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Abstract

We show that any quantum information theory based on anticommuting operators must be
supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of
entanglement. While quantum information may be encoded in the fermionic Fock space, the
unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical
entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving
thatitis removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance
via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of
quantum information and the causal structure of relativistic field theory.

1. Introduction

Over the past two decades, quantum information (QI) theory has been developed into a rich and highly
successful framework for information processing. Operating in the domain of quantum mechanical Hilbert
spaces, many QI tasks can be approached from a viewpoint that is strongly influenced by computer science,
while the physical systems represented by the Hilbert spaces are sometimes of secondary concern. This
abstraction from the physical contextis a significant virtue of QI theory. Dealing with problems purely on the
level of a Hilbert space, its subsystems, and operations thereon, without reference to the specific physical
implementation, provides a level of freedom and generality that is highly desirable. Statements can be made for
allHilbert spaces of a certain type. For instance, QI processing with qubits can typically be investigated without
reference to their implementation—although examples exist, where specifying the encoding of the qubit is
relevant for an abstract problem, see, e.g., [1]. Besides multi-qubit systems, quantum harmonic oscillators are
prominent examples for successful abstraction. Based on the commutation relations, a bosonic Fock space is
constructed, that provides a playground for quantum optics, irrespective of the particular realization, be it as
optical modes, superconducting circuits, or vibrational degrees of freedom, to name only a few examples.

Here, another type of Hilbert space—the fermionic Fock space—will be considered. That is, the basic
algebra is based on anticommuting operators, rather than commuting ones. Absent physical interpretation, one
may yet work with such a Hilbert space, identify its subsystems, and their correlations. In other words, one may
attempt to construct an abstract fermionic QI theory, see, e.g., [2—10]. Conceptually, it is of great importance to
collect all types of particles encountered in nature in a common framework, and hence strengthen the generality
of QI theory as a whole. However, as we shall discuss, the physically unrestricted fermionic QI theory suffers
from a disconcerting malady: as noted already a decade ago [11-13], the marginals of bipartite fermionic pure
states may not have matching spectra. This leaves the typical notion of entropy of entanglement in a state of
ambiguity due to the mismatch of reduced state entropies. Depending on the choice of subsystem, different
amounts of entanglement would be attributed to the system. Indeed, facing a globally pure state, for which one
subsystem is maximally mixed, while the other remains pure would be a significant concern, for instance, in
connection with Hawking radiation and the black hole information paradox (see, e.g., [ 14]). These problems do
not occur in theories with a natural tensor product structure, like bosonic modes or qubits, where the Schmidt
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decomposition guarantees symmetric marginal entropies for pure states. For fermions, on the other hand,
mappings to a tensor product space, i.e., to qubits, do not generally preserve the structure of the subsystems [15],
and the issue persists.

In this work, we resolve this problem. We show that it is overcome by imposing a superselection rule (SSR)
that forbids coherent superpositions of even and odd numbers of fermions. This property of the SSR, which is
equivalent to the restriction to parity-conserving operator (sub-)algebras, is most fortunate, since the SSR also
gives rise to a natural definition of subsystems [9], and is hence widely used. Although, as we shall show, the
problem of asymmetric pure state marginals is thus removed, it seems rather artificial to enforce such a
restriction within the abstract theory. In particular, since the often referenced argument by Wick et al [16] in
defense of this SSR is based on time reversal symmetry, which cannot be an exact symmetry of nature in the face
of charge—parity (CP) violation [17, 18] and the charge—parity—time (CPT) theorem [19-21]. In contrast, we
discuss the later argument for the SSR from [22] invoking invariance under rotations by 27. Crucially, we note
that the causal structure of relativistic quantum field theory (QFT) enters into this line of reasoning, i.e., Lorentz
invariance is required to establish the spin-statistics connection. We argue that, only once the fermionic model is
embedded in a physical context, in this case relativistic QFT, does the SSR arise naturally. The significance of this
approach is twofold. First, it ensures that the entropy of entanglement remains a well-defined concept in
physical QI theories. Second, provides a new perspective on the motivation for using the SSR, which has been
employed in detailed studies of fermionic entanglement, such as [9]. Third, this result knits together the fabrics
of Ql and relativistic QFT in a fundamental way: we argue that the fermionic theory, and by extension all QI
theory, must be viewed in the physical context of relativity.

Besides the possible interest for fermionic QI theory and applications such as entanglement within QFT in
curved spacetimes, this work adds a new facet to the discussion of informational constructions of quantum
theory (see, e.g., [23—25]), by introducing an information-theoretic aspect of SSRs—a fascinating topicin its
own right (see, e.g., [ 16, 26—33] for a selection of literature). It is also of interest to note that the SSR does not
remove the intrinsically different character of fermionic modes and qubits, as indicated by the existence of pure
states that satisfies the SSR, but still cannot be consistently mapped to multi-qubit states, see the appendix.

In the following, we will first outline the construction of the fermionic Fock space, as well as of the pure and
mixed states in such a Hilbert space in section 2. To understand the origin of the problem described above, we
will then discuss the subtleties involved in forming subsystems of fermionic modes in section 3, and give an
example for a pure state that features marginals with different entropies. Finally, the role and the origin of SSRs
are discussed in section 4, and we show how the problem can be disposed of in section 5.

2. Fermionic Fock space

Let us consider a system of # fermionic modes with mode operators byand b, for (k = 1,...,n), which satisfy
the anticommutation relations

{bi, b} = 6, {bi, bj} =0, (1)

forall i, j. The vacuum state is annihilated by all by, i.e., bx||0) = 0 V k,and the purpose of the double-lined
notation for the state vectors will become apparent shortly. The creation operators b, populate the vacuum with
single fermions, thatis, b [|0)) = ||1; )). When two, or more, fermions are created, the corresponding tensor
product of single-particle states needs to be antisymmetrized due to the indistinguishability of the particles. We
use the convention

BEBLNOY = 1) AL = [ 1), )

where we use the double-lined notation to imply the antisymmetrized wedge product ‘A’ between single-mode
state vectors with particle content (as opposed to the standard notation |-}| - ) = |-) ® | - )). With this
definition at hand, and postponing possible physical restrictions, one may write arbitrary pure states on the Fock
spaceas

[TW = 7l[0) + D il L) + D vl LML) + - 3)

i=1 ik

Where the complex coefficients ~,, 7, Yjo ---are chosen such that the state is normalized. Similarly, mixed state
density operators can be written as convex sums of projectors on such pure states. For more details on this
notation and the fermionic Fock space, see, e.g., [15, 34].
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3. Partitioning the fermionic Fock space

The basic ingredients for an abstract fermionic QI theory are pure states on the total Hilbert space, |¢)) € H,and
reduced states with respect to some bipartition (A|B), i.e., py 5y = t15(a) (|2) (¥]). With this, one may already
study correlation measures such as the mutual information, and, most importantly, the entropy of
entanglement £(|¢0)) = S(p,) = S(pp), where S(p) = —tr(pIn(p)). As the first step in such a construction, it
is hence necessary to establish a meaningful notion of subsystems. Since the particle number in the Fock space
need not be fixed, we will consider entanglement between different modes. However, due to the
antisymmetrization, the Fock space is not naturally equipped with a tensor product structure with respect to the
individual mode subspaces. These subspaces may nonetheless be defined by invoking consistency conditions
[15] that ensure that the expectation values of all local observables O (i.e., as in, operators pertaining only to the
modes of the subspace A) yield the same result for the global state p, ,, and for the correspondinglocal reduced
states p, = trg(p,p), 1.6

< OA>pAB = < OA>PA . (4)

This procedure uniquely defines the mode subspace marginals of any global state, i.e., the partial trace operation
in the following way. For an arbitrary number of modes, up to scalar prefactor, all density matrix elements of the
reduced state p, thatis obtained by ‘tracing out’ one mode labelled by k can be brought to the form

b;l ... b;fx_ oM 0| by, - by, forsome yu,,, 1, = k wherem = 1,...,iandn = 1,...,j. The information about
these matrix elements arises from ignoring (or ‘forgetting’) whether the mode k is occupied or not. That is, the
partial trace operation may be defined as

ey, - bf, BLION(Obi by .. b)) = b, .. B [0)K0] bus .. by
=b, ... b} l0Y(O[bs, .. by, 5)

while all other elements of p, 5, proportional to operators of the form b;l . b;i 0Y€0]|bx by, -..b,, and

bﬂ:] . b;x_ b{1|0)0| by, ... by, do not contribute to the reduced state when ks traced out. The rule can hence be
expressed as follows: operators corresponding to modes that are being traced out are anticommuted towards the
vacuum projector before being removed. The ordering of the operators on the left-hand side of equation (5), that
is, the position of the operators by and b; relative to the other annihilation and creation operators, is determined
by the condition in equation (4). Intuitively, it can be seen that the ordering is chosen such that the number of
commutations to move by and b, towards the projector on the vacuum state keeps track of any signs incurred
when applying observables O, to the state p, , before the partial trace and commuting these past the operators by,
and b;. A more detailed derivation and a rigorous proof of this argument is given in [ 15]. An equivalent notion of
subsystems may alternatively be obtained by restricting the operator algebras to the corresponding subalgebras
for Aand B, see[10].

At this point, it is helpful to understand the differences between fermionic modes and qubits. For any fixed
number #, the fermionic n-mode Fock space is isomorphic to an n-qubit space. A widely known example for
such an isomorphism is the Jordan—Wigner transformation, (see, e.g., [9]). Such mappings generally do not
commute with the procedure of partial tracing [15], since local mode operators are mapped to global qubit
operations. In other words, it is generally not possible to establish isomorphisms between a fermionic #-mode
state and an n-qubit state in such a way that also all of the respective fermionic marginals are isomorphic to their
qubit counterparts. An illustration of this problem is shown in figure 1. Consequently, the (quantum)
correlations between #n fermionic modes may generally not be identified with those of the isomorphic n-qubit
states.

In spite of this inequivalence, the partial trace, and hence the subsystems and their entropies remain well
defined for fermionic modes. Moreover, the construction of the density operators and its marginals is based
solely on the algebraic structure of equation (1), together with the requirement that the expectation values of
subsystem observables yield the same result when evaluated using either the global states or the corresponding
marginals. No other assumptions are required for a consistent definition of the subsystems, and their total
correlations. For instance, the mutual information Z,5,a measure of the overall correlation between
subsystems A and B, is in this context already well defined by the expression

Zas(pap) = S(p) + S(pp) — S(pap)s (6)

where p, ) = tIp(a)(p4p)>and S(p) = —tr(pIn(p))is the von Neumann entropy of the density operator p.
But, as we shall elaborate on shortly, the same cannot be said for genuine quantum correlations, i.e.,
entanglement. Consider, for instance, the non-superselected two-mode pure state given by

19 = Yl0) + %l ) + vl ) + Y 1D 1 )- 7
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Fermions Qubits

PAB = Dap

Trp Trp

Py =~ P * Py

Figure 1. Inconsistency between fermions and qubits: the global #n-mode fermionic state p,, may be mapped to an isomorphic n-
qubit state p, .. The marginals of p,;, e.g., py = t1(p,), are well-defined by equation (4), and may also be mapped to isomorphic
qubit states (e.g., p, < ﬁ;‘). However, as shown in [15], it is in general impossible to match all the marginals of the n-mode state to all
marginals of the n-qubit state, ﬁ:‘ = P, = trg(p,p). An example for a state featuring this problem can be found in the appendix.

According to the prescription of equation (5), the single-mode reduced states can be quickly checked to be

pre = trg (JUNEYID = (vol* + Ive® ([0 40|
+ (Il + Iy ) €k
+ L0+ 1D IOV L] + hec], (8a)

pi = tre([RELID = (ol + 1y [[0)0l|
+ (P + L YKyl
+ [07E = mrE oML || + heed, (8b)

where the symmetry between the subsystems is broken by the different relative signs within the off-diagonal
elements. The eigenvalues of the two reduced states do not match in general. For example, when

M =% = V¢ = Y = 1/2,themode kappears to be in a pure state (with eigenvalues 0 and 1), whereas the
state of the mode k' is maximally mixed (both eigenvalues are 1/2). Normally, the entropy of the subsystem of a
pure state would be considered as an entanglement measure. Here, depending on the choice of subsystem, one
would either conclude that the overall state is maximally entangled, or not entangled at all. This problem is not
limited to pure states. It persists for mixed states, where the entropy of entanglement is of central importance for
the entanglement of formation. Such an ambiguity in the definition of entanglement is of course highly
undesirable. One possibility to resolve the issue, would be to change the definition of entanglement, and work
with a non-symmetric quantity. On the other hand, such a drastic step may not be required, if one is willing to
embed the abstract fermionic QI theory in a physical framework. As we shall show in the following, a reasonable
definition of entanglement between fermionic modes is obtained when invoking an additional physical principle
— the spin-statistics connection, which itself arises from (special) relativity.

4. Invoking relativity—SSRs

No SSRs have been introduced up to this point. Note that the term SSR may refer to different restrictions. For
instance, they may arise from fundamental symmetries of the system, such as parity [16], or charge conservation
[26-28]. Alternatively, effective (or generalized) SSRs originate from practical limitations, such as particle
number conservation due to energy constraints, see, e.g., [29-31, 35, 36]. Both type of restrictions may be
formalized as constraints on the observables, see, e.g., [7, 8].

Here, we will formulate such constraints in a different, but equivalent way, as restrictions on the
components Y, %, Yy --- (seeequation (3)), of pure state decompositions with respect to the Fock basis. In
particular, we will consider any coherent superpositions of even and odd numbers of fermionic excitations as
unphysical. The argument that we will employ to defend this position is based on the well-known spin-statistics
connection, relating the anticommutation relation algebra to the transformation properties associated to objects
of half-integer spin. Recall that, a priori, we have made no assumptions on the physical realization of the
anticommutation relations of equation (1). Nonetheless, as an inevitable consequence of this anticommutation
relation algebra, the excitations of the mode operators must satisfy Fermi—Dirac statistics.

To explain this, we must surrender some level of abstraction and provide a physical context. When we place
the fermionic QI theory in the context of relativistic field theory, the spin-statistics connection follows from

4
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Lorentz invariance (see, e.g., [37, 38] and [39], p 52]). Thus, the (special) theory of relativity enforces that we
must interpret the fermionic excitations of our theory as particles of half-integer spin. In other words, relativity
establishes a connection between the algebra of the mode operators and the transformation properties under
spatial rotations of the corresponding fermionic particles. In particular, the states of odd numbers of these
fermions switch their sign under rotations by 27, while even numbers of fermions are left invariant. If
superpositions of even and odd numbers of fermions were permitted, rotations by 27 would change the relative
sign of the respective contributions within the superposition. For example, suppose that an observer was able to
prepare a superposition ||+) = (||0)) + ||1x))/~/2 in some fermionic mode k. By rotating their frame by 27,
the state || +)) is converted to the orthogonal state || —)) = (||0)) — |/ 1x)))/~/2. Here, one may think of the
observer physically rotating their preparation device relative to the detector distinguishing the orthogonal states
[+ and || = )). In other words, if one demands that rotations by 27 should leave physics unchanged, one thereby
enforces the parity SSR that forbids superpositions of even and odd numbers of fermions [22].

Crucially, this line of reasoning is intimately tied to relativity, whereas the argument for the parity SSR
presented in [16] is based' on time-inversion symmetry. However, with the observation of CP violation [17, 18],
the CPT theorem [19-21] suggests that time-reversal is no (exact) symmetry either. Here, on the other hand, the
argument for the parity SSR is constructed such that we rely only on Lorentz invariance via the spin-statistics
connection, which happens to also be a central requirement for CPT symmetry. On the other hand, the SSR
constraint imposed in this way provides the essential ingredient to guarantee a meaningful quantum
(information) theory based on anticommuting operators, as we will show next.

5.SSRs and symmetric pure state marginals
We shall now provide the main technical statement of this work, and its proof.

Theorem 1. The marginals p, g, = tig) (V)€ ||) of any bipartition (A|B) of a pure state ||3)) in the fermionic
Fock space have the same spectrum, if||1))) satisfies the SSR prohibiting superpositions of even and odd numbers of
fermions, i.e.

ly)) satifies SSR = spetr(p,) = spetr(pgp) ¥V (A|B).

Proof To show this, let us consider a pure state ||4)Y., ) inan n-mode fermionic Fock space, where

= {1, 2,...,n} denotes the set of modes, and without loss of generality we have chosen ||¢)Y . ) tobea
superpositlon of states with even numbers of fermions. The set Nis then partitioned into the subsets

= Al p; € N =y = g ifi = js i, j=1,2,..,m < nyand M® = N\M, suchthat N = M U M and

M N M€ = @. With respect to this bipartition, we may write the state ||¢)Y, ) in the pure state decomposition

even

||weven ’70 ux,odd »

/1

C
+ § 1:7#"#" || 1#, »H 1#]- )>||¢ffuj,even>>
ij=
i>i

+ .-
C
+ Yty b H lul » Hlum »Hw%...pm,odd»’ (9)

where ..., E C, (N [|vN..) = 1, and without loss of generality we have here selected 71 to be

odd. The states ||1/J oo fipeven (odd) ) contain only even (odd) numbers of excitations, and only in modes from the
set M. Anysign changes that may occur when rewrltlng a given state in such a decomposition can be absorbed
into the y-coefficients. Adhering to the ‘outside-in’ tracing rule of equation (5), we note that the state has been
brought toa form where the partial trace over M € is achieved by simply removing all projectors

[|p™ ) (M i...., || pertaining to M € from the projector on ||1Y,, ), without incurring any additional sign
flips. On the other hand, if we trace over the modes in the set M instead, anticommuting the operators
corresponding to modes in M towards the vacuum projector in the process, we may generate sign changes.
However, for the superselected state, all the nonzero contributions to the partial trace over M are generated from
elements such as

! Indeed, [16] hints at the possibility of basing the proof on rotations instead of time-inversion, but this argument is not elaborated on in [16]
and was only later published in [22].
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o C C o
o (17l Bf 190 0aa MW ol Bie) = 17l 190 aaa DA oaall- (10)

There, the parity of the number of anticommutations towards ||0)) from the left, is the same as the parity of the
number of anticommutations towards ((0|| from the right. In other words, once the state has been brought to the
form of equation (9), the partial trace can be carried out as if operating on a tensor product of Hilbert spaces, i.e.,
asif Hy = Hy ® Hyc. Inparticular, this implies that the two reduced states on H,; and H y,c, which are
isomorphic to the corresponding m-mode and (n — m)-mode reduced fermionic states, respectively, have the
same spectrum. For any bipartition of the Fock space, a decomposition with this property can be found,
although, in general, no decomposition exists that simultaneously accomplishes the required task for all
bipartitions at once. An example is presented in the appendix. We hence conclude that the SSR forbidding
superpositions of even and odd numbers of fermions, guarantees that the spectra of the marginals for any
bipartition are pairwise identical. An analogous argument applies if the initial state is a superposition of only odd
numbers of fermions, or if 71 is even, and the proof therefore applies without restriction. O

6. Discussion

Within QI theory and quantum computation, discussing problems in an abstract context has proven to be very
useful. However, when attempting a similar approach to a QI theory based on a fermionic Fock space one
encounters difficulties. As we have shown, an unrestricted fermionic model features pure states with non-
symmetric bipartitions. That s, pairs of reduced states across bipartitions need not have the same spectra, which
is very problematic for the definition of entanglement. As we have shown, this problem is removed, when
superpositions of even and odd numbers of fermions are forbidden. Nonetheless, the removal of an
inconvenience appears to be a rather weak justification for the introduction of a restriction of generality within
the abstract model. On the other hand, when placing the fermionic system within the physical framework of a
relativistic QFT, the SSR follows naturally from the requirements of Lorentz invariance and symmetry under
rotations by 2.

We hence argue that, in contrast to bosonic or qudit-based variants, any fermionic QI theory must be seen as
(part of) arelativistic QFT. Without such a physical context, a reasonable QI theory based on anticommuting
operators can be obtained by adding the parity SSR as an axiom, but such an approach would seem to be rather
ad hoc. This strong hint at the inseparability of QI theory and the theory of relativity is rather surprising, but may
provide deeper insight into constructions of quantum theory based on informational principles, see, e.g., [23—
25]. Moreover, our results provide fresh insight into the debate of entanglement in systems of indistinguishable
particles (see, e.g., [35, 36]) in general, and questions of entanglement between fermionic modes [40] specifically.
Finally, it will be of significant interest to see to what extent simulations of fermions, for instance in
superconducting materials [41], or in graphene [42, 43], can capture the behaviour of superpositions of different
particle numbers.
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Appendix. Superselected fermionic pure state inequivalent to qubits state

Here, we shall present an example for a pure state of four fermionic modes that satisfies the SSR that forbids
superpositions of even and odd numbers of fermions. We explicitly compute the marginals of this state and
show that the subsystem spectra match for any bipartition. We further prove that, nonetheless, this state and its
marginals do not admit a consistent mapping to a four-qubit state (and its marginals). The most general pure
state for four fermionic modes, labelled 1, 2, 3, 4, that only contains even numbers of excitations, may be
written as
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&) = aollO) + L)L) + sl )]1:)
+ ong[LD[[1a) + cosl[L Y1)
+ aoal[LP[1a)) + czal[LY[|La)
+ cnzsa [ WYL D[N 1a ), (A1)
where |og)? + |l + loasl + |awsl? + Joasl? + lagsl? + |assl* + |ouasse)? = 1. First, let us consider the
bipartitions into two subsets containing one and three modes, respectively. For instance, let us consider the

bipartition (1|2, 3, 4). We may decompose the state ||, }) into terms containing excitations in mode 1,and
those which do not contain such terms, i.e., we write

&) =1 o) + 71 llé ) (A.2)

where [y + |.,? = Lb b ¢,) = ||¢,),and by [|6,)) = 0.Since {¢,]|¢-,)) = 0, the marginals with
respect to the bipartition (1|2, 3, 4) are then easily obtained as

pr = 234 ([P R e D = PP I+ Ir=alPI0Y KOl (A3a)
P24 = NV lD) = PGS + Pl ll62 )il (A3b)
where [|¢, )€, || = tn (|6, ))(((?IH).Because | ) contains only even numbers of fermions, the same is true

for||@, ) and || ¢, ), whereas || ¢, )) contains only odd numbers of fermions. Hence we may conclude that
{,ll4.,) = 0,and itis thus easy to see that the marginals have the same spectrum. The same argument goes
through for the bipartitions (2|1, 3, 4), (3|1, 2, 4) and (4|1, 2, 3).

Let us now turn to the bipartitions into pairs of modes. We use the tracing rule

tri (b, ..bf bl ONCO[bk b, b)) = b ...} ION(Obs,.. by (A.4)

i.e., operators pertaining to modes that are being traced over are anticommuted towards the projector on the
vacuum state, before being removed. This prescription, which uniquely determines the marginals (see, e.g.,
[15]), is a direct consequence of the requirement that expectation values of local observables give the same result
when evaluated for the global state, or for the reduced state, that is

(On) sy = (Ol - (A.5)

For the marginals of the bipartition (1, 2|3, 4) we find
Pra= tr3 4 (SN (el = Pf;en Ple,vzen + pf;'d pffid, (A.6a)
psa = 2 ([PSad U SnlD = 2557 255 + pygt P35 (A.6b)

where the reduced state density operators in the even and odd subspaces are given by
P 52 = (ol + lasd) [0) (0]
+ (ol + ez [N L YL (€L

+ [(@oad + assaly) ON(L €1l + hel, (A7a)
P3¢ oS = (ansP + lauP® L] + (azl + lazu® L)L
+ [(au3ads + apgad) UYL + hel, (A.7b)

for the subspace of modes 1 and 2. Similarly, for 3 and 4 we obtain
Py eyt = (el + laazl) [O)(O]
+ (lazal® + lenasa®) 1 D] 1a DK La [ (L]

+ [(oady + annafhsy) oM 1] (1] +h.c.], (A.8a)
pyat p35 = (ausl + laasP) 1)K | + (lowsl + laaa) 11 (14
+ [(onsafy + ansad) [N + hcl. (A.8b)

For the superselected state the even and odd subspaces decouple. We may therefore compare the characteristic

polynomials for the even and odd subspaces separately. A simple computation reveals thatboth p," p{"}" and
Py PS5y yield the characteristic polynomial
det(p5" pi" — AD = det(p,y" p57y" — A
=N = Aol + |oual® + lazal* + [ouzsal®)
+ (apau3a) (o u234)™ + (ar2034) (Qn2030)*
— (apn23a) (12038 * — (ou1234) (Q12034). (A9)
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Table Al. The off-diagonal matrix elements of the
reductions p; ; = tro (| S DG, ||) are shown.
i j €Ol oy 11101115 3 (Lillo 1%
1, apafs + asgals Q13035 + g0,
3 o0y + 120fhs 30y + apady
1, apafs — cngalhs 05y — a0l
2, 0y — a3y, a0y — apsaly
1, apafy + 3ol —apady — ag3ad,
2,3 20, + sy, a0l + axal;
Similarly, for the odd subspace we find
odd _odd _ odd _odd
det(p1 50 P —AD) = det(p3 y P54 —AD
— )2 2 2 2 2
=X — AJaus]* + loual® + aas|® + |aaql*)
+ (3 24) (3024)" + (Qn4003) (ug3)*
— (on3004) (4023)" — (Q13004)*(Q14003). (A.10)

We hence find that the eigenvalues of the marginals p, ,and p, , coincide. Some straightforward computation
along the same lines confirm that this is also the case for the bipartitions (1, 3|2, 4) and (1, 4|2, 3). Now, the
interesting aspect of this insight pertains to the fact that the four-mode system may not be consistently mapped
to a four-qubit state. For the latter, the matching subsystem spectra would be guaranteed by the Schmidt
decomposition. Recall that the consistency conditions (see [15]) for partial tracing demand that the numerical
value of the expectation values of any ‘local’ operator (in the sense of mode-subspaces) is independent of being
evaluated for the overall state, or for the corresponding local reduced state. These consistency conditions then fix
the relative signs of different contributions from matrix elements of the total state to the matrix elements of the
reduced states. For the example state at hand, the resulting off-diagonal matrix elements of all two-mode versus
two-mode bipartitions are collected in table A1 .

Now, one wonders, whether the pure state ||1)) ) and its marginals can be faithfully represented as a four-
qubitstate [ ) € (C?)®*. Here, we will call such a mapping faithful, if all the diagonal matrix elements of
[¥® Y (1p%) | and its marginals with respect to the computational basis match the diagonal elements of
l0® Wb, || with respect to the Fock basis. For the off-diagonal elements we impose a slightly weaker
condition, i.e., that the absolute values of the off-diagonals (with respect to the respective bases) match. This
corresponds to demanding that measurements in the Fock basis are reproduced, and that the marginals have the
same spectra. These conditions imply that a faithful mapping from the Fock basis of four fermionic modes to the
computational basis of four qubits must be of the form

|0 — ei% |0000), (A.11a)

(L)1) — e [1100), (A.11b)

[ )[13) — €= [1010), (A1lc)

[LuDI14) — ei®s[1001), (A.11d)

L)1) — €= ]0110), (Alle)

[L)[14) — el [0101), (A.11f)

[ )[[14) — e?x0011), (A.11g)

DM H1a) — ez [1111). (A.11h)

Performing the mapping of (A.11) for the state of equation (A.1), i.e., [[¢{ ) +— [ ), and taking the

partial traces for the qubits as usual, we obtain the off-diagonal elements that are to be compared with those in
table A1. For instance, comparing | (0000]trs 4 (|¢%)) (10 )[1100) ML) we get the
condition

S * i — * * *
el @) g0, + el @u— %) asyanayl = laoads + azgalhsl. (A.12)

Since this must hold independently of the values of oy, v, a4, and 34, we arrive at

Gt b3y — Gg— P13 =2m, (A.13)
where n; € Z. Similarly, the other off-diagonals from table A1 provide the conditions
O3+ G2 — Gg — Prpza = 2m + D, (A.14a)

8
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Pyt Pa3 — Gg — P34 =213, (A.14b)
Gp3 + Py — P13 — Gy =2my W, (A.14c)
1+ 3 — Py — 93 =2 ns + D, (A.14d)
P13+ Goy — P — P34 =216, (A.14e)

with 13 456 € Z. These conditions cannot all be met at the same time. This can be seen, for instance, by
combining (A.13) with (A.14b), and comparingto (A.14d), which results in

2(m — n3) = 2ns + 1), (A.15)

which cannot be satisfied, since the left-hand side is an even integer for all n;, n; € Z, while the right-hand side
isan odd integer for all ns € Z. We hence conclude that the state of equation (A.1) cannot be consistently
mapped to a four-qubit state, even though it satisfies the SSR, and despite the fact that for any of its bipartitions
the respective marginals have the same spectra.
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