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Abstract

We consider the Tonks—Girardeau gas subject to a random external potential. If the disorder is such
that the underlying one-particle Hamiltonian displays localization (which is known to be generically
the case), we show that there is exponential decay of correlations in the many-body eigenstates.
Moreover, there is no Bose—Einstein condensation and no superfluidity, even at zero temperature.

1. Introduction

Understanding the various aspects and even the qualitative structure of phase diagrams of interacting many-body
systems in the presence of static disorder still poses a big challenge. Basic questions, such as the existence and
characterizations of a phase of many-body localized states, remain under debate—even for one-dimensional
systems (see [6, 40] and references therein). For bosons, one manifestation of localization is the existence of a glass
phase in which the static correlations decay and superfluidity is absent [ 16]. While such a phase is predicted to exist
for strong interactions or strong disorder, for intermediate interaction strength superfluidity is expected to persist
at small values of the disorder even in one-dimension [19, 46]. The interest in these questions was renewed due to
experimental accessibility of such systems [38] (see also [9, 49] and references therein).

In this context, and in view of the woefully short list of rigorous results on disordered systems with
interaction [24, 41], limiting or integrable model systems present a testing ground for numerical works,
conjectures and ideas (see [8, 29, 30, 50, 52]). In the bosonic case, the limiting case of hard-core repulsive
interaction is such an example: in the lattice set-up this amounts to studying the XY-spin Hamiltonian with a
random magnetic field, and in the continuum this is the Tonks—Girardeau model with a random potential,
which is the topic of the present paper. Such hard-core interactions may actually be realized experimentally
[27, 42]—albeit without disorder. Both models can be related to non-interacting fermions in an external
random potential. They are not exactly solvable, but nevertheless amenable to rigorous analysis; the difficulty in
both cases lies in the non-local dependence of the physical (bosonic) correlation functions on the underlying
fermionic correlation functions. In [11] this link was exploited numerically to show that the disorder destroys
bosonic quasi-long-range order. For the XY-model such a result can be confirmed by rigorous bounds on the
correlations of any eigenstate [53] (see also [1, 2, 23, 28] for related and earlier results in this context). The
purpose of this paper is to show that such results also apply to the corresponding continuum model. In addition
to a proof of the exponential decay of correlations for all eigenstates, we show that the superfluid density (or
stiffness) vanishes (exponentially) at zero temperature. Our basic assumption in all these results is the
(exponential) localization of the underlying one-particle operator—a property which generically holds true up
to arbitrarily large energies in one-dimensional disordered systems [37, 43].

We consider a system of N bosons with point interactions on a ring with length L, which we take to be an
integer for simplicity. It is described by a many-particle Hamiltonian of the form

N
Hiw=> H )i +8g >, 60— xp. (L.1)

j=1 1<j<k<N

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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We will be interested in the cases when the one-particle Hamiltonian is given by

&
Hf, = Tl + V,(x) (1.2)

on L*([0, L)) with periodic boundary conditions (b.c.s). The dependence on w, which will often be omitted
from the notation for convenience, indicates the randomness entering the potential landscape. We will assume
throughout that the following probabilistic average is finite

supE[f |V(x)|dx] < 00, IL,=mn—1,n], (1.3)
n In

where B stand for the expectation with respect to w. This ensures, in particular, that V, € L!'([0, L]) and that the
one-particle Hamiltonian (1.2) (defined via its quadratic form on the Sobolev space H! [0, L])is self-adjoint in
L2([0, L]) (with any self-adjoint b.c.s and, in particular, with periodic ones) for almost all w.

In the Tonks—Girardeau limit § — oo, the bosonic wavefunctions are required to vanish upon particle
contact,i.e., W(x ..., xy) = 0incase x; = x; for some j = k. Any eigenfunction of H; ., hence takes the form
of an eigenfunction of a system of N non-interacting fermions multiplied by a suitable phase to render it
symmetric upon particle exchange [20, 56]. More precisely, let H;" stand for (1.2) with periodic (+) or anti-
periodic (—)b.c.s. If { <pji’L} denotes an eigenbasis of H;" and { ja}fj:l indexes a subset of N orthonormal
eigenfunctions, then

1
det(gpu.N (.Xﬁ))l\{gzl H sign(x; — xi) (1.4)
JN! Jork - 1<j<k<N

is a normalized eigenfunction of the Tonks—Girardeau Hamiltonian provided we choose fiy := (—1)N*1,i.e.,
anti-periodicb.c. in case N is even and periodicb.c. in case N is odd (see [34]). In particular, the bosonic ground
state of H; corresponds to choosing {j, P, the Nlowest eigenvalues of H f”, and its ground state energy E;(N) is

\Il(xl seee> xN) =

simply the sum of the lowest N eigenvalues of H}".
We will mainly investigate two quantities of interest:

(1) The reduced one-particle density matrix ~y, corresponding to any eigenstate ¥ given by (1.4). It is defined
through its kernel

100 7) = N [ U %y 50 TG 5 i) e diy, (15)

and satisfies 0 < 5, < N and Tr~y, = N.Bose-Einstein condensation (BEC) refers to a macroscopic value

of the largest eigenvalue ||y, || of this operator in the thermodynamic limit (N, L — oo with % = const.)
[44] (see also [36]).

Itis not hard to show that the reduced one-particle density matrix takes the form of a determinant of an
(N + 1) x (N + 1)block matrix

L CORR M ©))
in
vy (x, y) = det @Jl’% ) , (1.6)
: Ky (%, y)
L)
where the N X N-submatrix Ky (x, y) is forall x < y given by the entries

[Kn (%, )]s = Bayp — 2f P (2) ™| (2)dz
ESTINRE To>
_ s g 7
=— a5+ 2 j{;)y]c L (2) <pj§”L (2)dz. (1.7)

Introducing the projection Py = >__| gagN ) (gp%” ;| onto the eigenfunctions entering the state W, we may write

Ky (x, y) = Py — 2Py 1y, Py as an operator identity on Py L%([0, L]). In this manner, one easily sees that
g only depends on the projection Py, as a change of basis corresponds to a unitary transformation of the
matrix in (1.6) which leaves the determinant invariant.

(2) The superfluid density (or: stiffness) measures the extent to which the ground state energy of the Tonks—
Girardeau Hamiltonian increases as one twists the b.c.s [15], i.e., when the wave-functions are required to
pick up a phase e’ as one particle moves around the ring, ¥(x; ..., X+ Ly, xn) = e (xy ..., Xj s XN )- I
other words, the superfluid density p, is defined via the ground-state energy shift
E (N, ) ~ E (N, 0) + 6%p,/L for small 6. To give a precise definition in the thermodynamic limit, we find
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it more convenient to work in a grand-canonical picture where the particle number is determined by a fixed
chemical potential y; i.e., 11 is chosen independently of Nand w.
Forgiven y € R,let N j = Tr 1o, (H £) denote the number of eigenstates of H;" below jzand set

N, == min{N, : , N, }. With E (N, 0) the ground state energy of the Tonks-Girardeau Hamiltonian with
twisted b.c.s, the superfluid density is defined as
p, = lim sup % lim sup L (E; (N, ) — EL (N, 0)). (1.8)
6—0 L—oo

We note that it follows from the diamagnetic inequality [35, theorem 7.21] that E; (N, 0) > E; (N, 0) forany
fand N, hence p, > 0.

With our definition of N, the ground state energy E; (N,,, 0) has the following convenient representation in
terms of Hj". With f}, := in, = (= DN+1 wehave
EL(N,, 0) = puN, — Tr[H}" — pl- = Y Ef, (1.9)
]E]t‘z <p
where the {E]-jfL} denote the eigenvalues of Hi5,and [ - ]_ := —min {0, - } denotes the negative part. In other

words, forany 1 € R, H, g“ has exactly N, eigenvalues below 1. This is a consequence of the fact that
N, =N, ﬁ*’, which, in turn, follows from the interlacing property Ef ; < Ejforjodd,and E]TL > E; forj
even (see [12, theorem 2.3.1] or [47, theorem XIII.89]).

2. Results

2.1.Localization hypothesis and first consequences

We will assume that the one-particle operator H wa in (1.2), for both periodic (4) and anti-periodic (—) b.c.,
exhibits (sub-)exponential Anderson localization with some exponential parameter £ € (0, 1]and localization
length # < oo in the energy regimes of interest. To be more specific, we consider the eigenfunction correlator

Qi(n, mrw)= Y ®jy(n; w)Pip(m; w) 2.1)

jEfE]

corresponding to some energy regime /] C R. Here
(1 w) o= ( f[ waL(x; w) Izdx) (2.2)

quantifies the probability for the jth eigenfunction to be present on a basic interval of unit length. We shall tacitly
assume that the complete orthonormal set of eigenfunctions of H",, is jointly measurable in (x, w). (In case of
degeneracy, which generically is believed to be absent with probability one, this in particular requires the choice
of a proper labelling of eigenfunctions.)

Localization hypothesis eigenfunction correlator localization (ECL) on J: There exist C, £ € (0, co) and
£ € (0, 1]suchthatforalll < n, m < LandallL € N

(2.3)

i 3
BLQE, m; )] < C eXp(—M)’

P4

where dist(-,-) denotes the Euclidean distance on the (one-dimensional) torus.

In the theory of (one-particle) random operators, the condition (ECL) is both strong and convenient: it
ensures localization in both the spectral sense (i.e. only pure-point spectrum in J with (sub-)exponentially
decaying eigenfunctions) as well as in the strong dynamical sense that

(2.4)

- ; ¢
Elsup |[1; e Py (HH) 1, 1] < Cexp(—‘h“(;—;m)).
t

Here P;(H;") denotes the spectral projection of H; onto the energy regime Jand ||-||; := Tr|-| is the trace norm.
ECL s established for a large class of single-particle random Schrodinger operators by means of either the
continuum fractional-moment method [4] (which is based on [3]) or via the bootstrap multi-scale analysis

[17, 18] (which is based on [14]). In our one-dimensional set-up, localization is expected to hold generically at all
energies. In particular, (ECL) will hold for ] = (—oo, p]with £ = 1and somelocalizationlength £ = £, which
dependson i € R only. This has been established in the following specific models:

3
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+ Early on in the history of localization proofs [21] for random potentials of the form V,, (x) = F (b, (w)) with
b, (w) a Brownian motion on a compact Riemannian manifold M and F: M — R asmooth Morse function
with miny F = 0.

+ For homogeneous Gaussian random potentials, i.e., B[V (x)] = 0 with covariance function
C(x — y) = E[V (x) V ()], which admits the representation C (x) = f’y (x + »)v(y)dy in terms of a non-
negative, compactly supported function 7, which is uniformly Hélder continuous, i.e., thereis s € (0, 1]and
a < oosuchthat|y(x + y) — v(x)| < a|y[ forallxandall y > 0 sufficiently small (see [13, 55]).

« For alloy-type random potentials V,,(x) = W (x) + YiezwiUx —j) with independent and identically
distributed random variables (wj);cz whose distribution is absolutely continuous with a bounded density, i.e.
P(w; € dv) = o (v)dv withsome o € L*(R) N L'(R) of compact support. The term W serves as a non-
random, bounded, 1-periodic background potential and the single-site potential Uis assumed to satisfy
cly(x) < U(x) < Clyp;(x) forsome ¢, C € (0, oo) and a non-trivial sub-interval I C [0, 1] (see [22]).

ECL implies the (sub-)exponential localization of eigenfunctions about some random localization center.
More precisely, it implies what is called semi-uniform localization of eigenfunctions (SULE). For the definition
of the latter it is convenient to fixa weight function g : {1,..,L} — [1, co) with the property
Z(L_l g (@)™ = 1. Aspecific choice, which we will adopt below, is g (o) = L.

Localization hypothesis (SULE) on J: There exist £ € (0, c0), £ € (0, 1]and, forevery L € N, anamplitude
Ap,, = Othatisuniformlyintegrable, i.e.
sup E[A[] < oo, (2.5)
LeN
such that for every eigenfunction cpf ; of H, Li’w with eigenvalue EfL € ] thereissome ’yf 1. € Nsuch that for
all n:

(2.6)

dist(n, v7,.)¢
‘I)fL(”; w) < ALw g (’)’?TL,,W,)W2 exp[——J“u )

P43

The points 'ny ., Play the role of localization centers. However, they need not coincide with the location of the

maxima of <I>jjfL(n; w). Thelength # is non-random and coincides with the minimum of all localization length at
energies in J. At first sight, the role of the function g; might be puzzling and one may be tempted to drop the
factor gL3 /2 on the right side of (2.6). This, however, is known to be wrong [10]. If assumption (ECL) holds for an
energy regime J, then (SULE) holds with any weight function g; for the same energy regime (but possibly with a
slightly reduced localization length), see [5, chapter 7].

As explained in the introduction, every fermionic many-body state ¢ (x; ,..., x5 ), which is either periodic or
antiperiodic depending on whether Nis odd or even, gives rise to the periodic bosonic many-body state
W (g 5ees XN) = D (X150 x8) T, <j<k<N sign(x; — x;). In the Tonks—Girardeau limit, the dynamics of such a

state is given in terms of the dynamics of free fermions, i.e., @, (x; »..., Xy) = exp (fitZ;V:l(HfN)j) D (X1 5eer XN)-
While the bosonic one-particle density matrix -y, of this state does not coincide with the fermionic one, given by

I}, (which is defined as in (1.5) with W replaced by ¢,), their diagonals agree, i.e., the bosonic and fermionic
densities are equal:

00(%) = Y, (x, %) = [y (x, x) = (e " TyeltHiM) (x, x). 2.7)

Dynamical localization for free fermions, in the form (2.4), then immediately entails the following result for any
many-body eigenstate. The bound (2.8) is a manifestation of many-body localization for the model of
interacting bosons considered here.

Proposition 2.1. If the range of I, at t = 0 falls within a regime of dynamical localization, i.e.
I =PH LtN)]."@ =P H éN ) for some ] C R for which (2.4) holds, then there existsan A € (0, oco) which is
independent of L and N such that:

(1) the total number of particles on any subset I C [0, L] changes on average by order one only:

E[sup fgt(x)dx—fgo(x)dx” <A forallIC 0,1, (2.8)
I 1

teR
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(2) for any pair of subsets I C K C [0, L]:

E[sup gt(x)dx] < EU go(x)dx] +A exp( (2.9)
K

_ dist(I, K9 )
teR Y1

3

The (simple) proof of this proposition will be given in the appendix. Both statements are expressions of non-
ergodic behavior of the localized system: one may prepare the system initially in a state which exhibits a step-like
profile in its density, i.e., some positive averaged density in one half (I) and another one in the other half (I°). In
such a situation, (2.8) states that the step-like profile remains for arbitrarily long times with only a finite number
of particles crossing on average.

The second bound is relevant for experiments in which the bosons are initially trapped around some
location (such that fK 00(x)dx ~ 0) and then released from the trap at t = 0. The localization bound (2.9) then
guarantees that the total number of particles will remain small on average away from the initial location,
uniformly in time (confirming numerical simulations in [45].) A related bound for the XY-model can be found
in[2, theorem 1.1].

2.2. Decay of correlations and absence of BEC
Our first non-trivial consequence of one-particle localization concerns a strong version of absence of off-
diagonal long-range order (ODLRO).

Theorem 2.2. Let U be any many-particle eigenstate of the form (1.4) which is composed of a selection of one-particle
states { cpi': .} N_ | corresponding to an energy regime J. If condition (ECL) holds for J, then there exist A € (0, oo)
independent of L and N such that

(2.10)

3 13
E[||Lye L 5] < A exp(—%(l - U)M)

@)

foralll < n, m < Landall2/5 < o < 1. Here||-||, denotes the Hilbert—Schmidt-norm on L* ([0, L]).

A proof of this theorem, as well as of the subsequent corollary, will be given in section 3. The proof shows
that the result can easily be extended in various directions, and is not restricted to eigenstates of the many-
particle Hamiltonian. It applies, e.g., to general states of the form (1.4) as long as the one-particle functions ¢, are
suitably localized, and is thus also relevant in time-dependent situations as in [48].

Absence of BEC is not immediately implied by the absence of ODLRO, since our assumptions on the system
allow for unbounded fluctuations of the density. We therefore need a mild additional assumption on these
fluctuations in order to reach such a conclusion.

Corollary 2.3. Given the assumptions of theorem 2.2, assume additionally that for p > 2

sup B[(Tr1; P;(Hi))?] < oo. (2.11)
n,L

.....

J of (ECL), the almost-sure convergence

fim 0l _ (2.12)
L—oo LT

holdsforany% <r< L

Note that the convergence (2.12) is independent of the choice of N, which is allowed to depend on L and w.
Typically one is interested in the case that N ~ const. L as L — co. The subsequent proof (specifically
equation (3.30)) also shows thatin case (2.11) holds with p > 1 the (averaged) momentum distribution
associated with the state U,

1 .
nk) =+ /f kD E[y (x, )]dxdy, 2.13)

»] < oo.(Inparticular, n(0) < co. At

large values |k| — oo, one expects an algebraic fall-off r1 (k) ~ k=* due to the hard-core repulsion [7]). This is
consistent with numerical predictionsin [11].

remains uniformly bounded, since |1 (k)| < sup; %En’m E[||Livg 1y,
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A simple sufficient condition for (2.11) to hold for any value p > 2 (and hence for the validity of (2.12) for
any r > 0)and Z-homogeneous random potentials in case | C (—o0, u]is the existence of an exponential
moment

Ele " ®]dx < 0o (2.14)
L

for some ¢ > 0. (A derivation of this statement starts from the estimate Tr 1;, P, ;j (H, Li) < e Trly, e~ tHE
and proceeds through standard semigroup bounds, see [43, chapter II 5].) This is clearly satisfied for the models
listed above. (Alternatively, one may proceed though resolvent techniques as in [43, chapter II 5] to show that the
finiteness of sup, fl E[|V (x)|*] dx is sufficient for (2.11) to hold.)

The absence of ODLRO and BEC is not a consequence of the disorder alone: In case V = 0, Lenard [31]
showed that the reduced density matrix of the ground state wave function W behaves as 7, (x, y) ~ |x — y[71/2
forlarge |x — y|. This slow fall off is sometimes referred as quasi-long range order and causes of the order of /N
particles to quasi-condense into the zero mode.

The above corollary (with r < 1/2) shows thatlocalization decreases the rate of quasi-condensed particles
in comparison to the free case (V = 0). This should not be taken for granted as a comparison with the non-
interacting case shows. For non-interacting bosons in a non-negative Poisson random potential, Luttinger
together with Kac [25, 26] and Sy [39] noted that that critical dimension d for the occurrence of BEC is lowered
tod = 1. (Arigorous version of their analysis is contained in [32, 33] and the basic mechanism also applies to
alloy-type random potentials.) The occurrence of BEC in an ideal Bose gas even at positive temperature is due to
the behavior of the density of states near the bottom of the one-particle energy spectrum. The latter is severely
suppressed due to the occurrence of Lifshitz tails, which causes a macroscopic fraction of the particles to
condense into modes whose energy vanishes in the thermodynamic limit. Since Anderson localization is known
for such models, our results imply that the interactions destroy BEC, and the corresponding Tonks—Girardeau
model shows no BEC even at zero temperature.

2.3. Absence of superfluidity
In the absence of an external random potential (V = 0), it is well-known that the superfluid density (1.8)
coincides with the total density at chemical potential

. 1 NI
= 1 —N = . 2.15
Ps= T 272 (215)

In particular, it is strictly positive for all ;4 > 0. This changes drastically in the regime of localization.

Theorem 2.4. If condition (SULE) holds (with g (o) = L) for the energy regime (— oo, p], then forany 6 > 0 and
almost surely:
lim sup L (E; (N, ) — EL (N, 0)) = 0. (2.16)

L—oo

As a consequence, the superfluid density (1.8) is zero almost surely.

Our result implies that generically a disordered Bose gas in one-dimension in the Tonks—Girardeau regime
shows no superfluidity and no BEC even at zero temperature. This statement concerns the usual
thermodynamic limit. We note that other limiting regimes are possible, corresponding to mean-field type
interactions, where both BEC and superfluidity can prevail at zero temperature [30, 50] (see also [8, 29, 54] for
related results). The proof of theorem 2.4 will be given in section 4.

3. Proof of decay of correlations

This section is devoted to the proofs of theorem 2.2 and corollary 2.3. Since N is kept fixed in theorem 2.2, we will
drop the superscript fiy on the eigenfunctions { <p§f’L} of H;~ (as well as their dependence on w) for ease of
notation.

Using the Laplace formula, the determinantal expression (1.6) for the kernel of the one-particle reduced
density matrix can be recast as

Yo y) = 0 1®¢; () [adj Ky (6 9)]s.a = (), adj Ky (5, ) 9 (1)), (3.1
o,

where the last inner product is in CN and the adjugate matrix of Ky (x, y) is the matrix of cofactors (up to signs),
ie.
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el .
o = (=1t det[Ky (x, Na.z- (3.2)

[adj Ky (x, ¥)13.« = det
VNS T [ea Ky (%, y)

Here {e,} denote the unit vectors and the hats indicate the deletion of row Fand column « from Ky (x, y). Some
key properties are summarized in the following:

(D Incasex = y, Ky (x, x) = adj Ky (x, x) equals the identity matrix.

(2) Since Ky (x, y) = — 2Py 1,1 Py, the inequality —Py < Ky (x, y) < Py holds, and hence we arrive at
the bound || Ky (x, y)|| 1 on the operator norm.

(3) Since the adjugate matrix of any hermitian N x N matrix is hermitian with eigenvalues given by the products
of N — 1disjoint eigenvalues of the matrix, the norm bound

ladj Ky (x, p)|| <1 (3.3)

isan immediate consequence of || Ky (x, y)|| < 1

Our basic strategy for an estimate of (3.1) is to split the summation depending on whether the eigenstates
live predominantly to the right or left of the midpoint of n and m. To to so, we will suppose without loss of
generality 1 < n < m < L/2 and abbreviate by

M= |(m+ n)/2] (3.4)

the midpoint between n and m (or between nand m — 1if (n + m)/2 is notan integer). This midpoint
introduces a left/right partition of the system according to which we may sort the eigenstates:

M 1 L 1
L= {04 j; |<PjQ,L(f)|2 > E}, R = {06 fM |(pja,L(€)|2 > E} (3.5)

The normalization of eigenstates implies that £ and R constitute a disjoint partition of the finite index set
{1,..., N}. Writing the vectors on the right side of (3.1) accordingly as ¢ (x) = ¢, (x) + @5 (x) (and similarly for
¢ (y)) we may split the sum (3.1) into three parts, v (x, y) = m(x, y) + ’y(z) 9 + 7(3)(96, ¥), with

Y9 ) = (g (1), adj K (x, y) (),
Y9 ¥) = (pr (1), adj Ky (x, ¥) ¢ (%))
(3)(% y) = {¢r (), adj Ky (x, ») ¢ (x)). (3.6)

The Hilbert—Schmidt norms of these contributions are estimated separately. We start with the first two terms.

Lemma 3.1. Forallm > n:

9 R <V2N ) ZQL(k m; J)

1, 7215, | < V2 N (T Z Qr(n, ks J), (3.7)

k=M+1

where M was defined in (3.4) and N (I;) = f Py (x, x) dx denotes the local particle number in I.
I

Proof. The Cauchy-Schwarz inequality in CN and (3.3) imply
V9@ NP < e DMIP e @I lladj Ky (6 »IP < PuGe x) o1, 1 0P (3.8)
acl
Integration over x € I, and y € I,, yields the bound
1,791, 1B < N () 32 @ (m)?, (3.9)
acl

The last term may be estimated using the fact that eigenfunctions corresponding to o € £ predominantly live
on the left:

M M
Sy m? <2338, 12D L(m)? < 23 Qu(k, ms ). (3.10)

ael k=laeLl k=1
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Finally, we use that

M M 2
> Quk, m; J)* < (ZQL(k, m; ])) . (3.11)

k=1 k=1

This completes the proof of the first inequality. A proof of the second inequality proceeds analogously with the
roles of £ and R interchanged. O

Both terms are thus (sub-)exponentially small in the distance between n and m provided the eigenfunction
correlator decays accordingly. To establish this for the third term we employ the technique developed in [53] for
estimates on certain structured determinants.

Lemma 3.2. Forallm > n:

11, 7§15,

2 < 2y2e N(I,) N (In) (/k’l) VNI Qr(k, L ). (3.12)
Here we have abbreviated 3 |, = [ZZZIZZL:MH + Zﬁszf\il].

Proof. Using the definition of the adjugate matrix, we rewrite the inner product again as a determinant of a block
matrix of the following form:

0 ‘Pg(x)T 0
x, 9 =det] 0 ~
Yitoy)=detf 0 Kn(x, )
‘PR(J’)

(3.13)

where I?JN (x, y) = VIKy (x, y) V for a permutation matrix V that permutes the indices such that the indices in
L correspond to the first | £| rows and columns, and the ones in the R to thelast[R| = N — |£| ones. Note that
||IA<JN (%, ¥)|| < 1.Hence we can apply the following estimate on the determinant, which is a simple variant of the
bound in theorem 3.1 in [53].

Lemma3.3.Letv € CP, w € C4,andlet K = (é g) bea(p + q) x (p + q) matrixwith ||K|| < 1. Then
0 vT o
detfo A B | < VelvllwlB]. (3.14)
w C D

Proof. By linearity we may assume that || w|| = 1. Asin [53], we first apply a unitary operator U on C? that takes v
into the vector (0 ,..., 0, ||v||). Moreover, we can find another unitary V on C? such that V- AUT is upper triangular,
i.e., all entries below the diagonal are zero. The left side of (3.14) is equal to the absolute value of the determinant of

0 0 0o (Ut o

1 0 0 0 VT 0 1
0V 0flo A BJl0U" of=|0 vaur vB|=M. (3.15)
00 ILA\w ¢ DNNO 0 1, w CcUT D

To estimate it, we use Hadamard’s bound, which states that the determinant of a matrix is bounded by the
product of the norms of the row vectors. Before we apply this bound, we perform one more operation that leaves
the determinant invariant, namely we subtract s times the (p + 1)th row from the first row, for some s € C. Let
« denote the lower right entry of V- AU7 (i.e., the only non-zero entry in the pth row of VAU ”). Using the fact
that the norm of a row vector of a square matrix can never exceed the norm of the matrix, we then obtain

q
|detM| < JI[[v]| — sl + IsE|BIP yIal? + B2 TT V1 + Iwal?. (3.16)
a=1

The first factor on the right side bounds the norm of the first row, the second one the (p + 1)th row, and the last
factorstherows p + 2,...p + q + 1. The norms of the other rows 2,..., p are bounded by one. Since

q 14 1 4
[T V1+ P = exp[g Sn(1 + mlz)) < exp(; ZIWaIZ] = Ve, (3.17)
a=1 a=1

= a=1

the choice s = @||v||(|a* + ||B|*)~!leads to the desired bound (3.14). O

An application oflemma 3.3 to (3.13) leads to the bound
79 G 11 < Vellor DIl @) 1B, (3.18)
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where Bisthe |£]| x |R|matrix withentries« € £, § € R givenby

= [Kn (% 9)]as —22]0[ )
Xy

Here the equality results from (1.7). The operator norm of Bis estimated in terms of its Frobenius norm,
[IB|l < ||B|l2» which in turn is bounded from above using Minkowski’s inequality as follows. For x € I,,, y € I,

e 1@y jd,L(z)dz. (3.19)

L 1

2
f PiL@e; 1 (D)dz

L
Bl = ZlBaJlZ <21 >0

ael k=1] e€L | Y IkNlx,y]
BER BER
1
n L 2
< 2(2 + > )( Y@ (2> ¢~]-3,L(k)2)
k=1 k=m)\acl BER
L M 7
<2 Z\/N(Ik [2 > Quk, I ])2] +2> YN [2 > Qu(k, I; ])2)
I=M+1 k=m =1
<2 2370 NG Quik, I D). (3.20)
The penultimate inequality derives from (3.10) (and its analog for R). After inserting this bound in (3.18) and
integrating its square over x € I,and y € I,,, we obtain the claimed bound (3.12). O

We may now conclude the proof of our first main result.

Proof of theorem 2.2. We start by noting that B[] 1;, |l2]1is uniformly bounded. In fact, the Cauchy—
Schwarz inequality and the fact that the Hilbert—Schmidt norm is dominated by the trace norm lead to

DV < YNTIN L) . (3.21)

Moreover, by the Cauchy—Schwarz inequality for the expectation value

1, v, 2 < (1, vely, 201, v s,

E[JN ()N (I)] < (B[N (I)]E[N (I,)])'/2. (3.22)
In turn, the average local particle number is uniformly bounded by assumption:
sup B[N (I)] = sup E[Q.(n, n; ])] < C. (3.23)
L,n L,n

We may therefore assume without loss of generality that m > n. We mayalso assumethatl < n < m < L/2;
the general case then follows by a simple relabeling. We first proof the assertion for o = % Since

ofiene ] < el

we can treat the three contributions to v, separately. For the first term, lemma 3.1 and the Holder inequality for
the expectation value imply

g
The first factor is uniformly bounded according to (3.23). The last factor is bounded using the localization
assumption (ECL):

M M i 3 i ¢
S E[QL(k, ms )] < C Zexp(—‘mt(lf#) <c exp(—‘h“(f%g””). (3.26)
k=1 k=1

(l)

m

?] (3.24)

2

D1y, \E] 2 EINUI) [ZE[QL(k m; ])]) (3.25)

Since dist(M, m) > %dist(m, n) this implies the claim for the first term in the decomposition (3.6). The second
term is treated similarly. For the third term, we employ lemma 3.2 and Hélder’s inequality for the expectation
value to conclude:

2
B[ 1,991, 15|

3 1 1 ! 2/3 o/
< /SR RN (In)]EE[N(Im)]éE[( VN U Qu(k, I ])) ]
<e/PBEINUI)FEIN )Y, ) BINGOFEQLK, LD (3.27)

The terms involving the local particle number are uniformly bounded. The last term is again bounded using the
localization assumption (ECL). In fact
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(3.28)

. E . . f . f
I ex (_ 2dist(k, 1) ) < Cexp(— 2 min{dist(M, m)s, dist(M, n)} )
(k) 5/¢ 5¢¢

Since the distance of the midpoint M to either n and m is at most %(1 + dist(n, m)), this completes the proof in
case o = é
The general case follows with the help of interpolation from the bounds (3.21)—(3.23): For 2/5 < ¢ < p,

2(p—0)

S N(Inﬁ?Z%N(Im)??;%]

E[|

1, vely, [51< E[lfn Yol

5(p—0)
50-2

< E[th Yol II§] T EIN (L)P G BN (L), (3.29)

where the second step is Holder’s inequality for the expectation. Since the last two factors are uniformly bounded
forp = 1 wearrive at the claim. O

A proof of absence of BEC then proceeds as follows:

Proof of corollary 2.3. Assumption (2.11) implies that sup; ,JE[N (I,)?] < oo. From the interpolation bound
in (3.29) and (2.10) we conclude that forany 2/5 < o < p

2(p — o) dist(n, m)*
5p — 2 26)¢

El||t;, vl 51 < C eXP(— (3.30)

, we can bound

withsome C < oo thatisindependent of L, nand m. Since ||y || < max,>_, |15, vy 11,

Elllye]”] < ZEIZ(ZH%W% ||] ] < Z(ZE[UIN\IJI", ||‘7]1/"] , (3.31)

n

where in the last step we used Minkowski’s inequality for the expectation. Since the operator norm is bounded
by the Hilbert—-Schmidt norm, (3.30) implies that the sum over min (3.31) is bounded, independently of n. This
shows E[||v|I°1 < CLwithsome C < oo thatisindependent of L and N. A Chebychev estimate then implies
foranye > Oandr > 0

Blllel) o €
60'L70' 60'

where PP stands for the probability of an event. If we choose r > 2/0,thenl — or < —1, and the right side of

(3.32) issummable in L. The Borel-Cantelli lemma thus yields the claimed almost-sure convergence. O

P([[ye || > L") < -, (3.32)

4. Proof of the absence of superfluidity

For a proof of theorem 2.4, let Hy (f) denote the self-adjoint operator which acts as (1.2) on functions with
twistedb.c.s, (L) = e’ (0)and ¢’ (L) = %y’ (0). Let {E; (0) } denote its eigenvalues, ordered increasingly
Withj, i.e., E]',L (9) < Ej+],L (9) With

6, =0+ g(l +(=DY) 4.1)
we have
N,
Er (I\]/n 0) = ZEj,L (eu)- 4.2)

j=1

Weclaim that Ey, 1. (6,) < . This follows from the fact that, by construction E ,\i,/ . < p,and
EN,1(6,) < max{E 1\+f, 1> En,1}- Hence we can invoke the variational principle in the form

EL(MD 0) = ,U’ML + lnf{ Tr[HL(au) — ply | 0<sys L TI")/ < I\]H} (4.3)

We emphasize that it is possible here to relax the condition Try = N, to Try < N, exactly because
En,r(0,) < p.This turns out to be convenient in the following.
To obtain an upper bound on E; (N, ), and hence on p,, we choose as a trial density matrix in (4.3)

y= e with = 3D M) (ole i (4.4)

max{||7], 1} J'iE]t'fiélt

7

Here, {<p§’jL} abbreviates an orthonormal eigenbasis of H, g"' and {Eﬁ’ " } are the corresponding eigenvalues. Note
that Tr4 = N, asremarkedin (1.9),hence 0 < v < land Try < N,.

10
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The trial phase functions ;1 : [0, L] — R will be chosen continuous, increasing (and piecewise
differentiable) such that +; ; (0) = 0and 9,1 (L) = 6. We pick them depending on an additional variational
parameter § > 0 to be chosen later. More specifically, we set

L= U I (4.5)
k0™ (k<6

and choose
L(6) C L;(®) (4.6)

to be the largest connected subset of I; (). We then simply take 1/, ; to increase linearly on I;(6) with slope
0 / |I} (6)], and constant otherwise. Note that I; (6) is certainly non-empty for 6 > L~1/2,since
1> Zn:@?{‘]_(n)>5 <I>§{‘L (m)? = (L — |I;()]) 6* which implies |I;(6)| > L — 6. Thelocalization assumption
(SULE) may be used for a stronger estimate. Namely, (2.6) implies that <I>§{‘L (k) < 6forany k € {1,...,L} with
dist(k, fyg-fL)é > ¢S In(AL*/?/6). Choosing
153
§=A P’ ?exp| ———|, 4.7
' p( aey ] “r

we see that <I>§’)’L (k) < 6 whenever dist(k, Vg{’L) >L / 4,and thus I;(6) contains an interval of length at least
(L — 4)/4. Therefore

= L—4
6] > —. (48)
A straightforward computation shows that
Tr[H.(6,) — ply
£ 2
Tr[H" — pl- 1 L , d
= ——L_ — > [ 1P @P | e | dx
max (5l 1) maxt [0 1) 5, dx
§
Tr[H" — pl- 1
UL/ S] SUYERD SN S
max{ ]|, 1} ]';E]?,/‘Lgbllj((s)l n:1,CI;(8)
B
Tr[H" — pl-
C Dy - g 5 L (4.9)
max{||’y||, 1} ]Ej‘ié,u'lJ(é)l
To estimate the norm of 4, we note that 4 is unitarily equivalent to the N, X N, matrix with matrix elements
(gog{‘L elir, elnr gpi‘ 1)- In particular

Il < max 31 e, o)l (10
J k
For j = k,wehave

ﬁ ) SD%/"L (@)e WO V@) b (2)dz
L) NLG) ’

=el f Y@l (2)dz
Lernker ’

i ﬁl, ﬁl
= —e“’f QD-/ Z(,D' z)dz 4.11
LOUL©®) ]’L( ) k’L( ) ( )

since Y, (z) — 91 (z)) = aisaconstanton INj(é)C N L (8)°. Hence

[, e, et )|

< |le i@ @) — eio||¥ (2) ¢} (2)]dz
L UL®) o ’

< 2 max|1 — e¥|6L < 2|0|6L (4.12)
181<10]

for j = kand|f] < 7.Incombination with (4.10), this implies
9] < 1 + 2|6|6LN,.. (4.13)

Inserting the bounds (4.8) and (4.13) in (4.9), and using (4.3) and (1.9), we hence conclude that for any
L>5

11
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2 2
T} = )N, + SN, (4.14)

EL (Mu 0) - EL (Mp 0) < 26L
02 Cole)
with § given in (4.7). Our goal is to show that lim; . X; = 0 almost surely. Note that § is random, but the

coefficient A in (4.7) is uniformly bounded in expectation, according to the assumption (2.5). Moreover, we
have the following rough but uniform bounds:

XL ==L

Lemma 4.1. Under assumption (1.3) one has, irrespective of b.c.s

E[N, E[(Tr[H" — p] )3
sup N < oo and sup [(TrlHy = p1-) 7 < 0. (4.15)
ren L LeN L

Proof. With h, denoting the restriction of H; to I,,, with Neumann b.c.s, it is well known [47, section XIII.15]
that

L
Mz, < Z Tr 1(—oc,u] (hn) (4-16)
n=1
A simple calculation based on the Birman—Schwinger principle (see, e.g., [51, chapter 7]) shows that inf spec h,,
can be bounded in terms of fl | V], which has a finite expectation according to our assumption (1.3). In fact, one
has ’

inf spec h,, > —fl(f |V|), f(t) = Jt tanh ¢, (4.17)
I,
where V_ denotes the negative part of V. Keeping half of the kinetic energy, one also obtains
1 1
he > —=Ag = —f {2 [ 1) 4.18
S 2f ( ; | |) (4.18)
and hence
Tr 1(—00>M] (hn) < Tr 1[0,2/¢+f’1(2f ! (—A]n). (419)
In

Itis easy to see that Tr 1jy ,; (— A ) grows like v'/2 forlarge v,and f~1(t) grows like #* for large t. Hence (4.19) is
bounded by a constant times 1 + j} |V_|, which implies, in combination with (4.16), the first bound in (4.15).

To obtain the second, we use, similarly to (4.16), that

L
Tr[H) — pl- < =S Tr(hy — 1)1 oo (ha). (4.20)

n=1

In combination with (4.17) this implies
i L
Tr[H" — ul- < Z(M +f71(j; |V|))Tr Li—o0,11 (hn). (4.21)
n=1 n

In particular, (Tr[H 2“ — p])'/? isbounded by a constant times 3, (1 + j} |V_]), which implies the desired
result (4.15). ' [l

Let us denote the right side of (4.14) by Y;. From lemma 4.1, (2.5) and Holder’s inequality for the expectation
value, it follows that

3
BLY;/] < Clo]/502 exp(—%wfw) (422)

for L > 5andsome constant C > 0 independent of L. The Chebychev inequality yields, forany ¢ > 0,
P(X, > ¢) <P(Y. > &) < e V/°BlY[]. (4.23)

From (4.22), the right side is seen to be summable in L. The proof of theorem 2.4 is thus concluded with the help
of the Borel-Cantelli lemma, which ensures that the probability that X; > ¢ happens for infinitelymany L € N
is zero. 0
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Appendix. Proof of dynamical properties of the density

Proof of proposition 2.1. By assumption on the range of the initial state, we have I, = U;*T, U, with
U, = e P, (H!V). Consequently

‘j;gt(x)dx—j;go(x)dx‘lerllU,*I‘éUt—Tr11F¢|

= ITI' l] Ut*IﬂEpUt — Tr l[f U;kIIEpUtl

LU + 11 UFL |, (A1)
where the inequality follows from ||T, U; || < ||T|| < 1. The first bound (2.8) is then a consequence of
Elsup |1k U i1 < > Elsup |1, UFL, (L], (A.2)
teR LNI=2 teR
LK~

validforall I C K.Incasel = K, therightside isbounded by a constant on account of (2.4); this concludes the
proof of the first assertion.
The proof of the second assertion (2.9) proceeds similarly. We estimate

f gt(x)dx =Tr 11 Ut*lKF(blKUt + Tr IIUt*lKF(blKCUt + Tr 11 Ut*lKCF@Ut
I

<k Lolklh + kUil + |4 Uf kel = j;( 20()dx + 2| 1g< U L | (A.3)

The proofis completed using (A.2) and (2.4). O
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