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Abstract
Wepresent a feasible proposal for quantum tomography of qubit and qutrit states viamutually
unbiasedmeasurements in dispersively coupled driven cavityQED systems.Wefirst show that
measurements in themutually unbiased bases (MUBs) are practically implemented by projecting the
detected states onto the computational basis after performing appropriate unitary transformations.
Themeasurement outcomes can then be determined by detecting the steady-state transmission
spectra (SSTS) of the driven cavity. It is found that all themeasurement outcomes for eachMUB (i.e.,
all the diagonal elements of the densitymatrix of each detected state) can be read out directly from
only one kind of SSTS. In this way, we numerically demonstrate that the exemplified qubit and qutrit
states can be reconstructedwith thefidelities 0.952 and 0.961, respectively. Our proposal could be
straightforwardly extended to other high-dimensional quantum systems provided that theirMUBs
exist.

1. Introduction

One of the essential tasks in quantum information processing is how to extract the complete information of an
unknownquantum state. A powerfulmethod to achieve this aim is known as quantum state tomography (QST),
i.e., reconstructing the densitymatrix of this unknown quantum state [1]. Due to its particular importance in
quantum information processing, QSThas received considerable attention in recent decades, and a great deal of
significant advancements have been achieved in theoretical [2–7] and experimental aspects [8–12].

In order to realizeQST, onefirst needs to perform a series of projectivemeasurements on a large enough
number of identically prepared copies of the quantum state, and then reconstructs its densitymatrix from these
measurement outcomes. Prior tomeasurements, a crucial issue is the choice ofmeasurement sets [13]. To
increase the accuracy and efficiency inQST, several kinds ofmeasurement sets have been explored and
employed, including the set of themeasurement bases, e.g., standard projectivemeasurement bases [2, 3],
equidistant states [14], symmetric informationally complete positive operator-valuedmeasures [15, 16],
mutually unbiased bases (MUBs) [17], and so on.

MUBs are a typical kind ofmeasurement bases, which are defined by the property that the squared overlaps
between a basis state in one basis and all basis states in the other bases are the same [17]. Physically, thismeans
that themeasurement of a particular basis state does not reveal any information about the state if it was prepared
in another basis. Due to this distinct property,MUBs have extensive applications in the field of quantum
information. Therein, a typical application isQST [18–23]. In the context ofQST,Wootters and Fields [18]
proved that themeasurements in theMUBs provide aminimal and optimalway to realizeQST (calledMUBs-
QSThereafter) in the sense ofmaximizing information extraction from eachmeasurement andminimizing the
effects of statistical errors in themeasurements. By far, several experiments have been demonstrated to
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implementMUBs-QST only in optical systems [24–27]. Additionally, a theoretical scheme has been presented to
realizeMUBs-QST of two spin qubits in a double quantumdot [28].

As a possible physical implementation, in this paperwe propose a feasible proposal forMUBs-QST in
dispersively coupled driven cavityQED systems.We demonstrate our idea for the cases of qubit and qutrit states.
Certainly, our idea is also suitable for other high-dimensional quantum systems if theirMUBs exist. Themain
idea of our proposal is summarized as follows. First,measurements in theMUBs are implemented by projecting
the detected states onto the computational basis after performing proper unitary transformations, which can be
readily realized by adjusting the classical driving field applied on the qubit or qutrit. Secondly, the projective
measurement outcomes can be determined by detecting the steady-state transmission spectra (SSTS) of the
driven cavity. Through theoretical analysis and numerical experiments, it is found thatmultiple peaks appear in
the SSTS: each of the detected peaksmarks one of the computational basis states and its relative height equals the
corresponding superposed probability in the detected state. Thismanifest advantage allows us to directly read
out all themeasurement outcomes for eachMUB (i.e., all the diagonal elements of the densitymatrix of each
detected state) by only one kind of SSTS. In thismanner,MUBs-QST can be realized. Finally, our proposed
readoutmethod is of the nondestructive property [29]. Thismeans that what we directly detect is the transmitted
photons through the driven cavity, rather than intracavity atom itself. Themeasurement-induced noises on the
atom can be efficiently suppressed. Thuswe numerically demonstrate that the fidelities of the exemplified qubit
and qutrit states can attain 0.952 and 0.961, respectively.

The rest of this paper is organized as follows. In section 2, we briefly introduce theMUBs and theMUBs-
QST for d-dimensional quantum system, especially for twominimal prime numbers d=2 and d=3. In
section 3, we show in detail how to realize the required unitary transformations, the SSTS, and furtherMUBs-
QSTof qubit states with them. The extension to the case of qutrit states is explicitly shown in section 4.
Discussion on the experimental implementation of our proposal is given in section 5. This paper ends upwith a
conclusion in section 6.

2.MUBs andMUBs-QST

In a d-dimensional quantum system, two orthogonal bases {∣ }( )y= ñ = ¼ -B l d, 0, 1, , 1d
k

d
k l, and

{∣ }( )y= ñ ¢ = ¼ -
¢ ¢ ¢B l d, 0, 1, , 1d

k
d
k l, are defined asMUBs if and only if any pair of basis states fromdifferent

orthogonal bases ( ¹ ¢k k ) satisfy [17]

∣ ∣ ∣ ( )( ) ( )y yá ñ =¢ ¢

d

1
, 1d

k l
d
k l, , 2

where ( )¢l l labels one of the basis states in the ( )¢k k th orthogonal basis. It is known that the number ofMUBs for
any dimension d is atmost +d 1 [18], and exactly +d 1 if the dimension d is a prime [19] or a power of a prime
[18]. Such +d 1MUBs constitute a complete set if each pair ofMUBs in this set ismutually unbiased [18].
Nevertheless, whether a complete set ofMUBs exists or not in other finite dimensions is still unknown, for
instance, d=6 [30–32].

It is well known that themeasurements in theMUBs provide aminimal and optimalway to completely
determine the densitymatrix of an unknown quantum state [18]. In terms of theMUBs, the densitymatrix of an
arbitrary d-dimensional quantum state can be represented as [19]

( )( ) ( )åår = -
=

+

=

-

p P I, 2d
k

d

l

d

d
k l

d
k l

1

1

0

1
, ,

where theMUBs-projector ∣ ∣( ) ( ) ( )y y= ñáPd
k l

d
k l

d
k l, , , defines a complete set of projectivemeasurements,

( )( ) ( )r=p PTrd
k l

d
k l

d
, , is the probability of projecting rd onto the basis state ∣ ( )y ñd

k l, of the kthMUB, and I is an
identity operator. Themeasured probability can be equivalently written as

( ∣ ∣ ) ( ∣ ∣) ( )( ) † †r r= ñá = ñáp U l l U V V l lTr Tr , 3
d

k l
d
k

d
k

d d
k

d d
k,

whereUd
k is the unitary transformation that transforms the standard computational basis

{∣ }ñ = ¼ -l l d, 0, 1, , 1 into the kthMUB in a d-dimensional quantum system. From equation (3), it can be
seen that themeasurements in theMUBs can be realistically implemented by projecting the detected state onto
the computational basis after performing appropriate unitary transformations †=V Ud

k
d
k . And the projective

measurement outcome ( )pd
k l, is exactly the value of the diagonal element ∣ ∣ñál l of the transformed densitymatrix

†r r¢ = V Vd d
k

d d
k .With these projectivemeasurement outcomes, theMUBs-QST can be realized.

Specifically, we show the correspondence between themeasurements in the kthMUBand the required

unitary transformationsVd
k for d=2 and d=3 in table 1. Therein,  is theHadamard gate, ( ) =p spU ex

7

4
i x

7
4

with the Pauli operator ∣ ∣ ∣ ∣s = ñá + ñá0 1 1 0x , F is the Fourier transformationwith the effect of

2
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∣ ∣ ( )ñ = å ñ =p
=F l l le , 0, 1, 2m

ml1

3 0
2 2 i 3 and -F 1 is its inverse operator, ∣ ∣ ∣= ñá + ñpR 0 0 e 12 i 3

∣ ∣ ∣á + ñáp1 e 2 22 i 3 is the phase operation and -R 1 is its inverse operator.

3.MUBs-QST of qubit states

3.1. Implementation of single-qubit unitary transformations
Weconsider a cavityQED system sketched infigure 1(a), wherein a qubit (two-level atom) shown infigure 1(b)
is dispersively coupled to a cavity. In order to implement single-qubit unitary transformations, we only need to
add a classical driving field on the qubit, see figure 1(b). Under the rotating-wave approximation, thewhole
system can be described by theHamiltonian ( = 1; hereafter the same)

( ) ( ) ( )† †w
w

s s s s s= + + + +
W

+n n
- + +

-
-H a a g a a

2 2
e e , 4r

a
z

t ti i

where wr is the cavity frequency, ( )†a a is the creation (annihilation) operator of the cavity photon, wa is the
transition frequency of the qubit with the Pauli operators: ∣ ∣s = ñá- 0 1 , ∣ ∣s = ñá+ 1 0 , and ∣ ∣ ∣ ∣s = ñá - ñá1 1 0 0z , g
is the coupling strength between the qubit and the cavity,Ω and ν are the amplitude and the frequency of the
classical drivingfield.

In a frame rotating at the frequency ν of the classical driving field for both the qubit and the cavity, the
Hamiltonian (4) is changed to

Table 1.The correspondence
between themeasurement in the kth
MUB and the required unitary trans-
formationVd

k for d=2 and d=3,
respectively. See the text for details.

d=2 d=3

k V2
k k V3

k

1 I 1 I

2  2 -F 1

3 ( )pUx
7

4
3 - -F R1 1

4 -F R1

Figure 1. (a) Schematic diagramof a cavityQED system,wherein a qubit (two-level atom) or a qutrit (three-level atom) is dispersively
coupled to a cavity. The qubit or qutrit states can be nondestructively read out by applying a classical driving fieldwith the frequency
wd on one side of the cavity and then detecting its SSTSTss on the other side.κ denotes the photon decay rate of the cavity, g1 the qubit
decay rate, g j

1 ( )=j 1, 2 the qutrit decay rates. (b)A classical driving fieldwith the amplitudeΩ and the frequency ν is applied on the
qubit to implement the required single-qubit unitary transformations. (c)Two classical driving fieldswith the amplitude W1 and the
frequency n1, and the amplitude W2 and the frequency n2, are applied between the energy levels ∣ ñ0 and ∣ ñ1 , and between ∣ ñ1 and ∣ ñ2 ,
respectively, to realize the required single-qutrit unitary transformations.

3
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˜ ( ) ( )† †s s s s= D +
D

+ + +
W

- +H a a g a a
2 2

, 5r
a

z x

with w nD = -r r being the frequency detuning of the cavity from the classical drivingfield, and w nD = -a a

being the frequency detuning of the qubit from the classical driving field.
Similar to [33], in the dispersive regime (i.e., ∣ ∣ Dg 1with w wD = -a r), we perform the unitary

transformation [ ( ) ]†s s= - D- +U g a aexp on theHamiltonian(5) to eliminate the direct qubit-cavity
coupling. Using theHausdorff expansion to second order in the small parameter Dg , the effective
Hamiltonian reads as

˜ ˜ ( )† s s¢ = D + D +
W

H a a
1

2 2
, 6r a z x

where D̃ = D + La a with = DL g 2 . As the average photon number of the cavity †á ñ ~a a 0, this
Hamiltonian(6) can generate rotations of the qubit about any axis on the Bloch sphere by adjusting the
frequency ν of the classical driving field. First, if we adjust n w= + La so that D̃ = 0a , the rotations of the qubit
around x axis on the Bloch sphere can be generated, that is, the unitary transformation ( )q = qsU ex

i x with

q = Wt 2x . Therefore, the required unitary transformation ( )pUx
7

4
can be implementedwith the duration time

( )p= Wt 7 2x . Secondly, if the driving frequency is adjusted as n w= + - WLa , we can realize the required
Hadamard gate with the duration time ( ) p= Wt 2 . Finally, the combination of and ( )qUx can generate
rotations of the qubit about z axis on the Bloch sphere since ( ) ( ) q q= =qsU Uez x

i z , and the total duration
time is ( )p q= + Wt 2 2z .

3.2. SSTS of a driven cavitywith a qubit
For the readout of the qubit states, we need to apply another classical driving field on one side of the cavity, and
then detect its SSTS on the other side, see figure 1(a). The interactionHamiltonian between the applied driving
and the cavity reads as

( ) ( )†= +w w-H a ae e , 7d
t ti id d

where ò is the time-independent real amplitude and wd is the frequency of the applied driving. The total
HamiltonianHT of such a driven cavity-qubit system includesHd plus thefirst three terms of equation (4). In the
dispersive regime and in a frame rotating at the driving frequency wd for the cavity, the effectiveHamiltonian of
thewhole system is derived as

( ) ( ) ( )† †s
w

s= -D + +
+

+ +H L a a
L

a a
2

, 8T dr z
a

z
eff

where w wD = -dr d r is the detuning between the driving frequency and the cavity frequency.
Under the Born–Markov approximation, the dynamics of thewhole system is governed by themaster

equation [29]

[ ] [ ] [ ] [ ] ( )  
r

r k r g s r
g

s r= - + + + f
-

t
H a

d

d
i ,

2
, 9T z

eff
1

where ρ is the densitymatrix of the system and [ ] † † †     r r r r= - -2 2. Here, g = T11 1 is the
qubit energy decay rate, gf the qubit dephasing rate, andκ the photon decay rate of the cavity. From themaster

equation (9), the coupled equations ofmotion related to the desired quantity †á ña a are given by

( )
†

† k
á ñ

= - á ñ - á ñ
a a

t
a a a a

d

d
2 Im , 10

( )l s
á ñ

= á ñ - á ñ -
a

t
a L a b

d

d
i i , 10z

( ) ( ) ( )
s

l g s g s
á ñ

= - á ñ - + á ñ - á ñ
a

t
a L a c

d

d
i i , 10z

z z1 1

( ) ( )s
g s

á ñ
= - á ñ +

t
d

d

d
1 . 10z

z1

with l = D - ki dr 2
. From equation (10d), we can obtain ( ) [ ( ) ] ( )s s sá ñ = á ñ + - á ñg-t e 0 1 1 0z

t
z zNDR 1 NDR

since k~t 1NDR and g k1 [34], where the subscriptNDRdenotes nondestructive readout. Further, the

normalized SSTS ( )†= á ñ kT a ass ss 2

2
of the driven cavity is analytically derived from equations (10a)–(10c) as

( ) ( ) ( )k s l g
l lg g

=
á ñ - -
+ - -

⎡
⎣⎢

⎤
⎦⎥T

L

L L2
Im

0 i

i
, 11z

ss
1

2 2
1 1

where the subscript ss denotes steady state.

4
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From equation (8), it can be seen that the interactionHamiltonian between the qubit and the cavity is
†s=H L a azint , which commutes with the qubit operator sz, i.e., [ ]s =H , 0zint . Therefore, the transmission

spectra readoutmethod proposed above is of the nondestructive property [29]. The interactionHamiltonian
Hint also indicates that the cavity frequency is shifted by-L (or L), if the qubit is in the computational basis state
∣ ñ0 (or ∣ ñ1 ). Hence, the shifts of the cavity frequency canmark the computational basis states of the qubit. On the
other hand, only the incident photonwhose frequency is equivalent to one of the state-dependent frequencies
w  Lr of the cavity can transmit the cavity and then be detected. Physically, the detected probability is exactly
the superposed probability of the computational basis state in the qubit state. Therefore, the SSTSTss(11) has
the feature: the relative height of each transmitted peakmarked one of the computational basis states
corresponds to its superposed probability in the detected qubit state. This can also be verified through numerical
experiments, see section 3.3 as well. Thismanifest advantage allows us to directly read out all the diagonal
elements of the densitymatrix of the detected qubit state with only one kind of such SSTS.

3.3. Numerical demonstration ofMUBs-QST of qubit states
Wenownumerically demonstrate theMUBs-QST of qubit states in detail with the presented single-qubit
unitary transformations in section 3.1 and the SSTS in section 3.2.

The densitymatrix of an arbitrary qubit state to be determined can be represented as

( )år s= +
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟I r

1

2
, 12

j
j j2

1

3

where riʼs are real parameters, s s= x1 , s s= y2 , and s s= z3 .Without loss of generality, if we choose r1=0.5,
r2=0.6, and r3=0.2, the densitymatrix (12) is specified as

( )r = -
+

⎜ ⎟⎛
⎝

⎞
⎠

0.6 0.25 0.3i
0.25 0.3i 0.4

. 132

According to theMUBs-QST theory introduced in section 2, to realize themeasurements in theMUBs, we
first need to perform single-qubit unitary transformationsV2

k implemented in section 3.1 on the state(13). For
=V I2

1 , the state r2 remains identical. For =V2
2 and ( )= pV Ux2

3 7

4
, the state r2 is transformed as

†r r¢ = V V2 2
2

2 2
2 and †r r = V V2 2

3
2 2

3 , respectively. Then, we project the detected states r2, r¢2, and r2 onto the
computational basis. The projectivemeasurement outcomes can be determined by three kinds of SSTSs
proposed in section 3.2. The numerically simulated SSTSTss(11) of the driven cavity as a function of the
detuning w wD = -dr d r is shown infigure 2, wherein panels (a)–(c) correspond to the detected states r2, r¢2,
and r2 , respectively. Here, the parameters are chosen as ( ) ( )g k p= ´ -L, , 2 0.19, 1.69, 7.381 MHz [35]. As
the projectivemeasurement outcomes ( )p k l

2
, are exactly the corresponding diagonal elements ∣ ∣ñál l of each

detected state, we can thus directly read out all the projectivemeasurement outcomes for eachMUB from each
subfigure. Specifically, infigure 2(a), the heights of the transmitted peaksmarked computational basis states ∣ ñ0
and ∣ ñ1 are 0.602 and 0.329, respectively. Hence, the projectivemeasurement outcomes are

( ) ( )( ) ( ) =p p, 0.602, 0.3292
1,0

2
1,1 . Similarly, the projectivemeasurement outcomes

( ) ( )( ) ( ) =p p, 0.751, 0.2072
2,0

2
2,1 and ( ) ( )( ) ( ) =p p, 0.801, 0.1662

3,0
2

3,1 can be directly read out fromfigure 2(b)
and (c), respectively. Finally, inserting these projectivemeasurement outcomes and theMUBs for d=2 [18]
into equation (2), we can obtain the reconstructed state normalized as

Figure 2.The numerically simulated SSTSTss of the driven cavity versus the detuning w wD = -dr d r . Panels (a)–(c) correspond to
the detected states r2, r¢2, and r2 , respectively. The parameters are chosen as ( ) ( )g k p= ´ -L, , 2 0.19, 1.69, 7.381 MHz.
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˜ ( )r = -
+

⎜ ⎟⎛
⎝

⎞
⎠

0.6593 0.3174 0.3711i
0.3174 0.3711i 0.3407

. 142

However, it is noted that the reconstructed densitymatrix(14) is unphysical because it has a negative eigenvalue
violating the property of positive semidefiniteness of all physical densitymatrices. To avoid this problem,we
employ the commonly usedmaximum likelihood estimation (MLE) technique [2] to derive a physical density
matrixmost likely to have returned the numerically simulated results(14). In thismanner, a physical density
matrix is obtained as

˜ ( )r ¢ = -
+

⎜ ⎟⎛
⎝

⎞
⎠

0.6567 0.3087 0.3607i
0.3087 0.3607i 0.3433

. 152

And itsfidelity [36] is calculated as

( ˜ ) ( ˜ ) ( )r r r r r¢ = ¢ =F , Tr 0.952. 162 2 2 2 2

4.MUBs-QST of qutrit states

4.1. Implementation of single-qutrit unitary transformations
Weconsider a setup shown infigure 1(a), wherein a qutrit (three-level atomwith the cascade configuration,
without loss of generality)displayed infigure 1(c) is dispersively coupled to a cavity. TheHamiltonian of the
qutrit-cavity system reads as

( ) ( )† † å åw w= + P + P + P
= =

+ +a a g a a , 17r
j

j jj
j

j j j j j
0

2

0

1

, 1 1,

where wj is the frequency of the energy level ∣ ñj , gj is the coupling strength between the cavity and the transition
∣ ∣ñ « + ñj j 1 , and ∣ ∣P = ñá ¢¢ j jjj .

In the dispersive regime, i.e., ∣ ∣ D Dg g, 10 0
2

1 1
2 with the frequency detunings w w wD = - - r0 1 0 and

w w wD = - - r1 2 1 , and after adiabatically eliminating the cavitymode, the effectiveHamiltonian of the
system can be obtained as

∣ ∣ ∣ ∣ ( ) = ñá + ñáL L1 1 2 2 18eff 1 2

with = DL g1 0
2

0 and = DL g2 1
2

1. ThisHamiltonian can generate the required phase operationRwith the
possible duration time ( ) ( )p p= - = -t L L10 3 4 3R 1 2 , and its inverse operator -R 1with the duration
time t2 R.

On the other hand, similar to section 3.1, a classical driving fieldwith the amplitude W1 and the frequency n1

is applied between ∣ ñ0 and ∣ ñ1 . By adjusting the frequency n1, an arbitrary unitary transformation between ∣ ñ0

and ∣ ñ1 can be produced, i.e., ( ) ( )( ) ( )q f q= -f f
U U U U, z x z

01
1 1

01
2

01
1

01
2

1 1 with the total duration time

( )q p p= + + Wt 2 2 201 1 1. Likewise, we add another classical driving fieldwith the amplitude W2 and the
frequency n2 between ∣ ñ1 and ∣ ñ2 .We can generate an arbitrary unitary transformation between ∣ ñ1 and ∣ ñ2 ,

( )( ) ( ) ( )q f q= -f f
U U U U, z x z

12
2 2

12
2

12
2

12
2

2 2 , with the total duration time ( )q p p= + + Wt 2 2 212 2 2 by

adjusting the frequency n2. Since the transition ∣ ∣ñ « ñ0 2 is forbidden, any unitary transformation between ∣ ñ0
and ∣ ñ2 can be constructed by a sequence of ( )q fU ,01

1 1 and ( )q fU ,12
2 2 , e.g.,

( )( ) ( ) ( )q f q f= p pU U U U, ,x x
02

3 3
01

2
12

3 3
01

2
with the total duration time

( )p q p p= W + + + Wt 2 2 2 202 1 3 2. Furthermore, an arbitrary phase operation ( ) q f,4 4 can be
constructedwith a sequence of ( )q fU ,01

1 1 and ( )q fU ,02
3 3 , such as ( ) ( ) ( )  q f q f=,4 4

01
4

02
4 with

( )( ) ( ) ( ) q q= p p p pU U U, ,x
01

4
01 3

4 2
01

4
01

4 2
and ( )( ) ( ) ( ) f f p= p p pU U U, 0 , ,02

4
02 3

4
02

4 2
02 3

4
. The total

duration time is ( ) ( )p p q p p f= + + W + + + Wt 2 8 2 2 15 6 2 2R 4 1 4 2. Finally, the required inverse
operator of the Fourier transformation can be constructedwith the combination of the above unitary

transformations, e.g., ( ) ( ) ( ) ( )p= - - + - -p p p p p p p-F U U Ui , arccos , , ,1 12 7

4 6
01 2

3 6
02

4

5

6

11

6

5

3
. The total

duration time is ( ) ( )p p p p= + + W + + W-t 83 3 6 2 2arccos 91 3 10 2F
2

3 1 21 .

4.2. SSTS of a driven cavitywith a qutrit
Similar to section 3.2, a classical driving fieldwith the same interactionHamiltonian(7) is employed to achieve
the readout of the qutrit states. The totalHamiltonian of such a driven cavity-qutrit system is = + HT d. In
the dispersive regime and in a frame rotating at the driving frequency wd for the cavity, the efficientHamiltonian
of thewhole system is derived as
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( ) ( ) ( )† † å å w= -D + P + + P + +
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟S a a L a a , 19T dr

j
i jj

j
j j jj

eff

0

2

0

2

where =
D

-

-
Lj

gj

j

1
2

1
and = -

D D
-

-
Sj

g gj

j

j

j

1
2

1

2

are Lamb shift and Stark shift of energy level ∣ ñj , respectively.

Themaster equation to describe the dynamics of thewhole system is given by [29]

[ ] [ ] [ ] [ ] ( )   å år
r k r g r g r= - + + P + Pf

=
-

=t
a

d

d
i , , 20T

j

j
j j

j

j
jj

eff

1,2
1 1,

1,2

where g = T1j j
1 1 and gf

j are the energy decay rate and the dephasing rate for energy level ∣ ñj , respectively. From
themaster equation (20), we can derive a set of coupled equations of emotion associatedwith the desired
quantity †á ña a , which includes equation (10a) and

( )l
á ñ

= á ñ - áP ñ - áP ñ - áP ñ -
a

t
a S a S a S a a

d

d
i i i i , 210 00 1 11 2 22

( )l g
áP ñ

= áP ñ - áP ñ + áP ñ - áP ñ
a

t
a S a a b

d

d
i i , 2100

00 0 00 1
1

11 00

( )l g g
áP ñ

= áP ñ - áP ñ - áP ñ + áP ñ - áP ñ
a

t
a S a a a c

d

d
i i , 2111

11 1 11 1
1

11 1
2

22 11

( )l g
áP ñ

= áP ñ - áP ñ - áP ñ - áP ñ
a

t
a S a a d

d

d
i i , 2122

22 2 22 1
2

22 22

( )g
áP ñ

= áP ñ
t

e
d

d
, 2100

1
1

11

( )g g
áP ñ

= - áP ñ + áP ñ
t

f
d

d
, 2111

1
1

11 1
2

22

( )g
áP ñ

= - áP ñ
t

g
d

d
. 2122

1
2

22

Similar to the qubit case, from equations (21e)–(21g), we can obtain ( )áP ñ áP ñ000 00 , ( )áP ñ áP ñ011 11 , and
( )áP ñ áP ñ022 22 . Further, the normalized SSTS of the driven cavity can be analytically derived from

equations (10a) and(21a)–(21d) as

( ) ( ) ( )

( ) ( ) ( ) ( )

k
l l

g g g

l
g

l

=- +
áP ñ

+
áP ñ

+
áP ñ

+
áP ñ

+
áP ñ

+
áP ñ

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

T
S

A AB ABC

S

B BC

S

C

2
Im

i 0 0 0

0 0 0
, 22

ss
0 00 1

1
11 1

1
1
2

22

1 11 1
2

22 2 22

with l= -A Si 0 , l g= - +B Si 1 1
1, and l g= - +C Si 2 1

2.
The physicalmechanism of the SSTS readoutmethod is similar to the qubit case explained in section 3.2.

This is also a kind of nondestructivemeasurement due to the fact that the interactionHamiltonian between the
qutrit and the cavity (i.e., Stark shift term in equation (19)) † = PS a aj jjint commutes with the qutrit operator
Pjj, that is, [ ] P =, 0jjint . Theoretical analysis and numerical experiments also indicate thatmultiple peaks
emerge in the SSTS(22)with the same feature as the qubit case. This feature is also verified in section 4.3.

4.3. Numerical demonstration ofMUBs-QST of qutrit states
With the implemented single-qutrit unitary transformations in section 4.1 and the presented SSTS in
section 4.2, we numerically show in detail how to realize theMUBs-QST of qutrit states.

An arbitrary qutrit state can be represented as

( )år a= +
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟I r

1

3
, 23

j
j j3

1

8

where rjʼs are real parameters, and ajʼs are SU(3) generators [37].Without loss of generality, if we choose
r1=0.3, r2=0.24, r3=0.3, r4=0.36, r5=0.3, r6=0.42, r7=0.36, r8=0.1, the qutrit state(23) is specified
as

( )r =
- -

+ -
+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0.453 0.1 0.08i 0.12 0.1i
0.1 0.08i 0.253 0.14 0.12i
0.12 0.1i 0.14 0.12i 0.294

. 243
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In order to realize themeasurements in theMUBs, we first perform single-qutrit unitary transformationsV3
k

implemented in section 4.1 on the qutrit state(24). The qutrit state(24) remains the same for =V I3
1 . For the

other unitary transformationsV3
2,V3

3, andV3
4, the transformed states are given by †r r¢ = V V3 3

2
3 3

2 ,
†r r = V V3 3

3
3 3

3 , and ‴ †r r= V V3 3
4

3 3
4 , respectively. Then, these detected states r3, r¢3, r3 , and ‴r3 are projected

onto the computational basis. The projectivemeasurement outcomes can be read out by four kinds of SSTSs
presented in section 4.2. Infigure 3, we numerically show the SSTSTss (22) of the driven cavity as a function of
the detuning w wD = -dr d r . Panels (a)–(d) correspond to the detected states r3, r¢3, r3 , and ‴r3 , respectively.

The parameters are choose as ( ) ( )g g k p= ´, , 2 0.199, 0.227, 1.691
1

1
2 MHz [38] and

( )( ) p= ´S 4 10.0, 5.9, 3.40,1,2 MHz (twice of the Stark shifts in [38] to increase the distinguishability of the
transmitted peaks). From the position and the height of the transmitted peaks, we can directly read out all the
diagonal elements of the detected states, which are exactly the projectivemeasurement outcomes. Specifically,
the projectivemeasurement outcomes ( ) ( )( ) ( ) ( ) =p p p, , 0.457, 0.222, 0.2443

1,0
3

1,1
3

1,2 can be directly read out
fromfigure 3(a). Likewise, we can directly read out the projectivemeasurement outcomes
( ) ( )( ) ( ) ( ) =p p p, , 0.578, 0.232, 0.1353

2,0
3

2,1
3

2,2 , ( ) ( )( ) ( ) ( ) =p p p, , 0.463, 0.302, 0.1613
3,0

3
3,1

3
3,2 , and

( ) ( )( ) ( ) ( ) =p p p, , 0.257, 0.373, 0.2623
4,0

3
4,1

3
4,2 fromfigure 3(b), (c), and (d), respectively. Finally, substituting

these projectivemeasurement outcomes and theMUBs for d=3 [22] into equation (2), the normalized
reconstructed state is obtained as

˜ ( )r =
- -

+ -
+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0.551 0.1399 0.1108i 0.1618 0.1356i
0.1399 0.1108i 0.2085 0.2755 0.1472i
0.1618 0.1356i 0.2755 0.1472i 0.2405

. 253

Note that the reconstructed densitymatrix(25) is also unphysical since it contains a negative eigenvalue.
Likewise, this problem is resolvedwith the commonly usedMLE technique [2], which allows us to derive a
physical densitymatrixmost likely to produce the numerically simulated results(25). In this way, we can obtain
a physical densitymatrix

˜ ( )r ¢ =
- -

+ -
+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0.5267 0.1575 0.0913i 0.117 0.146i
0.1575 0.0913i 0.2224 0.2153 0.0923i

0.117 0.146i 0.2153 0.0923i 0.2509
263

Figure 3.The numerically simulated SSTSTss of the driven cavity versus the detuning w wD = -dr d r . Panels (a)–(d) correspond to
the detected states r3, r¢3, r3 , and ‴r3 , respectively. The parameters are chosen as ( ) ( )g g k p= ´, , 2 0.199, 0.227, 1.691

1
1
2 MHz and

( )( ) p= ´S 4 10.0, 5.9, 3.40,1,2 MHz.
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with thefidelity [36]

( ˜ ) ( ˜ ) ( )r r r r r¢ = ¢ =F , Tr 0.961. 273 3 3 3 3

5.Discussion

Wenowdiscuss the experimental realization of our proposal by taking a typical driven cavityQED system,
circuitQED [33–35, 38–40], as an example. First of all, our proposal requires the intracavity atom to have two-
level and three-level configurationwith good anharmonicity andwork in the dispersive regime. In circuit QED,
these requirements can be easily satisfied by adjusting the external flux bias on the superconducting artificial
atom [39]. Secondly, we estimate the time for the implementation of the required single-qubit and single-qutrit
unitary transformations with the experimentally accessible parameters.When the amplitude of the applied
driving is chosen as pW = ´2 100 MHz [33], the times for the required single-qubit unitary transformations

 and ( )pUx
7

4
are approximately estimated as t 3.5 ns and tx=17.5 ns. Also, with the amplitudes of the

applied two drivings assumed as pW = W = ´2 2001 2 MHz and p= - ´L 2 15.92 MHz [38], the times
needed to implement the required single-qutrit unitary transformationsR, -R 1, and -F 1 are approximately
calculated as t 42R ns, -t 84R 1 ns, and -t 203F 1 ns, respectively. Lastly, experimentally, our proposed
SSTS can be statistically observed by performing themeasurements on an ensemble of the identically detected
states, similar toMUBs-QST schemes in optical systems [24–27]. As the SSTS is proportional to the average
photon number through the driven cavity, it can be experimentally observed by applying the classical driving
fieldwithin a certain frequency regime at the input port of circuit QED and then detecting the transmitted
photons at the output port with usually adopted homodyne-detectionmethod [33–35, 38, 40]. The driving field
should be sufficiently weak such that the average photon number is less than the critical photon number

( )= Dn g4c
2 2 [40] tomaintain the nondestructive property of the SSTS. The time needed for this kind of SSTS

is on the time scale corresponding to the photon lifetime k1 94 ns for the photon decay rate of the cavity
k p= ´2 1.69 MHz [35, 38]. From the above, it can be seen that the time needed to complete thewhole
procedure is significantly shorter than the relaxation and dephasing times, e.g.,T1=7.3 μs and =T 5002 ns for
qubit [34], as well as =T 8001

1 ns, =T 7001
2 ns, and =T 5002

1 ns for qutrit [38]. Thus, our proposal can be
experimentally realizedwith the current techniques.

Next we present an analysis of the expectable errors in our proposal. The systematic errors arisemainly from
the imperfect unitary transformations in the realization ofmutually unbiasedmeasurements. The imperfections
are caused by the decays of the atom and the cavity as well as the parameter errors of the applied classical driving
field. Asmutually unbiasedmeasurements in our proposal are based on single-qubit unitary transformations,
we only numerically analyze the influences of these imperfections on thefidelities of single-qubit unitary
transformations. In the above, we have shown that the time required for single-qubit unitary transformations is
much shorter than the atomic decoherence time and the photon lifetime. This implies that no photon leakage
actually happens either from the atomic excited state or from the cavitymode during the implementations.With
quantum trajectorymethod [41], theHamiltonian in equation (5) becomes

H ˜ ∣ ∣ ( )†k g
= - - ñáH a ai

2
i

2
1 1 . 281

To simulate the real experiments, the parameters are chosen as
( ) ( )w w k g p= ´g, , , , 2 6442, 4009, 134, 1.69, 0.19r a 1 MHz [35] and pW = ´2 100 MHz [33]. Also, the
errors of the amplitude and the frequency of the classical driving field are both assumed to be e = 5%, that is,
the amplitude and the frequency are taken as ( )e+ W1 and ( )e n+1 , respectively. Thefidelity for quantum
gates is defined as ∣ ( ) ∣ ( ) ∣†y y= á ñF U t0 2 [42], where the overline indicates average over all the possible initial
states ∣ ( )y ñ0 ,U is an ideal unitary transformation, and ∣ ( )y ñt is thefinal state evolvedwith theHamiltonian(28)
for a certain time from the initial state ∣ ( )y ñ0 . Through numerical simulation, wefind that the fidelities for

single-qubit unitary transformations  and ( )pUx
7

4
are calculated as 0.995 and 0.996, respectively. Thefidelities

are very close to onewhich indicates that the single-qubit unitary transformations are almost performed ideally.
Nevertheless, imperfect unitary transformationswould lead to imperfect projector ofMUBs and further the
errors of themeasurement outcomes. As discussed in [28], the imperfect projector is assumed as

( )¢ =
-

+
-

P
F

I
F

P
2 2

3

4 1

3
, 29

2 2

where F is thefidelity of themixed quantum state ¢P with respect to the ideal pure state P. The projector is
completelymixed state ¢ =P I1

2
for =F 1

2
, and is the ideal one ¢ =P P for F=1.With the imperfect projector,

themeasurement outcomes is acquired as
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( ) ( ) ( )r r¢ = ¢ =
-

+
-

p P
F F

PTr
2 2

3

4 1

3
Tr . 30

2 2

If the statistical error of themeasurement outcome ( )r=p PTr is desired to be below δ, the statistical error of

the experimental values of ( )r¢PTr should be smaller than ( )d¢ = d-F4 1

3

2

. According to theChernoff bound [43],
we can estimate the number of experimental repetitionsN to realize a desired accuracy. If wewant to realize a
precision in away that ∣ ∣ d¢ - >p p occurs with a probability below  , the number of experimental repetitions
has to be

( )
( )

( )

d
>

-
N

F

9 ln 2

2 4 1
. 31

2 2

This indicates that increasing the number of the experimental repetitions can compensate for the reduced
fidelity in the projection states to a certain extent.

6. Conclusion

Wehave presented an experimentally feasible proposal forMUBs-QST of qubit and qutrit states in dispersively
coupled driven cavityQED systems. Due to the property of theMUBs, our proposal requires projections from
optimal andminimalnumber ofmeasurement bases to be performed [18]. It has been shown that the
measurements in theMUBs are practically realized by projecting the detected states onto the computational
basis after performing proper unitary transformations, which can be readily implemented by adjusting the
classical drivingfield applied on the qubit/qutrit. The projectivemeasurement outcomes are then read out
directly from the SSTS of the driven cavity.We have shown that only one kind of SSTS is sufficient to determine
all the projectivemeasurement outcomes for eachMUB, i.e., all the diagonal elements of the densitymatrix of
the detected state. This is essentially less than the number of the usual projectivemeasurements [2, 3], wherein
only one diagonal element of the densitymatrix can be determined each time. It has been numerically shown
thatMUBs-QST of the exemplified qubit and qutrit states can be realizedwith the fidelities 0.952 and 0.961,
respectively.We believe that our proposal can be extended to other high-dimensional quantum systems in a
straightforwardway if theirMUBs exist.
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