying on computational assumptions, however, it is possible tomake
physicallymotivated assumptions, for example that the adversary’s ability to store information is limited.
Introducing such storage restrictionswas pioneered byMaurer [Mau91], who considered imposing a restriction
on the adversary’s ability to store classical bits known as the bounded-storagemodel. Unfortunately, the fact that
(i) classical storage is cheap and plentiful and (ii) the gap betweenwhat the honest parties need to implement the
protocol andwhat a dishonest party needs to break it is only polynomial [Cac97], renders thismodel less
practical. In contrast, storing quantum information reliably is an extremely difficult problem,motivating the so-
called bounded-quantum storage [DFSS05,DFR+07] ormore generally noisy-storagemodel
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[KWW12,WST08]. The noisy-storagemodel admits protocols that require no quantum storage for the honest
execution and that can be implemented in amanner similar toQKDusing BB84 [DFW15, KWW12,WST08],
six-state [BFW14] or continuous variable [FSW15] encodings. Significantly, security can always be achieved as
long as the number of qubits n sent in the protocol is only slightly larger than the number of qubits r that the
adversary can store, that is, whenever - ( )r n O nlog [DFW15], which is essentially optimal. First
implementations of bit commitment [NJM+12] and oblivious transfer [ENG+14] in the noisy-storagemodel
have been demonstrated.Note that there exist other assumptions thatmake two-party cryptography possible,
e.g.that the two parties are given access to guaranteed additional resources [Cré97,Riv99,WNI03, ], or that they
must delegate agents who cannot communicate during the protocol (whichmight bemotivated by special
relativity) [BGKW88, CSST11, KTHW13, Kan15, Ken05, Ken11, Ken12, Ken99, Sim07]. The noisy-storage
model is particularly interesting since in contrast to computational or relativistic assumptions, security is
preserved even if the assumption is invalidated at a later point. That is, security cannot be broken retroactively if
the adversary acquires a larger quantum storage device in the future,making this assumption completely future-
proof.

One of the central questions in (quantum) cryptography isfinding theminimal assumptionswhich are
sufficient to guarantee security. For example in the standardQKD scenario we assume that the quantum channel
betweenAlice and Bob is untrusted (i.e. it is fully controlled by the eavesdropper) but the devices used byAlice
and Bob inside their laboratories are fully characterised. Already early on, however, it was recognised that
violation of a Bell inequality is intimately linked to cryptographic security [Eke91].Mayers andYao
[MY04,MY98]went on to realise that quantum states can be self-tested, i.e.that certain quantumproperties can
be verified by a purely classical user, which started thefield of device-independent (DI) quantum cryptography. In
DI cryptography instead of assuming that we knowhow the devices work, we simply test themduring the
protocol by using them to exhibit Bell non-locality [BCP+14]. DI cryptography has been one of themost active
research topics within quantum cryptography, predominantly in the context ofQKD
[AGM06, ABG+07, ARKP15, BHK05, BCK13,MS14a,MS14b, RUV13, VV14] and randomness expansion or
amplification [BPPP14, CK10, CVY13,MS14a,MS14b, PAM+10,VV12].

DI two-party cryptography, on the other hand, remains a largely unexplored territory. Security of a protocol
for imperfect coin flipping and bit commitment has been analysed in theDI regime [AMPS15, SCA+11].
Significantly, the setting considered by theseworks is different: since the authors do not impose any extra
assumptions, they cannot hope to reach the perfect primitive so they aim for an imperfect implementation
instead.Moreover, Adlam andKent have recently proposed aDI relativistic bit commitment protocol [AK15],
which allows security for afixed amount of time under the assumption that each party is split into space-like
separated agents.

Here, we take the very first step in provingDI security for two-party cryptographic protocols in the noisy-
storagemodel. That is, we establish the security of these protocols even if the devices are not trusted under some
extra assumptions (either we require the devices to behave identically in every round orwe require the attack of
the dishonest party to be sequential). To accomplish this, there are a number of conceptual as well as technical
hurdles to cross.

(1) In QKD Alice and Bob are always honest, while Eve is always trying to break the protocol. In DI QKD it is
therefore natural to give the power to prepare the devices to Eve. Analogously, wewill assume here that all the
devices used in the protocol are always prepared by the dishonest party.

(2) In the following section we will see that the protocol we start with uses quantum communication between
Alice and Bob. Thismeans that the adversary who prepared the devices will receive quantum communication
coming back from the devices. This is in sharp contrast toDIQKD, inwhich Eve prepares the devices—with
which she is possibly entangled—and thenAlice and Bob simply push buttons on the devices to perform
measurements. That is, there is no quantum communication going back to Eve. This feature introduces a
significant difference between the security analysis ofDIQKDandDI two-party cryptography protocol
considered here and requires us to develop novel proof techniques.

1.1. Results
To establishDI security of two-party protocols, wewill establish theDI security for a universal two-party
primitive known asweak string erasure (WSE) [KWW12]. Themost convenientmanner of describing a new
primitive is to specify its input–output behaviour. Such an abstract description is known as the ideal functionality
and the ideal functionality ofWSE is explained infigure 1.Universalitymeans that a secure implementation of
WSE can be used to construct any other two-party cryptographic primitive. In particular, thewell-known
primitive of bit commitment can be obtained fromWSEusing classical post-processing. Since classical post-
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processing is trusted in themodel of DI quantum cryptography, thismeans that oncewe construct aDI protocol
forWSE,we have obtained a protocol for any primitive that can be obtained fromWSEusing classical post-
processing.Moreover, the final security bound(1) immediately implies theDI security of an oblivious transfer
protocol in the bounded storagemodel (for details see section 4.3 of [DFR+07]).

We propose aDI protocol forWSEwhose security is certified by the violation of theClauser–Horne–
Shimony–Holt (CHSH) [CHSH69] inequality (see section 2.2.1 for details).Wemake the assumption that it is
always the dishonest party that produced the devices. However, wewill argue that dishonest Alice cannot gain
any advantage by preparing Bob’s devices so only the case of dishonest Bob requires detailed analysis. Before the
protocol begins Bob provides Alicewith two separate devices: a source of bipartite quantum states, combined
with ameasurement devices, plus one additionalmeasurement devices that Alice can use for testing (see
figure 2). According to the ideal specification this setup should be capable of producing themaximal violation of
theCHSH inequality. In the protocol, Alicewill use a switch to either send a quantum state to the test device or to
Bob. That is, she sometimes uses her devices to violate theCHSH inequality (the test rounds)while sometimes
she onlymeasures one of the particles and passes the other one to Bob (the live rounds). Intuitively, observing a
highCHSHviolation in the test rounds implies thatmeasurements performed by the devices are incompatible,
which leads to uncertainty (against a classical adversary) in the live rounds. For completeness, let us stress the
importance of the assumption that Alice has full control over the switch, i.e.she is free to choose which rounds
are used for testing andwhich rounds are used in the protocol (sometimes referred to as the free will
assumption). This assumption is crucial from the theoretical point (it implies that the sample used to assess the
performance of the devices cannot be influenced by the dishonest party, which is important since inmany cases
even limited influencemay completely break the security), but it is also reasonable from a practical point of view
(a switch is a simple enough device to be prepared byAlice herself).

Figure 1.The ideal functionality ofWSE [KWW12]: Alice gets a randomly chosen bit stringXnwhile Bob obtains a randomly chosen
subset of indices Í = ¼[ ] { } n n1, 2, , and the bits ofXn corresponding to the indices in  , denoted by X . Securitymeans that if
Bob is honest, thenAlice cannot learn the index set  . That is, she does not learnwhich bits of the stringXn are known to Bob.
Conversely, if Alice is honest, thenBobfinds it difficult to guess the entire string quantified by a lower bound on themin-entropy

l( ∣ ) X nH Bobn
min (equivalent to an upper bound on the guessing probability l-( ∣ ) Xp Bob 2n n

guess ), whereλ is a real parameter
specified by the ideal functionality.Whenever l > 0,WSE is useful for constructing other cryptographic primitives like bit
commitment.We defer formal definitions until section 2.2.5.

Figure 2.Honest execution of theDIWSEprotocol. Themain device prepares an EPRpair Y ñ∣ AB , measures theA system in either the
computational (q = 0) orHadamard (q = 1) basis (chosen uniformly at random) to produce Î { }x 0, 1 , while theB system is sent
to the switch. Now, Alice chooses to either perform a test or play a live round.Whenever she decides to execute a test (with probability
q), the switch directsB to the test device, and she performs aCHSH test between themain device and the test device. That is, she
chooses a random input Î { }t 0, 1 and checks theCHSHcondition qÅ = ·x y t on the outputs Î { }x y, 0, 1 .Whenever, she
decides to play a live round (with probability - q1 ) she uses the switch to sendB to Bob, whomeasures the incoming qubit in either
the computational (q¢ = 0) orHadamard (q¢ = 1) basis (chosen uniformly at random) to produce Î { }z 0, 1 , respectively. After n
live rounds, both parties wait timeDt , which enforces the storage assumption, after which Alice announces her basis string
q q q q= ¼n

n1 2 . At the endAlice holds a random string = ¼x x x xn
n1 2 , while Bob has an index set q q= Î = ¢{ [ ] } j n : j j and a

substring Î≔ ( ) x xj j .
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In the dishonest scenario we allowBob to prepare all the devices and in addition he receives quantum
communication fromAlice during the protocol as depicted infigure 3.Here, we analyse two distinct security
models.

• Memoryless devices (against an arbitrary attack)
Wecall a devicememoryless if its behaviour is identical every time it is used and there are no correlations
between different uses. This is a convenient assumption because for such devices the observedCHSHviolation
β is a well-defined quantity and can be estimated to arbitrary precision. As explained infigure 1 the goal of
WSE is to generate a stringXn that Bob is at least partially ignorant about as quantified by themin-entropy

( ∣ )XH Bobn
min . In case of Bobwhose quantum storage is restricted to be of dimension atmost dwe show that

b -( ∣ ) ( ) ( )X nf dH Bob log 1n
min

or equivalently

b-( ∣ ) · ( )X dp Bob 2 ,n nf
guess

where b( )f is a simple function plotted infigure 4 and ºlog log2. Thus, to achieve security against such an
adversary it suffices to choose n large enough to guarantee b - >( )nf dlog 0. For adversaries whose
quantum storage is noisy rather than bounded the analysis is slightlymore involved and can be found in
section 2.3.1 (explicit security bound in proposition 5). In either case positivemin-entropy rate implies that
the protocol can be used for constructingmore complicated primitives like bit commitment or oblivious
transfer.

• General devices against a sequential attack
In case of devices withmemory (whose behaviourmay change during the protocol and in particular there
might be correlations between different rounds) the analysis ismore involved both from the conceptual and
technical point of view. First, wemust realise that we cannot in advance test the devices (to estimate their
quality) and use the results tomake a security statement simply because the behaviour of the devicesmight
change in time. In particular, it is clear that the devicesmust not knowwhether they are currently being tested
or not. Therefore, the test rounds and the live roundsmust be interspersed andwe can onlymake a security
statement about the combined performance. In this case the test roundsmust be explicitly included in the
protocol andwe adapt the simplest solution inwhich before every roundAlice flips a biased coin and either
plays a test round (with probability q) or a live round (with probability - q1 ). After n rounds she computes
the fraction of successful CHSH rounds fCHSH and checkswhether it exceeds some previously chosen
threshold γ. Note that estimating fCHSH plays the role of estimatingβ in thememoryless scenario: once the
devices are allowed to havememory and change behaviour from round to round,β is no longer awell-defined
quantity and fCHSH is the best approximation thereof. If gfCHSH she declares the protocol to have

Figure 3.Dishonest Bob prepared all the devices. Thismeans that the state generated by the source can be chosen arbitrarily by Bob,
and similarly he can adjust themeasurements performed by themain and test device. Alice has control of the correctly functioning
switch to decidewhether shewants to test or perform a live round.Honest Alice proceeds as before, however, Bob is not restricted to
performing BB84measurements on the returning quantum states. In sharp contrast toDIQKD, the dishonest party thus receives
quantum communication coming back from the devices, which calls for new techniques. Aswewill showbelow, it will be enough to
consider the case where Bobmeasures the resulting quantum states to obtain some classical information.Wewill then establish a
bound on themin-entropy that Bob has about the string xn, given this classical information k and the basis information received later.
Using standardmethods [KWW12], we can then turn this into a security statement in the noisy-storagemodel.
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terminated successfully, otherwise she aborts. Intuitively, what wewant to avoid is the situation inwhichAlice
believes that the protocol has terminated correctly but nevertheless Bob actually knows the entire string xn

andwe denote such an event by F (failure). Suppose n rounds are executedwith parameters Î [ ]q 0, 1 and

g Î ⎡⎣ ⎤⎦, 13

4
.We call an attack sequential if after every roundBob is required to produce a classical outcome

and his guess for that round is required to be a (classical) post-processing of that outcome combinedwith the
basis information and any information from the previous rounds (see section 2.3.2 for amore detailed
explanation). It is worth noting that this assumption removes the need to restrict Bob’s storage capabilities:
since he is forced to commit to his guess immediately after the round is over, storing the quantum systemdoes
not help).We show that in the sequential scenario the probability of failure is bounded by

a g[ ] [ ( )] ( )F qPr , , 2n
min

where a g( )q,min can be easily calculated for any (valid) choice of q and γ (see figure 5). Alternatively, we can
write [ ]FPr in terms of the probability of passing the test ppass and the probability of successfully guessing the

entire ‘live’ string (restricted to sequential guessing strategies, see section 2.2.2 for a precise definition)
conditioned on passing the test ( ∣ )Xp Bob, passguess

seq

a g=[ ] · ( ∣ ) [ ( )] ( ) F p X qPr p Bob, pass , . 3n
pass guess

seq
min

Our analysis is tight in the sense that it identifies correctly the pairs g( )q, for which security is possible, i.e.we

Figure 4. Lower bound on themin-entropy rate b( )f as a function of theCHSHviolationβ. Crucially, we have b >( )f 0, whenever
b > 2. Thismeans that security can be achieved for arbitrarily small violation of theCHSH inequality.

Figure 5.Values of the decay rate a g( )q,min calculated numerically as a function of q for various values of γ.
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show that a g <( )q, 1min unless q= 0 (Alice never tests), q= 1 (Alice never plays a live round) or g = 3

4
(the threshold can be achieved by a classical strategy). Thismeans that the probability of the devices
performingwell in the test rounds and failing to implement a secureWSEdecays exponentially in the total
number of rounds. The techniquewe use to prove this result is generic and can be applied to any situation in
which the combined performance of two (ormore) games is assessed (as long as there is somenon-trivial
trade-off between them).

These two contributions should be seen as steps towards a security proof against themost general attack. The
memorylessmodelmight be of independent interest since it captures the case of devices which are faulty rather
thanmalicious (e.g. due to somemisalignment of optical components); such scenarios are usuallymodelled as
permanent deviations from the ideal specification rather than time-dependent ones.

2.Methods

In section 2.1we present the original protocol forWSEusing trusted devices, in section 2.2we introduce the
relevant quantities and prove some technical lemmas, in section 2.3.1we formalise the scenario ofmemoryless
devices and prove security statement(1) and in section 2.3.2we analyse the case of arbitrary devices against
sequential attacks and prove security claim(2).

2.1. The originalWSEprotocol for trusted devices
To build intuition, let usfirst describe the original protocol forWSE [KWW12], whichworks under the
assumption that the devices used byAlice and Bob are perfect and prepared in a trustworthy fashion.We sketch
out a simple security argument and discuss how tomake the protocol DI.Note that there existmore
sophisticated arguments which give better security guarantees but they seem to bemore difficult to adapt to the
DI scenario.

Protocol 1.WSE in the noisy-storagemodel

(1)Alice chooses two uniform n-bit strings q Î { }x , 0, 1n n n, generates the n-qubit state

ñq

=
⨂ ∣H x ,
j

n

j
1

j

whereH is theHadamard gate, and sends it to Bob. (Note that this just a sequence of n randomly chosen
BB84 [BB84] states.)

(2)Bob chooses a uniform n-bit string q¢ Î { }0, 1
n n andmeasures the jth qubit in the computational (if q¢ = 0j )

orHadamard (if q¢ = 1j ) basis.

(3)Alice waits a fixed amount of time (to enforce the restriction on Bob’s quantummemory) and then sends qn

to Bob.

(4)Bob determines the index set as

q qÎ = ¢≔ { [ ] } j n : j j

and obtains the corresponding substring x .

Correctness of this protocol is easy to verify because the string x n is chosen uniformly at randombyAlice and
with high probability Bobmeasures roughly half of the qubits in the correct basis. Security for honest Bob is a
direct consequence of the fact that the index set is determined by the positions at which q qÅ ¢ = 0j j . Since q¢n is
chosen uniformly at randombyBob, every index set is equally likely (andAlice is fully ignorant about it).
Therefore, the only non-trivial scenario is the case of honest Alice.

Let r QX Bn n be the state of the protocol after step (1), whereXn andQn are the classical randomvariables
generated byAlice andB is the quantum system received by Bob. Thememory bound forces Bob to put theB
subsystem through a quantum channel which outputs a classical registerK and a quantum registerQ, which
gives rise to r QX KQn n . SinceQn is eventually announced to Bob, our goal is tofind a lower bound on

Q( ∣ )X KQH n n
min . In the bounded-storagemodel we can use the following chain rule

Q Q -( ∣ ) ( ∣ ) ( )X KQ X K QH H log dim . 4n n n n
min min

In case of noisy storage the argument is slightlymore involved (see section 2.3.1 for details) but again the task
reduces to establishing uncertainty against a classical adversary. This is possible because generating random
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BB84 states is equivalent to creating EPRpairs andmeasuring them in either computational orHadamard basis
andwe know that outcomes of incompatiblemeasurements cannot be predicted (perfectly) by a classical
adversary. Indeed, it has been shown (equation (18) in [KWW12]) that the resulting conditionalmin-entropy
satisfies aQ( ∣ ) X K nH n n

min for

a = - + »
⎛
⎝⎜

⎞
⎠⎟log

1

2

1

2 2
0.22.

Note that this bound is tight and is achieved if Bobmeasures every received qubit in the intermediate basis
a añ ñ{∣ ∣ },0 1 , where

a p p
a p p
ñ = ñ + ñ
ñ= ñ - ñ

∣ ( )∣ ( )∣
∣ ( )∣ ( )∣

cos 8 0 sin 8 1 ,

sin 8 0 cos 8 1 .
0

1

In case of trusted devices placing a lower bound on Q( ∣ )X KH n n
min is possible becausewe know exactly the

measurement operators onAlice’s side. Themain challenge in theDI scenario is to prove a lower boundwhich
relies solely on properties that can be certifiedDI.Our approach follows the intuition that observing a Bell
violation implies incompatibility of local observables which is sufficient to guarantee uncertainty. Previously,
this approach has been used successfully in proving security ofDIQKD [LPT+13, TH13].

2.2. Preliminaries
For an integer Î n let ¼[ ] ≔ { }n n1, 2, , . Throughout this paper we assume that all randomvariables are
discrete (they take afinite number of values) and that all quantum systems are finite-dimensional. LetH be a
(finite-dimensional)Hilbert space and let H( ) / H( ) be the set of linear/Hermitian operators acting onH.
The Schatten¥-normof an operatorX is denoted by ∣∣ ∣∣X . The square root of a positive semidefinite operatorX,
denoted by X , is defined as the unique positive semidefinite operatorY satisfying =Y X2 . Themodulus of an

operatorX, denoted by ∣ ∣X , is defined as = †Y X X . It is easy to verify that for arbitrary operatorsX andYwe
have

+ + - = +∣ ∣ ∣ ∣ ( ) ( )† †X Y X Y X X Y Y2 . 52 2

The commutator ofX andY is defined as = -[ ]X Y XY YX, , while the anticommutator is defined
as = +{ }X Y XY YX, .

A quantum state ρ is aHermitian operator Hr Î ( ) which is positive semidefinite (r  0) and of unit
trace ( r =tr 1). An observable is aHermitian operator HÎ ( )A which satisfies-   A (or equivalently
∣∣ ∣∣ A 1). PluggingX=AB andY=BA into equation (5) gives

+ = +∣{ }∣ ∣[ ]∣ ( ) · ( ) A B A B AB A BA B, , 2 4 , 62 2 2 2

where the upper bound follows from the fact that  A B,2 2 .

2.2.1. The CHSH inequality
In 1964 JohnBell showed thatmeasuring quantum systems leads to stronger-than-classical correlations [Bel64].
In 1969Clauser,Horne, Shimony andHolt spelt out the simplest scenario inwhich this can be observed
[CHSH69]. LetHA andHB beHilbert spaces and let HÎ ( )A A, A0 1 and HÎ ( )B B, B0 1 be binary
observables. TheCHSHoperator is defined as

= Ä + Ä + Ä - ÄW A B A B A B A B0 0 0 1 1 0 1 1

and theCHSHvalue equals b r= ( )Wtr AB , where rAB is a bipartite quantum state onH HÄA B. It is known
that there exist a state and observables that yield b = 2 2 . On the other hand, if we restrict ourselves to classical
systems (which can be enforced by requiring the observables to commute, i.e. = =[ ] [ ]A A B B, , 00 1 0 1 )we can
only reach b = 2. This scenario can be equivalently cast as a two-player game inwhichAlice receives x, Bob
receives y (both chosen uniformly at random) and are required to output a and b, respectively. The game is won
if Å = ·a b x y and it is straightforward to show that thewinning probability of this game pwin and theCHSH
valueβ are related by

b
= +p

1

2 8
.win

Therefore, the optimal classical winning probability equals 3

4
, while the optimal quantumwinning probability

equals + » 0.851

2

1

2 2
.
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2.2.2. Guessing with postmeasurement information
We start by defining the guessing probability andmin-entropy for a classical-quantum (cq) state (we denote the
quantum register byB to be consistent with the protocol inwhich it is the dishonest Bobwho faces the task of
guessing).

Definition 1. Let rXB be a cq-state

år r= ñá Ä∣ ∣p x x ,XB
x

x x
B

where rx
B are (normalised) quantum states and å =p 1x x . The optimal guessing probability ofX given access to

B is defined as

å r( ∣ ) ≔ · ( )
{ }

X B p Mp max tr ,
M x

x x x
B

guess
x x

where themaximisation is taken over all POVMs. The conditionalmin-entropy ofX givenB is defined as

-( ∣ ) ≔ ( ∣ )X B X BH log p .min guess

Note that computing the guessing probability can bewritten as a semidefinite program, i.e.it can be computed
efficiently (in the input dimension). For a classical probability distribution PXY the expression simplifies to

å=( ∣ ) ( ) · ( ∣ )∣X Y P y P x yp max .
y

Y
x

X Yguess

Alternatively, thismaximisation can bewrittenmore compactly as

= =( ∣ ) [ ( )]X Y X f Yp max Pr ,
f

guess

where themaximisation is taken over deterministic functions  f : . It can be shown [Weh08] that the
min-entropy is additive on tensor products, i.e.given two uncorrelated cq-states r rÄX B X B1 1 2 2

we have

= +( ∣ ) ( ∣ ) ( ∣ )X X B B X B X BH H H .min 1 2 1 2 min 1 1 min 2 2

Wealso need the notion of smoothmin-entropy.

Definition 2. For e  0 let re( ) XB be the ball of cq-states of radius ε around rXB, i.e.s rÎ e( )XB XB iff sXB is a
cq-state and

s r e-∣∣ ∣∣ 1

2
,XB XB 1

where ∣∣ · ∣∣1denotes the trace norm (Schatten 1-norm). Then, the smoothmin-entropy of a cq-state rXB is
defined as

e
r

s r
s

Î e
( ∣ ) ≔ ( ∣ )

( )

H X B X Bsup H .min min
XB XB

Security analysis of two-party cryptography in the bounded or noisy storagemodel leads to the task of guessing
with postmeasurement information originally considered by Ballester,Wehner andWinter [BWW08]. Let rXYB
be a tripartite ccq-state, whereX is a classical register taking values in ,Y is a classical register taking values in 
andB is the quantum systemof Bob. In the postmeasurement information scenario Bob is forced tomeasure his
subsystemB to obtain some classical information F before learningY. Later he learns the postmeasurement
informationY andmust produce a guess forX.Wewill later show that without loss of generality we can assume
that the outcomes of Bob’smeasurement (i.e.the possible values of F ) are labelled by functions  f : such
that Bob’s optimal guess upon receiving y is f(y). Equivalently we can think of the outcome of themeasurement
as a sequence of guesses: one for every possible value of the postmeasurement information.

Definition 3. Let rXYB be a ccq-state

år r= ñá Ä ñá Ä∣ ∣ ∣ ∣p x x y y .XYB
xy

xy xy
B

The optimal guessing probability ofX given access toBwithY as postmeasurement information is defined as

å r

=

( ∣ ) ≔ · ( )
{ }

( )

*X BY p Mp max tr ,
M x y f

x f y

xy f xy
B

guess
, ,f f

where themaximisation is taken over all POVMswith ∣ ∣  outcomes labelled by functions  f : and the
star (*) indicates thatY is only available after themeasurement. The conditionalmin-entropy ofX givenBwithY
as postmeasurement information is defined as
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-( ∣ ) ≔ ( ∣ )* *X BY X BYH log p .min guess

This is a useful formulation because defining

ås r=

= ( )

pf
B

x y
x f y

xy xy
B

,

allows us to rewrite the objective function as

å år s=

=

· ( ) ( )

( )

p M Mtr tr ,
x y f

x f y

xy f xy
B

f
f f

B

, ,

which is equivalent to the standard guessing probability ( ∣ )F Bpguess for the (unnormalised) state

år s= ñá Ä∣ ∣f f .FB
f

f
B

Therefore, this problem can also be solved efficiently using semidefinite programming techniques [BWW08].
Moreover, just like in the standard guessing scenario, themin-entropy is additive over tensor products, i.e.given
two uncorrelated ccq-states r rÄX Y B X Y B1 1 1 2 2 2

wehave

= +( ∣ ) ( ∣ ) ( ∣ ) ( )* * * *X X B B Y Y X B Y X B YH H H . 7min 1 2 1 2 1 2 min 1 1 1 min 2 2 2

The following proposition gives an alternative (but equivalent) formulation of themin-entropywith
postmeasurement information.

Proposition 1. Let rXYB be a ccq-state and let  be the set of tripartite probability distributions over X Y, andK
which can be obtained bymeasuring subsystemB, i.e. Î PXYK iff there exists ameasurement { }Nk k such that

r= = = =[ ] · ( )X x Y y K k p NPr , , tr .xy k xy
B

Then, the following relation holds

=
Î

( ∣ ) ( ∣ ) ( )*


X BY X KYp sup p . 8
P

guess guess
XYK

Proof. Let usfirst show that the left-hand side is never larger than the right-hand side. Let { }Mf f be the POVM
which saturates the left-hand side and let PXYF be the resulting probability distribution. Then

å å å

å

r= = =

=
= =

Î

( ∣ ) · ( ) ( ) ( ) · ( ( )∣ )

( ) · ( ∣ ) ( ∣ ) ( ∣ )
( ) ( )

∣

∣

*



 

X BY p M P xyf P yf P f y yf

P yf P x yf X FY X KY

p tr

max p sup p .

x y f
x f y

xy f xy
B

x y f
x f y

XYF
y f

YF X YF

y f
YF

x
X YF

P

guess
, , , , ,

,
guess guess

XYK

Toprove the other direction consider an arbitrarymeasurement { }Nk k (with afinite number of outcomes)which
leads to the probability distribution PXYK . For every value of kwe define a function  g :k such that

=( ) ( ∣ )∣g y P x ykarg max .k x X YK

This allows us construct a newmeasurement whose outcomes are labelled by functions  f :

å=
=

M N .f
k g f

k
: k

Using thismeasurement gives

å å å å

å å

r r= =

= = =
= =

=
=

( ∣ ) · ( ) · ( ) ( )

( ) · ( ( )∣ ) ( ) · ( ∣ ) ( ∣ )
( ) ( ) ( )

∣ ∣

* X BY p M p N P xyk

P yk P g y ky P yk P x yk X KY

p tr tr

max p .

x y f
x f y

xy f xy
x y f

x f y
k g f

xy k xy
x y k

x g y

XYK

y k
YK X YK k

y k
YK

x
X YK

guess
, , , , : , ,

, ,
guess

k

k

By consideringmeasurements that approach the optimal guessing probability we conclude that equation (8)
holds. In particular, this implies that the supremumcan be replaced by amaximum. ,

Thefinal security statement in the scenario of devices withmemory is phrased in terms of sequential guessing
probability. Intuitively, this corresponds to the situation inwhichBob is required to guess a sequence of random
variables but before each guess he gains access to an extra ‘advice variable’.

Definition 4. Let ¼ ¼PX X X Y Y Yn n1 2 1 2
be a probability distribution of n2 variables, whereXj andYj take values in

some arbitraryfinite sets and  , respectively. The sequential guessing probability of = ¼X X X Xn
n1 2 given

= ¼Y Y Y Yn
n1 2 is defined as

9
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= = ¼
=

( ∣ ) [ ⋀ ( )]
{ }

X Y X f Y Y Yp max Pr ,n n

f j

n

j j jguess
seq

1
1 2

j j

where themaximisation is taken over deterministic functions { }f j j such that ´ f :j
j .

The sequential character of this quantitymakes itmeaningful to talk about a subset of rounds, e.g.the
probability of successfully guessing the first j variables ( ∣ )X Yp j j

guess
seq is a well-defined quantity that depends only

on P X Yj j. This stands in contrast to the usual guessing probability inwhich evaluating the probability of
successfully guessing the first bit requires the knowledge of the complete set of ‘advice variables’. Thanks to this
property the sequential guessing probability behaves well under conditioning

= - -( ∣ ) ( ∣ ) · ( ∣ )X Y X Y X Yp p p , ,n n n n
n

n
guess
seq

guess
seq 1 1

guess

where the second term is just the standard guessing probability of the last bit conditional on event  , which
corresponds to (sequentially) guessing thefirst -n 1bits correctly.

2.2.3. Relation between transmitting classical information and uncertainty against noisy storage
Let H H( ) ( )  Q Q: in out be a quantum channel (a completely positive, trace preservingmap) and
supposewewant to use it to transmit k bits of information. The following definition captures howwell this can
be achieved.

Definition 5.The optimal probability of successfully transmitting k bits of information through the channel 
is defined as

å r=
r Î

( ) [ ( )]
{ } { } { }

 k MP max
1

2
tr ,

M k
x

x xsucc
, 0,1x x x x k

where r{ }x x represents the encoding procedure (a set of 2
knormalised states on Qin)while { }Mx x is the decoding

measurement (ameasurement on Qout with 2
k outcomes).

The following lemma byKönig,Wehner andWullschleger relates the success probability to themaximal
decrease in entropy in the noisy storage setting [KWW12].

Lemma1 (Lemma II.2, [KWW12]). Let H H( ) ( )  : Q Qout
be a CPTPmap. Consider an arbitrary ccq-state

rXTQ and define

s rÄ ≔ ( )( )id ,XTQ XT Q Q XTQout out

where id stands for the identity channel. For any e > 0 we have

e- -e
s( ∣ ) (⌊ ( ∣ ) ( )⌋)H X TQ X TlogP H log 1 .min out succ min

2.2.4. Trade-off between non-locality and uncertainty against classical adversaries
Asmentioned before a crucial component of our analysis is the trade-off between howwell a pair of devices can
perform in theCHSH test and howunpredictable the output of a single device is against a classical adversary. It
turns out that such a (tight) trade-off can be established by finding the rightmeasure of incompatibility of binary
observables. In our previous workwe have used the effective anticommutator as ameasure of incompatibility
[KTW14]. Unfortunately, this quantity does not allow us to bound uncertainty against classical side information
(see appendix A for a counterexample) so herewe consider amore refined quantity: the absolute effective
anticommutator. Proposition 2 shows that observing aCHSHviolation places an upper bound on the absolute
effective anticommutator.

Proposition 2. Let H Hr Î Ä( )AB A B be a bipartite quantum state and let HÎ ( )A A, A0 1 and
HÎ ( )B B, B0 1 be observables. The absolute effective anticommutator onAlice’s side is defined as

e r+ ≔ (∣{ }∣ )A A
1

2
tr , .A0 1

TheCHSH value of the setup is defined as b r≔ ( )Wtr AB for

= Ä + Ä + Ä - ÄW A B A B A B A B .0 0 0 1 1 0 1 1

The following relation holds

b e+ - +∣ ∣ ( ) 2 1 1 . 92

Proof.The proof is a sequence of elementary inequalities (either at the level of numbers or operators).Wewill
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repeatedly use theCauchy–Schwarz inequality, which says that for arbitrary operatorsX andYwehave

∣ ( )∣ ( ) · ( )† † †X Y X X Y Ytr tr tr .2

We start by setting r=†X W AB and r=Y AB which gives

b r r= [ ( )] ( ) ( )W Wtr tr . 10AB AB
2 2 2

Writing outW2 explicitly gives

= Ä + + Ä - + Ä - - Ä( ) ( ) { } ( ) [ ] [ ]W A B B A B B A A B B A A B B, , , .2
0
2

0 1
2

1
2

0 1
2

0 1 0
2

1
2

0 1 0 1

Let usfirst focus on thefirst three terms. Upperbounding A0
2 and A1

2 by  gives

Ä + + Ä - + Ä -

Ä + + Ä -

( ) ( ) { } ( )
( ) { } ( ) 

A B B A B B A A B B

B B A A B B

,

2 , .
0
2

0 1
2

1
2

0 1
2

0 1 0
2

1
2

0
2

1
2

0 1 0
2

1
2

Writing the identity in the eigenbasis of the anticommutator l= å ñá{ } ∣ ∣A A e e, k k k k0 1 gives

å l lÄ + + Ä - = ñá Ä + + - Ä( ) { } ( ) ∣ ∣ [( ) ( ) ] ·  B B A A B B e e B B2 , 2 2 4 ,
k

k k k k0
2

1
2

0 1 0
2

1
2

0
2

1
2

where the last inequality comes fromupperbounding B0
2 and B1

2 by  (note that l∣ ∣  2k ).We have therefore
established that

Ä + - Ä· ( [ ] [ ])  W A A B B4 , , .2
0 1 0 1

Webound the second termby its (operator)modulus

- Ä Ä = Ä[ ] [ ] ∣[ ] [ ]∣ ∣[ ]∣ ∣[ ]∣A A B B A A B B A A B B, , , , , , .0 1 0 1 0 1 0 1 0 1 0 1

Neglecting the anticommutator term in inequality(6) leads to

∣[ ]∣ · B B, 4 ,0 1
2

which implies that ∣[ ]∣ · B B, 20 1 . Therefore,

Ä + Ä· ∣[ ]∣   W A A4 2 ,2
0 1

and

r r+( ) (∣[ ]∣ ) ( )W A Atr 4 2tr , . 11AB A
2

0 1

Toupperbound r(∣[ ]∣ )A Atr , A0 1 we again use theCauchy–Schwarz inequality with r= ∣[ ]∣†X A A, A0 1 and
r=Y A which gives

r r[ (∣[ ]∣ )] (∣[ ]∣ ) ( )A A A Atr , tr , . 12A A0 1
2

0 1
2

Inequality(6) implies that

r r-(∣[ ]∣ ) (∣{ }∣ ) ( )A A A Atr , 4 tr , . 13A A0 1
2

0 1
2

Using theCauchy–Schwarz inequality one last timewith r= ∣{ }∣†X A A, A0 1 and r=Y A gives

r r[ (∣{ }∣ )] (∣{ }∣ ) ( )A A A Atr , tr , . 14A A0 1
2

0 1
2

Since the left-hand side of equation (14) equals e+4 2 combining it with inequalities (10)–(13) gives

b e+ - +( ) 4 1 1 .2 2

Taking a square root leads to the desired result. ,

It is easy to verify that this relation is in fact tight (it suffices to consider projective rank-1measurements on
themaximally entangled state of two qubits). In proposition 3we show that the absolute effective
anticommutator being small implies uncertainty against classical adversaries.

Proposition 3. Let rAK be a quantum–classical state

år r= Ä ñá∣ ∣p k kAK
k

k k
A

and let A0 andA1 be two observables acting on the register A. Let e r=+ (∣{ }∣ )A Atr , A
1

2 0 1 for r r= å pA k k k
A.

Measuring the observable chosen by a uniformly random registerQ and storing the outcome in the register X leads to
the following probability distribution.

q
r

= Q = = =
+ q[ ] · ·

( )
X x K k p

A
Pr , ,

1

2

1 tr

2
.k

k
A
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Then, the guessing probability satisfies

e
Q +

+ +( ∣ ) ( )X Kp
1

2

1

2

1

2
. 15guess

Proof. Let the effective anticommutator conditional onK= k be e r= ({ } )A Atr ,k k
A1

2 0 1 . As shown in

[KTW14] the guessing probability averaged over the two bases satisfies

e
= Q +

+( ∣ ) ∣ ∣X K kp ,
1

2

1

2

1

2
.k

guess

Averaging over different values ofK

å å
åe e

Q = = Q +
+

+
+

( ∣ ) ( ∣ ) ∣ ∣ ∣ ∣
 X K p X K k

p p
p p ,

1

2 2

1

2

1

2

1

2

1

2
,

k
k

k

k k k k k

guess guess

wherewe have used the concavity of the square root. For anyHermitian operatorAwehave r r∣ ( )∣ (∣ ∣ )A Atr tr
which implies

å å åe r r r e= = = +∣ ∣ ∣ ({ } )∣ (∣{ }∣ ) (∣{ }∣ )p p A A p A A A A
1

2
tr ,

1

2
tr ,

1

2
tr , .

k
k k

k
k k

A

k
k k

A
A0 1 0 1 0 1

Therefore, the final bound is

e
Q +

+ +( ∣ ) X Kp
1

2

1

2

1

2
.guess

,

It turns out that this relation is tight and can be saturated by the same setup as before, which implies that the
resulting trade-off between theCHSHviolation and uncertainty against classical adversaries is tight.

2.2.5. Security definitions forWSE
LetXn be the classical register representing the n-bit string given toAlice and let I be the classical register
representing the subset of indices given to Bob.Using the notation introduced in section 1 security for honest
Alicemeans that Bob shouldfind it difficult to guess the entire stringXn.

Definition 6. LetB be the register containing all the information that Bobmight acquire during the protocol. Let
A be the set of states on registers X B,n that (dishonest)Bobmay enforce at the end of the protocol. AWSE
protocol is l e( ), -secure for honest Alice if the smoothmin-entropy satisfies

le ( ∣ ) H X B nn
min

for all s Î X B An .

Security for honest Bob, on the other hand, requires that the stringXn takes a particular value (whichAlice
cannot influence anymore) and that Alice remains ignorant about the index set  that Bob received.

Definition 7. Let B be the set of states on registers X I A, ,n that (dishonest)Alicemay enforce at the end of the
protocol. AWSEprotocol is (perfectly) secure for honest Bob if every state s Î X IA Bn can bewritten as

s s= Ä


2
X IA X A

I
n

n n

for some cq-state sX An .

2.3. Protocol forDIWSE and security analysis
SinceDI security can only be certified by observing someBell violationwemustmake twomodifications to
protocol 1: (i)wehave to turn it into an entanglement-based scheme and (ii)wemust introduce someway of
testing the devices. The protocol we propose requires four devices in total: three for Alice and one for Bob. Below
we describe the devices available to Alice.

(1)The source emits bipartite quantum states rAB. According to the ideal specification, it should emit the

maximally entangled state of two qubits, i.e.r = F ñáF+ +∣ ∣AB AB for F ñ = ñ ñ + ñ ñ+∣ (∣ ∣ ∣ ∣ )0 0 1 1AB A B A B
1

2
.
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(2)The main device performs one out of two binary measurements represented by observables A A,0 1.
According to the ideal specification, these should correspond to the computational andHadamard basis
measurements, s=A z0 , s=A x1 .

(3)The test device performs one out of two binary measurements represented by observables B B,0 1. According
to the ideal specification, these should correspond to s s= +( )B z x0

1

2
, s s= -( )B z x1

1

2
.

The only device available to Bob is ameasurement device with two settings whose ideal specification
coincides precisely with that of themain device of Alice (so that the outcome are identical if themeasurement
settings coincide).

2.3.1. Security analysis formemoryless devices
Wecall a devicememoryless if it acts in the samemanner every timewe use it: the source always emits the same
state and themeasurement devices always perform the samemeasurements (and there are no correlations
between different uses). This greatly simplifies the security analysis for several reasons: (i)wemay assume that
the state,measurement operators (and all quantities derived from them) are well-defined objects, (ii)
probabilities can be estimated (to arbitrary precision) by repeating the experimentmultiple times and (iii) testing
can be completely separated from the actual protocol. In particular, the last pointmeans that testing can be done
beforehand and does need to be explicitly included in the protocol. In our protocol Alice tests her three devices
by using them to violate theCHSH inequality.More specifically, she estimates theCHSHvalue

b r= Ä + Ä + Ä - Ä[( ) ]A B A B A B A Btr .AB0 0 0 1 1 0 1 1

Weknow that if b  2 (no violation is observed), no security can be guaranteed and the devices cannot be used
forDI cryptography. Therefore, fromnowonwe assume that b > 2.While nofinite set of statistical data allows
Alice to determine the exact value ofβ, she can estimate it to arbitrary precisionwhich is sufficient for our
analysis. Since dealingwithfinite statistics is not themain focus of this paper, we assume that she can actually
determineβ exactly.

Recall that proposition 2 establishes a connection between the observedCHSHviolation and the local
incompatibility of observables (on either side). Since the test devicewill not take part in the actual protocol, we
want to estimate the incompatibility of themain device. If e+ is the absolute effective anticommutator of the
main device

e r+ ≔ (∣{ }∣ )A A
1

2
tr , ,A0 1

then fromproposition 2we know that

e
b

b-+ ( )
4

8 . 162

Our goal is to show that having an upper bound on e+ suffices to prove security (for honest Alice) of the
followingDIWSEprotocol.

Protocol 2.DIWSE in the bounded/noisy storagemodel

(1)Alice uses the source to generate n bipartite states. She chooses a uniform n-bit string q Î { }0, 1n n and uses
themain device tomeasure theA register generated in the jth runwith qj as the input. All theB registers are
passed to Bob.

(2)Bob chooses a uniform n-bit string q¢ Î { }0, 1n n andmeasures the jth subsystem using q¢j as the input to his
measurement device.

(3)Alice waits a fixed amount of time (this waiting time motivates the restriction on Bob’s quantum memory)
and then sends qn to Bob.

(4)Bob determines the index set as

q qÎ = ¢≔ { [ ] } ( ) j n : 17j j

and obtains the corresponding substring x .

It is easy to see that if the devices complywith the ideal specification, this is exactly the entanglement-based
variant of protocol 1, hence, correctness follows straightforwardly. Security argument for honest Bob is closely
related to the simulation argument given in the original paper [KWW12] sowe just describe it informally. The
correct way of defining the stringXn is by lifting the noisymemory restriction, i.e.we allowBob to store all the
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states, wait until the receipt of the basis information and only then perform all themeasurements in the correct
bases. This uniquely specifies the state sX An needed for definition 7. At the same time Bob generates a random n-
bit string q¢n and determines the index set  through relation(17). It is easy to check that this results in a
uniformdistribution over all possible subsets uncorrelated from the outsideworld (because q¢n was chosen
uniformly at random).

Security analysis for honest Alice turns out to bemore challenging.

Proposition 4.Protocol 2 executed against Bobwhose quantum storage is bounded to be of dimension atmost d
implementsWSEwhich is l e( ), -secure for honest Alice for e = 0 and

l e -+( ) h
d

n

log
,

where

- +
+( ) ≔

⎛
⎝⎜

⎞
⎠⎟h x

x
1 log 1

1

2
.

Proof.Using the source n times produces r r= =⨂A B j
n

A B1n n
j j
. Alicemeasures all her subsystems using themain

device (which produces r r=Q = Q⨂X B j
n

X B1n n n
j j j

) and then Bobmeasures his subsystems to obtainK (which
gives QPX Kn n ). It is important to emphasise that thisfinal probability distribution is no longer of product form
because Bob’smeasurement can introduce correlations between different rounds. First note that from
proposition 1we have

Q Q( ∣ ) ( ∣ ) ( )*X K X BH H , 18n n n n n
min min

where the left-hand side is evaluated on the probability distribution QPX Kn n , while the right-hand side is
evaluated on the quantum state r QX Bn n n. Because this quantum state is of tensor product formwehave

åQ = Q = Q
=

( ∣ ) ( ∣ ) · ( ∣ ) ( )* * *X B X B n X BH H H , 19n n n

j

n

j j jmin
1

min min 1 1 1

where thefirst equality comes from the fact that themin-entropy is additive over tensor products (see
equation (7)) and the second simply expresses the fact that all the rounds are identical. Nowwe need the bound
the entropy producedwhilemeasuring a single copy of rAB. Suppose that Bobmeasures the subsystemB to
produce a classical random variableK. Fromproposition 3we know that themin-entropy of the probability
distribution QPXK satisfies

eQ +( ∣ ) ( )X K hH .min

Since this bound is valid for all measurements that Bobmight perform, it also holds for the optimalmeasurement
which achieves Q = Q( ∣ ) ( ∣ )*X B X KH Hmin min (see proposition 1). Therefore, we also have

eQ +( ∣ ) ( ) ( )* X B hH . 20min

Combining expressions(18)–(20) gives

eQ +( ∣ ) ( ) ( )X K nhH . 21n n
min

Finally, including the quantummemory of Bob (of dimension d) leads to

eQ -+( ∣ ) ( )X KQ nh dH log .n n
min

,

Clearly, if the dimension of Bob’smemory isfixed, choosing large enough n brings themin-entropy rate
arbitrarily close to e+( )h .

Proposition 5.Protocol 2 executed against Bobwhose quantum storage is represented by a quantum channel 
implementsWSEwhich is l e( ), -secure for honest Alice, where e > 0 is an arbitrary positive constant and

l e e- -+(⌊ ( ) ( )⌋)
n

nh
1

log P log 1 .succ

Proof.Applying lemma 1 to equation (21) (identify «X Xn and Q «K Tn ) gives

e eQ - -e
+( ∣ ) (⌊ ( ) ( )⌋)H X KQ nhlog P log 1 .n n

min out succ

Since in the noisy storage scenario K Q, out andQn are the only registers available to Bob this coincides precisely
with definition 6. ,
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2.3.2. Security analysis for general devices against sequential attacks
Asmentioned before in order to test devices thatmight behave differently in different rounds onemust
intersperse the test roundswith the live rounds. The natural solution is to introduce a biased coin-flip at the
beginning of every roundwhose outcome determines whether the following roundwill be a test round (with
probability q) or a live round (with probability - q1 ). In the previous scenario test rounds happened entirely
withinAlice’s laboratory (using the three devices provided byBob) and only live rounds required Alice and Bob
to interaction. Tomake the sequential analysis conceptually simpler we give Bob evenmore power and allow
him to operate the test box (the device used for theCHSH test), i.e.if Alice wants to play a test round she simply
sends the second input (the one shewould previously use for the test device) to Bobwho comes backwith the
outcome.Note that in thismodel the second part of the quantum state generated by the source always ends up
with Bob (regardless of whether it is a test round or a live round), which brings us closer to the familiar scenario
of two-player non-local games as shown in figure 6.

Let us stress that the interactionwith themain device is always the same: regardless of whether the jth round
is a test round or a live roundAlice always inputs a uniformly randombit qj. This guarantees that the device
remains ignorant whether it is currently being tested or used for a live round.On the other hand, Bob’s
interaction does depend on the type of round performed. Let qj be the bit which specifies whether the jth round is
a live round ( =q 0j ) or a test round ( =q 1j ). If Alice decides to test the devices, shewill choose a randombit tj
and request Bob to use it as an input in theCHSHgame and return the outcome yj. On the other hand, if Alice
decides to play a live round, shewill simply announce it to Bob and (according to the original protocol) shewill
not expect a response. Indeed, in themost general adversarial scenario Bobwould leave his quantum system
untouched and only at the end of the protocol (immediately before thememory bound)would hemeasure his
entire system to produce some classical information k. Once he has received the basis information, he computes
his guess as a deterministic function of k and q q q¼, , , n1 2 . In the sequentialmodel we force Bob to produce some
classical side information kj in every round andwe require that his guess in the jth round is a deterministic
function (chosen before the protocol begins) of kj, qj and any information from the previous rounds. In other
words, for the jth round (whichwe assume to be a live round) the probability of winning equals

= Q[ ( )]X f KPr , ,j j
j j

where ´ ´( { }) { }f : 0, 1 0, 1j
j is an arbitrary function chosen byBob before the protocol begins. The

summary of randomvariables generated in each round is presented in table 1.Note that in thismodel the
requirement of immediately producing the relevant classical information essentially replaces the need to restrict
Bob’s storage capabilities. The fact that success (or failure) can be assessed immediately after every roundmakes
such amodel well-suited for a standardmartingale-style analysis. It turns out that the only quantum component
of such an analysis is the trade-off between thewinning probabilities of the live round and the test round denoted
by pL and pT, respectively. Conveniently, we have already investigated this trade-off since both probabilities can
be bounded through the absolute effective anticommutator e+.More specifically, since the probability of passing
the test pT is related to theCHSHviolationβ inequality(9) implies

e+ + - + ( )p
1

2

1

4
1 1 . 22T

2

On the other hand, probability of winning the test round cannot exceed the optimal guessing probability of a
classical adversary. Therefore, inequality(15) implies

Figure 6.The key to the security proof against sequential attacks is to combine theCHSHgame between themain device and the test
device with the postmeasurement game between themain device andBob’s device. As already noted in [Weh08], if the
postmeasurement game can bewonperfectly, then theCHSH inequality cannot be violated.Here, we establish a complete trade-off
betweenwinning theCHSHgame and the postmeasurement game. If theCHSHgame can bewonwell, then the probability for Bob to
succeed in the postmeasurement guessing game is low and hence themin-entropy about Alice’s resulting string given classical
information is high.
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e
+

+ + ( )p
1

2

1

2

1

2
. 23L

Combining inequalities(22) and(23) and treating e+ as a parameter taking values in [ ]0, 1 we determine the
admissible pairs ( )p p,L T . The optimal trade-off is plotted infigure 7.

The protocol takes three parameters: the probability of testing Î [ ]q 0, 1 , the CHSH threshold g Î ⎡⎣ ⎤⎦, 13

4

and the number of rounds Î n . At the end of the protocol Alice calculates the fraction of successful CHSH
rounds denoted by fCHSH. If g<fCHSH she aborts the protocol, otherwise she declares the execution correct.
The security statement in thismodel is simply a bound on the probability that Alice believes the protocol has
terminated correctly and all the guesses of Bob are correct.We define the following random variables

å
=

≔ ( )R Q lnumber of test rounds within the first rounds ,l
j

l

j
1

å Å Å Q Å
=

≔ ( ) ( )S X Y T Q l1 number of successful test rounds within the first rounds .l
j

l

j j j j j
1

Let Î =≔ { [ ] } j n Q: 0j be the set of live rounds and for Î j letGj be the event corresponding to Bob
guessing the outcome correctly, i.e.

= Q⟺ ( ) ( )G X f K , . 24j j j
j j

Moreover, letHl be the event of guessing all the live roundswithin the first l rounds

ÇÎ
⟺ ⋀ ( )

[ ] 

H G . 25l
j l

j

The failure event is defined as a conjunction of exceeding theCHSH threshold andBob guessing all the live bits
correctly

g ⟺ ( )F S R H . 26n n n

Beforewe delve into the proof, let us showwhy finding an upper bound on [ ]FPr is equivalent to proving
security claim(3). LetP be the event of passing, i.e. g⟺ P S Rn n and let ≔ [ ]p PPrpass .Writing

Table 1.The randomvariables generated in the jth round in every
roundAlice chooses the round typeQj, generates a random input
Qj and obtains an outcomeXj. If =Q 0j (live round)Bob gen-
erates some classical informationKj (taking values in ). On the
other hand, if =Q 1j (test round)Alice generates another random
inputTj and passes it to Bobwhomust produce an outputYj.

Every round Live round ( =Q 0j ) Test round ( =Q 1j )

QQ X, ,j j j Kj T Y,j j

Figure 7.The (tight) trade-off between thewinning probabilities of live and test rounds.
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=[ ] · [ ∣ ] ( )F p H PPr Pr 27npass

allows us to identify the last termwith the sequential guessing probability conditioned on passing the test.
Indeed, since

= Q
Î

⟺ ⋀ ( ) ( )


H X f K , 28n
j

j j
j j

and assuming that Bob has chosen the optimal set of functions { }f j j , we see that

=[ ] ( ∣ ) ( ) H X YPr p 29n guess
seq

with = Q( )Y K ,j j j being the jth advice variable.
To improve clarity of the proof it is convenient to define a variable which evaluates the test threshold after l

rounds g= -X S Rl l l. Note that the transition  +( )l l 1 is governed by the following equation

g
g

 =  - + - - 
+ +  -

+ +[ ] [ ] · ( ) [ ( ) ] ·
[ ] · ( ) ( )

  


X x H X x H q p X x H qp

X x H q p

Pr Pr 1 Pr 1

Pr 1 , 30
l l l l l l

l l

1 1 L T

T

where the three terms correspond to a successful live round, a successful test round and an unsuccessful test
round, respectively. In the following propositionwe establish a recursive upper bound on the probability of
failure.

Proposition 6. Let k 0 be an arbitrary real constant. For all Î l the following inequality holds

a g -[ ] [ ( )] ( ) X x H q k ePr , , , 31l l
l kx

where a g( )q k, , is a real constant defined as

a g - + + -g g- -( ) ≔ [( ) ( )] ( )
( )

( )q k q p q p q p, , max 1 e e 1 32
p p

k k

,
L

1
T T

L T

and themaximisation is taken over all admissible pairs ( )p p,L T .

Proof.Proof by induction. The statement is trivial for l= 0 and the second induction step follows directly from
applying the ansatz (31) to equation (30) (andwe directly obtain the formof a g( )q k, , given in
equation (32)). ,

As an immediate corollary (set x = 0)we get a bound on the desired probability

g a g=  = [ ] [ ] [ ] [ ( )] ( )  F S R H X H q kPr Pr Pr 0 , , . 33n n n n n
n

Since this holds for any k 0, we choose the tightest bound

a g a g( ) ≔ ( ) ( )


q q k, min , , , 34
k

min
0

which leads to thefinal bound

a g[ ] [ ( )] ( )F qPr , . 35n
min

While we do not knowhow tofind a g( )q,min analytically, numerical evaluation is straightforward as explained
in appendix B. Some numerical results are plotted infigure 5.

3. Conclusions

Wehave proposed a protocol implementingDIWSE and proved security in two scenarios. In thememoryless
scenario the device isfirst extensively testedwhich allows to estimate the incompatibility between the two
measurements. This turns out to be sufficient to show a lower bound on themin-entropy of the output (against a
classical adversary), which happens to be tight. Due to the SDP formulation of themin-entropywe can show that
the lower bound is additive whenmultiple rounds are played (which is not obvious since Bob’s attack could
introduce correlations between different rounds).Moreover, we have considered amodel inwhich the devices
used byAlicemight havememory but Bob is restricted to sequential attacks. In this case amartingale-style
approach leads to an explicit security statement.

A secure implementation ofWSE leads directly to bit commitment since the reduction involves classical
post-processing only (which is trusted even in theDI setting). To turnWSE into some arbitrary universal
functionality (e.g. oblivious transfer) one needs to add trusted quantum communication or a secure (quantum
proof) implementation of another cryptographic primitive called interactive hashing (for explicit security
bounds for such constructions see sections IV andVof [KWW12]). Alternatively, one can use our techniques to
directly prove security of an oblivious transfer protocol (in the bounded storagemodel)proposed in [DFR+07].
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While this work constitutes a significant progress in the field ofDI two-party cryptography,many open
questions remain. In thememoryless case we only obtain bounds on themin-entropy, while it is often
advantageous to derive bounds on other Rényi entropies. The problematic step in this case is the additivity of
lower bounds ifmultiple rounds are played. In case of themin-entropy additivity is a direct consequence of the
SDP formulation (the same observation holds for the collision entropy corresponding to the pretty good
measurement) but we do not know if additivity holds in general.While this problemmight seempurely
technical, it is of practical relevance as it would lead to significantly better security guarantees.

Another important open question is the analysis of devices withmemory. In our analysis we have assumed
that Bob’s attack is sequential. Unfortunately, we know that sequential attacks are not always optimal (even if
Alice’s behaviour is sequential, see appendix C for a simple counterexample). A security proof for devices with
memory in this scenario is arguably themost important open question related toDI two-party cryptography.

Finally, we note that in the realmof the noisy-storagemodel there aremuchmore sophisticated analyses
[DFW15], which do not rely on the fact that wewillfirst bound the adversary’s information about the stringXn

when he is holding classical information, and subsequently relate this to his information aboutXn including
quantum information. Instead, one establishes a direct link between the adversary’s quantum information and
his uncertainty aboutXn [DFW15]. It remains an interesting open questionwhether these techniques can be
applied in theDI setting.
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AppendixA. Effective anticommutation is not sufficient against classical side information

Let ñ ={∣ } }j j 0
3 be a basis for a four-dimensional Hilbert space. Consider the state

r = ñá + ñá(∣ ∣ ∣ ∣)1

2
0 0 2 2A

and binary observables

= ñá - ñá + ñá - ñá
= ñá - ñá - ñá + ñá

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

A

A

0 0 1 1 2 2 3 3 ,

0 0 1 1 2 2 3 3 .
0

1

It is easy to check that the anticommutator equals

= ñá + ñá - ñá - ñá{ } (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣)A A, 2 0 0 1 1 2 2 3 3 ,0 1

which implies that the effective anticommutator equals r =({ } )A Atr , 0A
1

2 0 1 .While observableA0 leads to no
uncertainty, it is easy to verify that if wemeasure observableA1 we obtain a uniformoutcome. Indeed, it is
possible to shownon-trivial lower bound on Qa ( ∣ )H X .

Now, suppose that somebody holds an extra bit of classical information about the system.More specifically,
we consider

r = ñá Ä ñá + ñá Ä ñá(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )1

2
0 0 0 0 2 2 1 1 .AK A K A K

Measuring observableA1 now leads to an outcomewhich is still uniformbut it is perfectly correlatedwith the
classical registerK. Therefore, Q =a ( ∣ )H X K 0, which demonstrates that effective anticommutation does not
imply uncertainty against classical side information. This is consistent with evaluating the absolute effective
anticommutator r =(∣{ }∣ )A Atr , 1A

1

2 0 1 , which does not yield a non-trivial uncertainty bound.

Appendix B.Numerical evaluation of a g( )q,min

Recall that our goal is to evaluate

a g - + + -g g- -( ) ≔ [( ) ( )]
( )

( )


q q p q p q p, min max 1 e e 1 .
k p p

k k
min

0 ,
L

1
T T

L T

Wefirst show that themaximisation over the admissible pairs ( )p p,L T can be performed analytically. Since the
expression inside the square bracket is increasing in both pL and pT the optimal point lies at the boundary, which
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can be parametrised by the effective absolute anticommutator r= Î(∣{ }∣ ) [ ]t A Atr , 0, 1A
1

2 0 1 . Let us restate
equations (22) and (23)

= + +

= + + - = + + + -

( )

( ) ( )

p t t

p t t t t

1

2

1

2 2
1 ,

1

2

1

4
1 1

1

2

1

4 2
1 1 .

L

T
2

Solving themaximisation problem corresponds to calculating Î( ) ≔ ( )[ ]g k f tmaxt k0,1 for

+ + - +( ) ≔f t A t B t C1 1k

with

= - + -

=
-

=
-

+
+

g

g

g

-

-

-

[ ( ) ( )]

( )

( )

A q q

B
q

C
q q

1

4 2
2 1 e e 1 ,

e e 1

4 2
,

1

2

e e 1

2
.

k k

k k

k k

Thefirst two terms can bewritten as an inner product á ñu v, for = ( )u A B, and = + -( )v t t1 , 1 .
Applying theCauchy–Schwarz inequality leads to the following upper bound

+ +( ) ( ) ( )g k A B C2 , B12 2

which can be achieved by choosing = - +( ) ( )t A B A B2 2 2 2 .
We do not knowhow tominimise g(k) over k 0 analytically but numerically it is an easy task because for

all valid g( )q, wehave =( )g 0 1and = ¥¥ ( )g klimk and the function is convex. Therefore, there is a
uniqueminimumwhich corresponds precisely to a g( )q,min .

There are three cases inwhichwe should not be able to prove security:

• Alice never tests: q= 0.

• Alice always tests: q= 1.

• The threshold is classical: g = 3

4
.

Here, we show that in all other cases we get a g <( )q, 1min . Assuming that ¹q 1 (if q = 1 there is no
security possible anyway)wefind the Taylor expansion around k= 0

g

+ =
-

+ +

=
+

+
-

+

( ) ( )

( ) ( )

A B
q q

k O k

C
q q

k O k

2
1

2 4
,

1

2

1 2

2

2 2 2

2

and therefore

g= + - +( ) ( )⎜ ⎟⎛
⎝

⎞
⎠g k qk O k1

3

4
.2

This shows that whenever >q 0 and g > 3

4
setting k small enough leads to <( )g k 1, which concludes the

argument.

AppendixC. Sequential guessing is not necessarily optimal

Consider a device which can be used twice and recall that we useQk andXk to denote the input and output in the
kth round, respectively. Alice’s subsystem consists of two qubits while Bob’s subsystem is a qudit. The initial
state is

r r= ñá Ä ñá + ñá Ä ñá Ä(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )1

2
0 0 0 0 1 1 1 1A A B A A A A B1 2 1 2 1 2

for some fixed rB. Since Bob’s state is uncorrelated, it carries no useful information sowe can ignore it and
assume that Bob picks his ‘guessing functions’ deterministically. In thefirst round the device of Alice performs
the computational basismeasurement on the first qubit regardless of the value ofQ1. Therefore, the state after
thefirst round is
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r = ñá Ä ñá + ñá Ä ñá(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )1

2
0 0 0 0 1 1 1 1 .X A X A X A1 2 1 2 1 2

In the second round the device performs a projectivemeasurement on the second qubit but the basis depends on
Q2: ifQ = X2 1 the qubit ismeasured in the computational basis (which ensures that =X X1 2, while ifQ ¹ X2 1

the qubit ismeasured in theHadamard basis (which leads toX1 andX2 being uncorrelated). It is easy to verify that
the resulting probability distribution QPX X1 2 2

(wehave ignoredQ1 since it is uncorrelated from the other random
variables) is

Q X X Pr

0 0 0 1 4

0 1 0 1 8

0 1 1 1 8

1 0 0 1 8

1 0 1 1 8

1 1 1 1 4

2 1 2

In the general scenario it is optimal for Bob to guess = QX1 2 and = QX2 2 which succeedswith probability
1

2
.

However, in the sequential scenario Bobmust attempt to guessX1 before he learnsQ2. It is easy to verify that
in this case his guessing probability is atmost 3

8
.
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