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Abstract
We study the impact of structural variations (that is slowly varying geometry aberrations and internal
strain fields) on thewidth and shape of the stimulated Brillouin scattering (SBS) resonance in
nanoscale waveguides.We find that they lead to an inhomogeneous resonance broadening through
two distinctmechanisms: firstly, the acoustic frequency is directly influenced viamechanical
nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical
nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition.We
find that this secondmechanism is proportional to the opto-mechanical coupling and, hence, related
to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in
backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold
defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in
overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and
inter-mode forward SBS the existence of two broadeningmechanismswith opposite sign also opens
the possibility to compensate the effect of geometry-induced broadening. Our results can be
transferred to othermicro- and nano-structuredwaveguide geometries such as photonic crystal
fibres.

1. Introduction

Stimulated Brillouin Scattering (SBS) is a nonlinear and self-amplifying interaction between guided optical
waves and hypersoundwaves inwaveguides [1, 2]. The scattering of light frommechanical vibrationswas first
predicted by Brillouin in 1922 [3]; the stimulated version of this process wasfirst experimentally demonstrated
[4] shortly after the invention of the laser byChiao et al and has since been used successfully to characterize
materials at hypersonic frequencies [5]. Following the general trend ofminiaturization, SBS has been studied
and applied in ever smaller structures such as nano-structured optical fibres [6] and evenwaveguides integrated
on a chip [7]. In these systems SBS ceases to be a bulk effect and surface effects strongly come into play—most
prominently radiation pressure appears as a secondmajor interaction process in addition to the bulk
photoelastic effect. Due to this additional coupling aswell as the very tightmode confinement, high SBS-gains
can be achieved in integratedwaveguides [8–11], whichmakes them extremely interesting for signal processing
applications [12] aswell as narrow linewidth light sources [13]. Recently the idea of coherent phonon generation
in phonon-lasers has gained considerable interest [14]. However, all these potential applications require or at
least greatly benefit from the extremely narrow linewidth of the SBS process; linewidth broadening is highly
detrimental inmany cases [10, 11]. Thismotivates our investigation of the inhomogeneous line broadening due
to structural variations of thewaveguide and potential connections to the SBS-gain itself.
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Thefinite phonon life time (or equivalently in backward SBS: the phonon propagation length) defines an
intrinsic linewidth of the SBS-resonance. However, it has been known for some time that various imperfections
of the SBS-system can distort the resonance and inhomogeneously broaden it. Some of these imperfections such
as insufficient acoustic guidance in combinationwithmoderate opticalmode confinement [15] (one possible
explanation for SBS broadening in opticalfibres, but somewhat debated in this context) or simply thefinite
length of suspended nanowires [16] are inherent to somewaveguide designs and cannot be avoided. In addition,
local deviations from the intended ideal geometry can always lead to local variations in the Stokes shift. As a
result, the total SBS-response of a non-ideal waveguide is the convolution of the intrinsic resonance and the
Stokes frequency distribution along thewaveguide. Incidentally, the geometry-dependence of the local
Stokes shift has been used tomeasure the homogeneity of optical fibres [17] and to increase the SBS-threshold
[18]. However, to date no connection has beenmade between the SBS-gain and the sensitivity of the Stokes
shift, although this is suggested by the close connection between SBS and opto-mechanics [19], inwhich in
turn the coupling strength is known to be closely related to the deformation-sensitivity of the optical
subsystem [20].

The aimof this paper is to understand the impact of smooth and slowly varying perturbations of the
waveguide structure (as sketched infigure 1).We include variations of thewaveguide geometry and internal
strainfields that change smoothly along thewaveguide and on a length scale greater than the acoustic decay
length. This is opposed to surface roughness, which is usually amajor concern in fabrication, since it causes
linear optical propagation loss via Rayleigh scattering—in backward SBS an analogous scattering ofmechanical
waves also contributes to the acoustic loss. In contrast, adiabatic structural variations do not scatter travelling
waves and do not cause linear loss.However, they locallymodify the dispersion relations and thereby influence
the relative phase between the threewaves participating in the SBS-process. Here, we show that onemechanism
for this is through the optical dispersion relation and the sensitivity is closely connected to the SBS-gain, whereas
the secondmechanism is via themechanical dispersion relation and completely independent from the SBS-gain.
We show that these twomechanisms influence forward and backward SBS quite differently and that increasing
the SBS-gain either by increasing the acousto-optic coupling or reducing themechanical damping leads to a
regime, where the line width is dominated by structural variations. The total SBS-response is then reduced to the
square root of the intrinsic SBS-gain.We derive our results rigorously within the classical variant of a recent
Hamiltonian formulation of SBS [21].

Throughout thismanuscript we adhere to the notation and conventions introduced in our earlier paper on
coupled-mode theory of SBS [22]. In section 2, we qualitatively describe the relation between SBS and the
sensitivity of the dispersion relations and the resulting impact on the SBS-resonance. Although very useful for an
intuitive understanding, this discussion lacks the quantitative precision of the formal derivation provided in
section 3. The results of that section are then analytically studied in section 4, focusing on the two important
special cases of backward SBS and intra-mode forward SBS.Next, we study the relative importance of the two
broadeningmechanisms in forward and backward SBS in section 5 using a family of suspended silicon
nanowires as an example and find that they can compensate each other in appropriately engineeredwaveguides.
Section 6 summarizes and concludes the paper.

2.Qualitative description

The acoustic properties of awaveguide aremodified by static structural perturbations viamechanical
nonlinearities, which are usually not relevant for the dynamics of optically generated soundwaves.More

Figure 1. Sketch of the basic setup studied in thismanuscript using the case of backward SBS and geometric variations of a simple
rectangular waveguide as an example: an optical pump (superscript 2) and an optical probe (superscript 1) excite a soundwave inside a
waveguide that is assumed to be smooth, butwhose geometry is smoothly and slowly perturbed along the axis of propagation, i.e. the
z-axis. Other cases studied in thismanuscript include forward SBS and inhomogeneous strain fields (e.g. due to temperature gradients
or latticemismatch) instead of the sketched geometry variations.
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precisely, there are separate contributions from internal strainfields and from variations of the cross section.
Strainfields enter via the nonlinear relation between stiffness and stress:

T c S f S S , 1ij
kl

ijkl kl
klmn

ijklmn kl mn ( )å å= +

where S andT are the strain and stress tensors, c is the conventional linear stiffness tensor and f is a second order
nonlinear stiffness tensor (see section 3). At the same time, internal strainfields alsomodify themass density
distribution, because the trace of the strain tensor corresponds to a volume dilatation. Finally, changes in the
cross section geometry cause a change in the boundary conditions (to bemore specific: in the position of the
boundary, not in the type of condition imposed there) of the acousticHelmholtz equation. As an example, a
slight reduction of thewaveguide widthmight increase or decrease the acoustic frequencyΩ depending on
whether the acousticmode is predominantly longitudinal or transversal and onwhether the boundaries are
approximately free or clamped.

At the same time, structural perturbationsmodify the optical properties of thewaveguide. In contrast to the
aforementioned acoustic frequency shift thismodification is closely related to the SBS-process, which consists of
two complementary nonlinear processes: the acoustic wave is excited by optical forces that are created by the
beat of the optical pump and Stokes waves. The soundwave spatio-temporally varies thewaveguide’s optical
properties andmodulates the pumpwave such that the Stokes side band is amplified. It is clear that the second
process can only be efficient if thewaveguide’s dispersion relation is sensitive to smallmechanical perturbations;
if it was insensitive the acoustic wavewould notmodulate the pumpwave. This cannot be compensated by a
stronger excitation of the soundwave (neglecting irreversible forces), because both processes are described by
the samemode overlap integral, hence are equally strong. However, the optical dispersion relation cannot
distinguish between static and dynamic (i.e. acoustic)mechanical perturbations. Therefore, the optical
properties of anywaveguide that exhibits strong SBS are intrinsically sensitive to small structural perturbations
introduced in the fabrication process.More precisely, waveguides whose SBS ismainly caused by photoelasticity
are predominantly sensitive to internal strain fields, e.g. caused by inhomogeneous cooling of the sample,
whereas waveguides whose SBS ismainly caused by radiation pressure are predominantly sensitive to slight
variations of thewaveguide cross section.

The variation of the optical dispersion relation occurs as a function of z rather than time, breaking the
conservation of opticalmomentum. Therefore, this variation results in a change in the optical wave numbers

1( )b and 2( )b while leaving the optical frequencies unchanged. As a result, the pump frequency 2( )w is exactly
constant along thewaveguide and the frequency 1 2( ) ( )w w= - W of the perfectly phase-matched Stokes wave
varies only as a result of variations in the acoustic frequency Ω. These optical wave number variations translate
to variations of the acoustic wave number through themomentummatching condition

q . 22 1 ( )( ) ( )b b= -

Therefore, the optical dispersion relation sensitivity indirectly affects the acoustic frequency. This effect has been
practically applied in certain types of SBS-based fibre sensors [17, 23, 24]. The total local change in the acoustic
frequency (see also figure 2) is given by the combination of the optical wave number variations and the direct

Figure 2. Sketch of how a perturbation of the optical and acoustic dispersion relations (red andmediumblue, respectively) affects the
Stokes shift via the phasematching condition for constant pump frequency 2( )w . The double-arrowhighlights the opto-acoustic
transition that fulfils the conservation of both energy andmomentum. The solid lines represent the dispersion relations of the ideal
system and the dashed lines those of the perturbed system. The light pink lines are parallels of the respective left side optical branches
and indicate which acoustic wave number is phasematched.Note that themagnitude ofDW is grossly exaggerated compared to 2( )w .
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acoustic shift dirDW described earlier

q
. 3tot dir 2 1

indir

( ) ( )( ) ( )b bDW = DW +
¶W
¶

D - D

DW
  

It should be noted at this point that the two contributions to the total frequency change can have opposite sign
and therefore cancel (see section 5 for an example).

In awaveguide that is subject to inhomogeneous variations of the geometry and strainfields the acoustic
frequency variation becomes a function of the position zwithin thewaveguide. It is instructive to imagine the
waveguide to be composed ofmany short and approximately homogeneous sections (see figure 3). Each such
section acts as an independent SBS-amplifierwith a Stokes frequency that is offset from the ideal by ztot ( )DW . All
other properties such as intrinsic linewidth and differential SBS-gain (i.e. the SBS gain per unit length of
waveguidemeasured in units of W m1 1- - ) can be assumed to be unchanged. The total SBS-spectrumof the
complete waveguide is then simply the superposition of the individual SBS-spectra. In the limit of very short
homogeneous sections, within an undepleted pump approximation and assuming a Lorentzian intrinsic
resonance shape, the Stokes amplification on resonance is then the integral

z z P P
z

z
d

d

1 2
, 4

L L

dB
0

ideal tot 2 ideal 2

0 tot 2
( ) ( ( )) ( )

[ ( )]
( )( ) ( ) ò ò t

W = G W - DW = G W
+ DW

where τ represents the phonon life time and thewaveguide is assumed to extend from z=0 to z=L.Within the
integral, idealG is the local (differential) SBS power gainmeasured in W m1 1- - (corresponding to the quantity g in
Boyd’s book [1]) and dB

ideal( ) W is the total amplification accumulated over the total waveguide length L (denoted
G by Boyd). If the distribution ztot ( )DW has awidth of the order 1t- and especially if it is lopsided, the SBS-
resonance is inhomogeneously broadened into a non-Lorentzian shape as indicated infigure 3.

So far, we have qualitatively explained the twomain effects of structural variations on the SBS-resonance:
perturbations to the acoustic and the optical dispersion relation andwe have furthermore argued that the
magnitude of the latter effectmust be closely related to the SBS-gain. For practical purposes, it is probably
sufficient to compute dirDW and 1,2( )bD numerically and insert them into equations (3) and (4). However, the
exact relationship between optical sensitivity and SBS-gain aswell as further consequences can only be
elucidated by a formal derivation. This is therefore the topic of the next section.

3.Quantitative derivation

Weassume SBS in a lossless optical waveguide that is oriented along the z-direction and provides confinement
for the optical and all relevant acousticmodes, which are furthermore assumed to be onlyweakly damped.
Mostly out of convenience we restrict ourselves tomechanically isotropicmaterials. Furthermore, we assume
that the optical and acoustic envelopes as well as the deviations from the ideal waveguide geometry vary slowly
along the z-axis compared to the acoustic decay length.Wemostly follow the notation and conventions
established in our earlier paper [22]: upper case letters refer to physical (real-valued) quantities, lower case letters
to eigenmodes and envelope functions, and a tilde implies that the quantity is subjected to a phase
transformation (rotating frame).We furthermore introduce the symbol r

1h e= - for the inverse permittivity and
the superscripts ‘bulk’ and ‘edge’ to refer to the interior of thewaveguide’s cross section and its boundary,
respectively.We use Einstein’s summation convention, where it helps to simplify the notation.

Figure 3. Sketch of how a spatial distribution of the acoustic resonance frequency causes an inhomogeneously broadened SBS-
response of the total waveguide. Thewaveguide is approximated by a sequence of homogeneous waveguide sections, eachwith its
individual SBS-resonance centered around a frequency thatmight differ from the ideal frequency indicated by vertical dashed lines.
The total response (right panel) is the superposition of all block responses andnoticeably broader and shallower than the response of
the ideal structure if the acoustic frequency variance is comparable to the resonance linewidth.
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3.1.Hamiltonian
We formulate this problemwithin a classical Hamiltonian framework. To this end, we transfer a recent
comprehensive quantum-mechanical description of SBS [21] to the classical domain by replacing operators with
functions and commutators with Poisson brackets. One of themain results of [21] is the full acousto-optic
Hamiltonian, which reads in classical form:

H r S c S

r
B B D D

z z

r U
r U

r U

d
2 ;

1

2
;

d
2

;

2
d , 5

ijkl

i i
ij ijkl kl

ij

i i i ij j

3

3

0 0

( )
( )

( )
( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ 

ò

ò ò

å

å

r

m

h

e

=
P P

+

+ + =

where z( ) is theHamiltonian z-density, i.e. theHamiltonian per unit length of waveguide. Themechanical
displacement, strain andmomentumdensity fields and the electric andmagnetic induction fields are denoted
with U, Sij,P, D and B, respectively. Thematerial properties are described by themass density ρ, the stiffness
tensor cijkl, the inverse relative permittivity tensor ;r

1h e= - the electromagnetic terms furthermore involve the
permittivity 0e and permeability 0m of vacuum.Allmaterial constants are assumed to depend on themechanical
displacementfield U aswell as its derivatives. Thefirst integral describes themechanical part of the system,
whereas the second integral covers both the electromagnetic part and the acousto-optic interaction term,which
is implicitly contained in the dependence of the inverse permittivity η on themechanical deformation field and
its derivatives. The twomain contributions [21] to this dependence are

p Sr U r r r ; 6ij ij
kl

ijkl kl
ideal ( ( )) ( ) ( ) ( )åh h» - +

a further term of linear order in U—themoving polarization termdescribed in [22]—is usually tooweak to be
observable and is neglected here.Within this frameworkwe describe structural perturbations as a static
contribution to the totalmechanical displacement field U:

p S Sr U U , 7ij ij
kl

ijkl kl kl
ideal stat dyn stat dyn( ) ( ) ( )åh h» - - + +

where the superscripts ‘stat’ and ‘dyn’ denote the static and acoustic contributions, idealh is the permittivity
distribution of the ideal (perfectly fabricated, sound-free) system and pijkl is the Pockels tensor that describes the
photoelastic effect. Equation 7 reflects the close connection between the acousto-optic interaction and the
sensitivity of the optical dispersion relation regarding structural perturbations.

Similarly, themechanical stiffness and themass density depend on themechanical displacement field:

Sr r U r r r , 8
i

ii
ideal ideal( ) ( ( )) ( ) ( ) ( )år r r» - -

c c f Sr r U r r r . 9ijkl ijkl
mn

ijklmn mn
ideal( ) ( ( )) ( ) ( ) ( )å» - +

Here, the trace of the strain tensor expresses the volume dilatation. The strain-dependent stiffness tensor
presented in (9) contains the leading order nonlinearity ofmechanically isotropic bulkmaterials;micro-
scopically, the sixth rank tensor fijklmn describes three-phonon scattering. This can also be derivedwithin the
classical framework of hyperelasticity [25]: in that approach, the stress is introduced as the strain-derivative of a
free energy that is not quadratic in the strain variable. Assuming a purely reversiblemechanical response, this
free energy is identical to theHamiltonian, whose strain-dependence can be expanded into a Taylor series. The
leading (cubic) anharmonic strain-term is created by the sixth rank tensor fijklmnwhen inserting equation (9) into
equation (5). In reality, this three-photon processmight be forbidden by symmetry and a higher-ordermulti-
phonon scatteringwould constitute the leading order ofmechanical bulk nonlinearity. Furthermore, we have no
reliable information about the order ofmagnitude of static strainfields across the large number of realizable
integratedwaveguides. Still, we have introduced this three-phonon term to illustrate howmechanical bulk
nonlinearities would impact inhomogeneous broadening, althoughwe neglect them in our analysis in section 4.

Nonlinearmechanical wave processes usually can be neglected in typical SBS setups, sowe only retain the
static contributions to themechanical nonlinearity

Sr r U r , 10
i

ii
ideal stat ideal stat( ) ( ) ( ) ( )år r r» - -

c c f Sr r U r . 11ijkl ijkl
mn

ijklmn mn
ideal stat stat( ) ( ) ( ) ( )å» - +

These terms describe the sensitivity of the acoustic dispersion relation to structural perturbations.
We nowdecompose the totalHamiltonian z-density into the unperturbedmechanical and electromagnetic

parts ( ac , opt ), the interaction term int and the structural perturbations opt and ac
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, 12opt ac int opt ac ( )     = + + + +

where thefirst three terms are derived in [21]
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0
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h= - ¶

The integrals are carried out over the entire transverse plane. The fourth term is formed in direct analogy to int

r
D D

p S Ud
2

, 16
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and the last term is
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S S

f S U c
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2
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jj j j

ac 2 stat stat ideal

ideal 2
stat ideal stat ideal

( )
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( ) ( )

 ò

r
r r

= - ¶

-
P P

- ¶

The difference between int and opt is that the former results in a nonlinear coupling termof the optical and
acoustic equations ofmotion, whereas the latter causes a linear perturbation of thewave propagationwithin the
opticalfields. Thefifth term ac does not have a counterpart, becausewe neglected nonlinear wave effects within
the propagatingmechanical waves.

3.2.Modal expansion and approximation
Next, we expand the electromagnetic andmechanical fields into the eigenmode bases of the respective idealized
waveguide problems [21, 22]

z z e ei i , 18i i i i i
0

2( ˆ) ( ˆ) ˜ [ ] ˜ ( )( ) ( ) ( ) ( ) ( )b b em w + ´  + ´ =^ ^

qz c qz u ui i . 19j ijkl k l il l
2( ˆ) ( ˆ) ˜ ˜ ( )r d +  + = - W^ ^

In both equations thewave numbers along thewaveguide serve as parameters, where the optical wave number
2( )b has to be chosen such that 2( )w matches the frequency of themodeled pump laser and the acoustic wave

number is subsequently found through equation (2). In very extended systems such as conventional optical
fibres, an infinite number of acoustic basis functions can contribute to the total acoustic SBS response. In this
case the treatment by Beugnot et al [26] is a viable alternative to our description.However, we here restricted
ourselves to nano-scale waveguides, inwhich the spectral separation between acousticmodes is greater than the
SBS linewidth, i.e. in which only one or very few acoustic eigenmodes can be simultaneously excited by the two
optical waves. Consequently, we express the optical and acoustic fields asmodulations of single basis functions
[22]

t a z t z a z t zE r e e, , exp i , exp i c.c., 201 1 1 2 2 2( ) ˜ ˜ ( ) ( ) ˜ ˜ ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )b b= + +

t t b z t qzU r u r, , , exp i c.c.. 21dyn( ) ˜ ( ) ˜( ) ( ) ( )= +

Here, a n˜( ) and b̃ are the classical counterparts of the quickly rotating envelope functions in [21] and are related to
themore common slowly varying envelope functions a n( ) and b via the relations

a z t a z t t, , exp i , 22n n n˜ ( ) ( ) ( ) ( )( ) ( ) ( )w= -

b z t b z t t, , exp i . 23˜( ) ( ) ( ) ( )= - W

They fulfil the Poisson bracket relations

a z t a z t a z t b z t a z t b z t, , , , , , , , , 0, 24i j i i{ ˜ ( ) ˜ ( )} { ˜ ( ) ˜( )} { ˜ ( ) ˜ ( )} ( )( ) ( ) ( ) ( ) *¢ ¢ = ¢ ¢ = ¢ ¢ =

a z t a z t z z t t, , ,
i

, 25i j
i

i ij{[ ˜ ( )] ˜ ( )} ( ) ( ) ( )( ) ( )
( )

( )
*


w

d d d¢ ¢ = - ¢ - ¢

b z t b z t z z t t, , ,
i

. 26
b

{ ˜ ( ) ˜( )} ( ) ( ) ( )*


d d¢ ¢ =
W

- ¢ - ¢

The symbols  denote the respectivemodal energies per unit length of waveguide [22]:

r e e2 d , 27i
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i
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i
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r u2 d . 28b
2 2 ideal 2∣ ˜ ∣ ( ) ò r= W

Within the expansions (20) and (21) the unperturbed contributions to theHamiltonian z-density simply
become

z z a a b . 29b
opt ac 1 2 1 2 2 2 2( ) ( ) ∣ ˜ ∣ ∣ ˜ ∣ ∣ ˜∣ ( )( ) ( ) ( ) ( )    + = + +

Using the fact that the acoustic eigenmodes (indexed by superscript n) for afixedwave number q form a
complete function set, we can expand the static deformations

z x yU r u , c.c., 30
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S z s x yr , c.c., 31ij
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n˜ [ ˜ ˜ ] ( )( ) ( ) ( )= ¶ + ¶

In this we have introduced separate expansions for the distribution of a static strainfield and the deviation of the
waveguide geometry, which contains both effects of the static strain field and variations of the geometry due to
fabricational (e.g. photolithography or etching) imperfections. In analogy to [21, 22], we now introduce separate
modal overlap integrals to capture the effects of photoelasticity and of boundary displacement
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klmn

r k
i

l
j

klmn m n
p

;
bulk

0
bulk

2 2 [ ] [ ] ( )( ) ( ) ( )* *ò åe e= ¶

Q n n

n n n

r e e

d d u

d

. 34

ij p a b
i j

a b
i j p

;
edge

edge
0

1 1
0

1

[( ) ( ˆ ) ( ˆ )

( ) ( ˆ · ) ( ˆ · )]( ˆ · ) ( )

( ) ( )

( ) ( ) ( )

*

* *

ò e e e

e e e

= - ´ ´

- -- - -

Now, by substituting themodal expansions in (20), (21) and (30), (31) into the interaction terms in (15), (16),
and integrating over the transverse plane, we find the interactions can be reduced to the forms

z a a b Q Q c.c., 35n n

Q

int 1 2
12;
bulk

12;
edge

b b

SBS

( ) [ ] ( ) ( )( ) ( ) * = + +  

z a Q Q a Q Q , 36
n

n
n

n
n

n
n

n
n

opt 1 2
11;
bulk

11;
edge 2 2

22;
bulk

22;
edge( ) ∣ ∣ ( ) ∣ ∣ ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) å z x z x= + + +

where nb is the index of the phase-matched acousticmode. The edge contribution Qij n;
edge to the perturbation

term opt is of course identical to the expression by Johnson [27]. Finally, we analogously express the acoustic
structural perturbation term

z b R R 37
n

n
n

n
n

ac 2 bulk edge( ) ∣ ∣ ( ) ( )( ) ( ) å z x= +

in terms of a bulk overlap integral

R r u u f
u

u e
1

2
d

2
, 38p

imn jkl
i j

n
k l

n
ijklmn

i
n

m n
p
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pbulk

bulk

2
2 2

ideal
b b

b

[ ] [ ]
∣ ∣

( ) ( )( ) ( )
( )

( ) ( )⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

*ò å å r
= ¶ ¶ +

W
¶ + ¶

which directly corresponds to the photoelastic perturbation overlap Qij n;
bulk and an edge integral Rp

edge that

corresponds to the electromagnetic boundary displacement overlap Qij n;
edge. The explicit expression for Rp

edge is
slightly involved and requires a short derivation; both can be found in appendix A.Mathematically, this term
contains the edge contributions from equation (17), i.e. the spatial derivatives of the stiffness andmass density
functions. Physically, it describes the simple fact that the transverse acoustic pattern—which is a standingwave
in the transversal plane—is detuned verymuch like a drumhead upon size variations of the transverse acoustic
cavity.

Using the Poisson bracket relations, expanding the z-integral of theHamiltonian density into the
appropriate Taylor series [21] and truncating the expansion tofirst order, we find the equations ofmotion:

a a a, , , 39i i i
t

opt int opt˜ { ˜ } { ˜ } ( )( ) ( ) ( )  ¶ = + +

a v a ai , , 40i i i
z

i i int opt˜ ˜ { ˜ } ( )( ) ( ) ( ) ( ) ( )  w=- - ¶ + +

b b b, , , 41t
ac int ac˜ { ˜ } { ˜ } ( )  ¶ = + +

b v b bi , . 42b z
int ac˜ ˜ { ˜ } ( ) =- W - ¶ + +
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3.3. Inhomogeneous broadening in steady state
Wenowhave all tools to compute the spectrumof the steady state SBS response of an imperfect waveguide using
the acousticGreen function [22]. To this end, we assume a small signal approximation and a local acoustic
response approximation, for whichwe assume that themodal envelopes a 1( ), b as well as the perturbation
envelopes n( )z , n( )x vary slowly compared to the acoustic decay length, which is of the order 50 m1a m»- in
backward SBS and is negligible in intra-mode forward SBS. Following [22], we introduce the inverse acoustic
decay lengthα as well as an additional parameterκ that describes awave number offset between the ideally
phase-matched Stokesmode and the probewave that is injected in a seeded small-signal SBS-experiment. The
Poisson brackets involving the perturbation terms(36), (37) are

a v a, i , 43i i i iopt{ } ( )( ) ( ) ( ) ( ) b= D

b v q, i , 44b
ac dir{ } ( ) = D

expressed in terms of the structural detuning parameters

z Q Q ; 45i
i

i
n

n
ii n

n
ii n;

bulk
;

edge( ) ( ) ( )( )
( )

( )
( ) ( )

 åb
w

z xD = +

q z R R . 46
b n

n
n

n
n

dir bulk edge( ) ( ) ( )( ) ( )
 å z xD =
W

+

The steady state equations then follow:

a a
Q

a bi
i

, 47z
1 1 1

1
SBS

1
2( ) ( )( ) ( ) ( )

( )

( )
( ) *


b k

w
¶ - D + = -

a a
Q

a bi
i

, 48z
2 2 2

2
SBS

2
1 ( )( ) ( ) ( )

( )

( )
( )*


b

w
¶ - D = -

b q b
Q

a ai
i

, 49z
b

dir SBS 1 2( ) [ ] ( )( ) ( )*


a¶ + - D = -
W

with the SBS coupling parameter Q Q Qn nSBS 12;
bulk

12;
edge

b b
= + from equation (35) and the powers vi i i( ) ( ) ( ) = and

bb b b = of the eigenmodes as introduced in [22].We then solve the acoustic equation using its Green
function:

b z
Q

z a z z a z z q z z z
i

d exp i .
b

SBS

0

1 2 dir( ) {[ ( )] ( ) ( [ ( )] )}( ) ( )*
 ò a= -

W ¢ - ¢ - ¢ - - D - ¢ ¢
¥

Weassumed that the optical intensities as well as the structural envelopes vary slowly on the length scale 1a- , so
we can assume that the q zdir ( )D , z1 ( )( )bD , z2 ( )( )bD and the absolute values a 1∣ ∣( ) and a 2∣ ∣( ) are constantwithin
the convolution (50);κ is simply a constant.Wemay therefore approximate the product of optical envelopes at
the position z z- ¢ as that product at position zmodulo a phase factor that expresses the relative beat

2 1( ) ( )b b kD - D -

a z z a z z a z a z z z zexp i , 501 2 1 2 2 1[ ( )] ( ) [ ( )] ( ) ( [ ( ) ( ) ] ) ( )( ) ( ) ( ) ( ) ( ) ( )* * b b k- ¢ - ¢ » D - D - ¢

b z
Q

a z a z L z
i

, 51
b

SBS 1 2( ) [ ( )] ( ) ( ) ( )( ) ( )*


 » -
W

with

L z
q z

1

i
, 52

tot
( )

[ ( ) ]
( )

a k
=

- D -

q q . 53tot dir 1 2 ( )( ) ( )b bD = D - D + D

Wecannow insert this expression for the acoustic field into the optical equations. Along the lines of [22], we
then transform them into a pair of equations for the optical powers P z a zi i i 2( ) ∣ ( )∣( ) ( ) ( )=

P z P P , 54z
1 1 2( ) ( )( ) ( ) ( )¶ = G

P z P P . 55z
2 1 2( ) ( )( ) ( ) ( )¶ = -G

The local SBS-gain function is given by

z
Q

q z

2
. 56

b

SBS
2

1 2

2

2 tot 2

ideal

( ) ∣ ∣ ·
[ ( ) ]

( )( ) ( )  
w

a
a

a k
G =

W
+ D -

G
  
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Within a small signal approximation, i.e. P 0z
2( )¶ » , this leads to a separable equation for the Stokes power P 1( )

P

P
z P , 57z

1

1
2( ) ( )

( )

( )
( )¶

= G

P z P P z z0 exp d 58
z

1 1 2

0
( ) ( ) ( ) ( )( ) ( ) ( )⎡

⎣⎢
⎤
⎦⎥ò = ¢ G ¢

and an expression for the total Stokes amplification P P10 log dBdB 10 out
1

in
1( )( ) ( ) = of thewaveguide of length L:

P z
q z

10

log 10
d 59

L

dB
2 ideal

0

2

2 tot 2[ ( ) ]
( )( ) ò

a
a k

= G ¢
+ D ¢ -

in units of dB.
In the simple case of z-independent aberration coefficients n( )z and n( )x the integral in equation (59)

becomes equal to one if the detuningκ is chosen to be qtotk = D . Thismeans that to an excellent approximation
the acoustic frequency and thereby the SBS-resonance is simply shifted by the frequency

v q v q v 60b b b
tot tot dir 2 1

dir indir

( ) ( )( ) ( )b bDW = D = D + D - D
DW DW

     

in agreementwith equation (3). In the case of inhomogeneous coefficients, the integral in equation (59) expresses
the linear superposition of individual SBS-resonances and therefore the inhomogeneous resonance broadening
in agreementwith equation (4).

4. Special cases

Wewill now study the two practicallymost relevant special cases: intra-mode forward SBS and backward SBS.
Qualitatively, inter-mode scattering behaves similarly to backward SBS.

4.1. Forward intra-mode SBS
First, we study the case of forward intra-mode SBS, i.e. we assume

r t r te e, , , 611 2( ) ( ) ( )( ) ( )»
 

q v0; 0. 62b ( )» »

In this case, the SBS coupling coefficient is

Q Q Q . 63n nSBS 11;
bulk

11;
edge

b b
( )= +

Furthermore, the optical wave number perturbations are identical:

Q . 64
n

n
n n

n2 1
1

1 11;
bulk

11;( ) ( )( ) ( )
( )

( )
( ) ( )

 åb b
w

z xD = D = +

As a result, 0indirDW = , i.e. the indirect resonance broadening via the optical dispersion relation is absent in
intra-mode forward SBS. Strictly speaking, this result is exact only if the optical group velocity is identical at 1( )w
and ;2( )w in practice this is irrelevant except for extremely dispersive opticalmodes, e.g. in the slow light regime
near band edges. The remaining source of structural resonance broadening is the directmechanical contribution

v R R 65b
b n

n
n

n
n

dir bulk edge( ) ( )( ) ( )
 å z xDW =
W

+

R R . 66
b n

n
n

n
n

bulk edge( ) ( )( ) ( )
 å z x=
W

+

If we assume that internal strain fields are tooweak to cause noticeable resonance broadening, wemay assume

R , 67
b n

n
n

dir edge ( )( )
 åxDW =
W

i.e. that the resonance detuning can be regarded as the simple geometric effect of changing the size of a
transversal acoustic cavity. Themechanical perturbation overlapsR and the acousto-optic overlapsQ are in
principle completely independent, so there is no fundamental reasonwhy an increase in the SBS-gainwould
increase the inhomogeneous broadening in the case of intra-mode forward SBS.

4.2. General backward SBS
This is fundamentally different in the case of backward SBS and (to a lesser extent) in the case of general inter-
mode SBS. The opticalmodes that participate in conventional backward SBS are the counter-propagating
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partners of each other and therefore related via complex conjugation:

t te r e r, , ; . 681 2 1 2( ) [ ( )] ( )( ) ( ) ( ) ( )*  = = -

Therefore, the SBS coupling coefficient and the optical wave number perturbations are:

Q Q Q , 69n nSBS 12;
bulk

12;
edge

b b
( )= +

Q Q , 70
n

n
n

n
n

2 1
1

1 11;
bulk

11;
edge( ) ( )( ) ( )

( )

( )
( ) ( )

 åb b
w

z xD = -D = +

while the expression for the direct acoustic detuning is identical to the case of forward SBS. The subscript indices
of the individual overlap integrals Qij n;

bulk and Qij n;
edge are themode labels of the involved two optical and the

acousticmode (see equations (33) and (34)). It is in fact the acousto-optic forward-SBS coupling of the respective
acoustic and opticalmodes, i.e. basically the square root of the forwards SBS gain for that combination ofmodes.
This time, the optical wave number perturbations add up and the total Stokes shift becomes

R
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v
Q R
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v
Q2 . 71
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The directmechanical contribution is qualitatively identical to the previous case. Furthermore, we can assume
that the predominantly longitudinal acousticmode contributing to backward SBS is rather insensitive to slight
geometry variations. This suggests to focus on the indirect (optical) contribution to the broadening and ignore
the direct (acoustic) contribution. As a result, the general result equation (59) then has the explicit form (i.e.

0k = ):

P
z

Q Q

z Q z Q
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Themode coefficients Q n11;
bulk and Q n11;

edge in the denominator aremode overlaps that define the forward SBS gain

and are identical to the coefficients Q n12;
bulk and Q n12;

edge in the numerator except for a complex conjugation of one of
the opticalmodes courtesy of equation (68).

4.3. Backward SBS dominated by radiation pressure
The general BSBS result equation (72) is too convoluted to interpret directly.We therefore restrict ourselves to a
very specific limiting case that nonetheless provides some insight into the general impact of geometrical
variations in BSBS in nanoscale waveguides.We assume that the acousto-optic interaction is dominated by the
edge term Q n11;

edge, i.e. by radiation pressure.We furthermore assume that the contributions nb( )x of the phase
matched acousticmode to the geometry perturbations provide a good estimate for the total optical sensitivity

1( )bD .Wefinally assume that the geometry variations are completely randomwithin a certain interval.Within
this approximation znb ( )( )x is uniformly distributed in an interval , ;0 0[ ]x x- other distributions of znb ( )( )x
clearly lead to different broadened resonance shapes, but also exhibit the general trends described below. These
assumptions reduce equation (72) to themuch simpler form
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For the case of strong broadening ( 0xQ  ) the integral approaches the limit

Q1

2

d

2
75n

2 2
0

1
11;
edge

1
0

b

0

0

⟶ ( )
( )

( )òx
x
x

p
x

pw

a xQ + Q
=

x

x

-

and therefore the total amplification approaches the limit
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        

This result consists of a combination of eigenmode constants such as frequencies andmode powers, the ratio of
the intrinsic forward and backward SBS gains and a termdefining how the broadened SBS amplification scales
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with various design parameters, especially the fabrication tolerance 0x . The gain ratio is always slightly below
one, as we show in appendix B, andwe can simply assume it to be a constant. The last termfinally scales with the
inverse of the acoustic damping, the fabrication tolerance and Q n11;

edge
b
, which can be identified as being

proportional to the square root of the FSBS power gain using equations (56) and (63). Alternatively, we can also
formulate the result as scaling with the square root of the BSBS power gain by using

Q

Q

P Q Q

Q

P Q
. 77n

n

n n

n

n12;
edge

11;
edge

2 2
11;
edge

0

12;
edge

11;
edge

2
12;
edge

0

b

b

b b

b

b
∣ ∣

( )
( ) ( )

x x
=

Both interpretations are basically equivalent, because FSBS andBSBS gain are closely related (appendix B).
If we assume awaveguidewith a significant SBS contribution due to radiation pressure andwe assume the

tolerance 0x to be given, the reduction ofΘ either by reducing the acoustic damping parameterα or by

increasing the FSBS acousto-optic coupling Q n11;
edge

b
will lead into a regime, where the BSBS amplification is

defined by Q n11;
edge

b
. In practice, the acoustic loss can be reduced e.g. by reducing the contact area of a nearly

suspendedwaveguide to its substrate [11]; certain slot waveguide designs [28] on the other hand allow control of
the radiation pressure coupling by varying the gap size.

5.Numerical example

As the last part of our study, we performed numerical experiments on the sensitivity of the SBS frequency shift to
variations of awaveguide’s geometry.We selected a family of silicon nanowires with a height of 220 nm and a
width varying between 300 nm and 450 nm in steps of 25 nm. For each suchwaveguide, we characterized
forward and backward SBS between the fundamental opticalmode and the two lowest symmetry-permitted
acousticmodes [29] using thefinite-element solver COMSOLwith an element size of 5 nm inside the
waveguide. For each step of 25 mn, we estimated thewidth sensitivity by increasing thewidth by 1 nm and
repeating the calculation. The resulting relative frequency shifts are plotted as solid lines in the lower left panels
offigures 4 and 6. Finally, we added computed SBS power gains of the respective acousticmodes as annotations
to the SBS frequency graphs; they are intended to give a rough idea of the respective acousto-optic coupling.

In the case of FSBS (figure 4), the difference is entirely due to the direct (acoustic) perturbation effect,
because the acoustic wave number is basically zero. Both acousticmodes are standingwaves in the acoustic

Figure 4.Numerical study of the sensitivity of forward SBS (FSBS) to width variations of a silicon nanowire oriented in the [110] crystal
direction.We study the interaction between the fundamental opticalmode and two symmetry-permitted acousticmodes with lowest
frequency. The acousticmode patterns show the in-plane displacement components as arrows and the axial displacement coordinate
via a colormap. The first acousticmode (orange frame and graph lines) does not have any axial contributions, whereas the second
acousticmode (blue frame and lines) has no in-plane contributions to the displacement field. The relative detunings are displayed in
percent for a change of thewaveguidewidth by 1 nm. Due to the extremely small acoustic wave number in FSBS only the direct
acoustic perturbation process contributes to the resonance shift, whose relativemagnitude follows the relative width change exactly
formode 2 and qualitatively formode 1. This demonstrates the direct acoustic response towidth changes is basically given by the
detuning of the transversemechanical cavity. The annotations in the top left panel specify the computed SBS power gains of the two
acousticmodes for the extremewaveguide widths assuming amechanical quality factor of 300.
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resonator, formed perpendicular to the axis of light propagation, where the firstmode has contributions from
both in-plane components of themechanical displacement field and the secondmode only contributions from
the out-of-plane component. As a result, the secondmode is a pure standing S-wave and consequently its
eigenfrequency is entirely determined by thewaveguidewidth and the transverse speed of sound. This leads to
the exact correspondence of the variation ofΩ and the relative change of thewaveguide width (red crosses in
figure 4). In contrast, the firstmode is a hybrid of an S-wave and a P-wave, because both in-plane components
contribute. As a result, the relationship betweenwaveguide width andΩ is not as straightforward. Thismode for
awaveguide width of 450 nm was studied experimentally in [11] and its sensitivity has been determined to be
20MHz nm 1- at ameasured Brillouin frequency of 9.2 GHz equivalent to a sensitivity of 0.22% nm 1- in
excellent agreement withfigure 4. Still,figure 4 demonstrates that the geometry sensitivity of FSBS is only a
response to size variations of a transverse acoustic resonator.

In addition, we have also computed broadened FSBS spectra of the firstmode (computed frequency shift:
9.3 GHz at awidth of 450 nm). Figure 5 shows the impact of a width variation of 1 nm . This is a little less than
two lattice constants of the silicon crystal, i.e. it corresponds roughly to twomonolayers of atoms. Figure 5 also
illustrates the effect of different distributions of width variations along thewaveguide. The leftmost panel shows
the unperturbed spectrum assuming amechanical quality factor of 300, which is a realistic value for certain FSBS
experiments [11], wheremechanical loss is dominated by acoustic leakage. The center panel shows the
broadened spectrum assuming that thewaveguide length linearly changes along the total waveguide length
(typically severalmillimetres to centimetres); as a result the quality factor significantly drops to 183. The
rightmost panelfinally shows the broadened spectrum assuming that thewaveguidewidth fluctuates
sinusoidally along thewaveguide with a period that is large compared to the acoustic decay length and the optical
wave length (the exact periodicity does notmatter). In this case, not only is the quality factor further reduced to
155, but the resonance is also deformed into a highly non-Lorentzian shapewith twodistinct peaks. This
example shows that high effective quality factors in integrated SBS require very consistent fabrication down to
the atom level.

For BSBS, the situation is slightlymore complicated, because the indirect (optical) perturbation contributes
to the total sensitivity. Therefore, we additionally determined the impact of the direct contribution by solving the
acoustic problem for the perturbed geometry and thewave number derived from the unperturbed problem
(circles infigure 6); the indirect (optical) contribution (squares infigure 6) then follows as the difference. Both
studied acousticmodes are hybrid and have an axial wave length that is comparable to thewaveguide’s
dimensions. Therefore, the acoustic frequency is roughly determined by the bulk speed of sound and thewave
number. The displacement field of thefirst acousticmode has appreciable x-components, which leads to a
noticeable direct (acoustic) sensitivity. In contrast, the secondmode ismostly insensitive to the direct
perturbation effect. Both acousticmodes are very susceptible to the indirect (optical) perturbation effect. For
example, the second acousticmode responds to awidth variation of 1 nm with a resonance shift of up to 0.4%.
Correspondingly, a waveguide with awidth of 300 nm would have to bemanufactured to better than 0.25 nm
(less than amonolayer of atoms) along its entire length in order tomaintain an overall quality factor of 1000.
Evidence for this problemhas been observed experimentally [30].

Figure 5.Effect of geometry-induced broadening on an SBS resonance. The system is forward SBS in a suspended silicon nanowire of
dimensions 220 450 nm´ at amechanical quality factor of 300, i.e. the system studied infigure 4 and in [11]. The three panels show
the unperturbed resonance (left panel), the line for the case that thewidth linearly varies from449 to 451 nm over thewaveguide
length (center panel) and for the case that thewaveguidewidth is sinusoidally undulated between the values 449 and 451 nm. In both
cases, the perturbation reduces the quality factor by about a factor of two.
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One interesting detail offigure 6 is the fact that the direct and indirect contributions to the inhomogeneous
broadening can be of comparablemagnitude. Furthermore, theywill tend to have opposite signs, because an
increase inwaveguide width tunes the transverse acoustic resonator to lower frequencies via the direct (acoustic)
perturbationmechanism,while an increase in thewidth also leads to higher opticalmode indices,
corresponding to greater wave numbers and eventually higher acoustic frequencies via the indirect (optical)
perturbationmechanism. This suggests the very promising idea to design awaveguide structure with a
deliberately strong direct sensitivity in order to cancel the inevitable indirect sensitivity. The result would be a
waveguide designwith greatly relaxed fabrication tolerances with respect to thewaveguidewidth. The general
applicability of this concept tominimize the sensitivity with respect to one design parameter (in this case the
width) is proven by the behavior ofmode 1 infigure 6. There, the direct and indirect contributions forwidth
variations nearly cancel for small waveguide widths.However, the presentedmode is only of academic interest
because of its very low SBS power gain. Finally, it should be noted that only one specific type of perturbations
(e.g. width variations, wall angle variations or height variations) can be compensatedwith this techniquewhile
potentially increasing the sensitivity of the other perturbation types.

6. Summary

In conclusion, we have analysed the sensitivity of the optical and acoustic dispersion relations on structural
variations of awaveguide and related this to the sensitivity of the Stokes shiftΩ.We have shown that variations of
the optical dispersion relation are amajor source of inhomogeneous broadening in backward SBS and that they
are intimately related to the forward SBS coupling, because slowly and smoothly varying perturbationsmainly
modify the phase of an opticalmode, and induce negligible back-scattering. This leads to a counter-intuitive
result in SBS dominated by radiation pressure (see section 4.3): since the inhomogeneous broadening is
proportional to the forward SBS coupling (i.e. square root of FSBS-gain), themaximumof a strongly broadened
SBS spectrum is proportional to the ratio of the backward gain and the square root of the forward gain. As a
result themaximumof the strongly broadened response of a backward SBS system scales only with the square
root of the naively expected SBS-gain.

Thismeans that high-gain backward SBSwaveguides are intrinsically sensitive to fabricational imperfections
and require fabricational tolerancesmatched not only to the intrinsic acoustic linewidth but also to the opto-
acoustic coupling strength. Therefore, itmay be advisable in practice to sacrifice some intrinsic SBS-gain to
avoid the tolerance-dominated regime, especially since thismight reduce the linear or nonlinear optical loss at
the same time and thereby increase the overall figure ofmerit.We have furthermore shown that the indirect
resonance sensitivity is absent in forward SBS and that therefore no fundamental link between the resonance

Figure 6.Numerical study of the sensitivity of backward SBS (BSBS) to width variations of a silicon nanowire oriented in the [100]
crystal direction. In contrast to FSBS (figure 4), both studied acousticmodes involve axial and in-plane components. Furthermore,
BSBS features both the direct (acoustic) process (with negative sign as for FSBS) and in addition the indirect (optical)process with the
opposite sign. The former can be neglected forwiderwaveguides; however, it is possible that both contributions cancel each other. As
in figure 4we annotated the power gain, this time assuming a quality factor of 1000. The extremely lowpower gain ofmode 1 is caused
by nearly exact u cancellation of the photoelastic andmoving-boundary related coupling in this structure.
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sensitivity and the SBS-gain exists in this case. Nonetheless, the direct (acoustic) resonance sensitivity can be
appreciable and has been observed in at least one nanophotonic realization of forward SBS [11]. Our numerical
example for FSBS is in excellent agreementwith this experiment. Finally, we have argued that the direct
(acoustic) and indirect (optical) contributions to the resonance sensitivity tend to have opposite sign. This allows
one to design comparatively insensitive high-gainwaveguides with a strong direct sensitivity carefully
engineered to compensate the intrinsic indirect sensitivity.
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AppendixA.Mechanical edge perturbations

In this appendix, we derive the edge contribution to themechanical perturbation term. This is analogous to the
perturbation theory developed by Johnson et al for the perturbation of the electromagnetic dispersion relation
[27], which is based on the continuity of the transversal electricfield and of the normal electric inductionfield
across amaterial boundary. In the context of continuummechanics, the quantities that are continuous across a
material boundary are the normal projection of the stress tensor

T n n T A1ij i
k

k kj ( )å=^

and the in-plane projection of the strain tensor

S S n n S , A2ij ij i
k

k kj ( )å= -

where n̂ is the surface normal. In analogy to the electromagnetic case, the perturbation to theHamiltonian is the
normal projection of the surface displacementmultiplied by themechanical energy density expressed in terms of
the conserved quantities, wherewe restrict ourselves to isotropicmaterials such as glasses or homogenised
polycrystalline cubicmaterials (the expressions for anisotropicmaterials aremore complex, but of the same
general form).We introduce an auxiliary strain quantity

S S n n c T , A3ij ij i
klm

k kjlm lm
eff 1[ ] ( )å= + - ^

where c 1[ ]- is themechanical compliance tensor. This allows us towrite the acoustic perturbation overlap caused
by boundary displacements in a concise form:

S c S nr Ud . A4
ijkl

ij ijkl kl
ac,edge

edge

eff eff[ ]( ˆ · ) ( ) ò å=

Within themodal expansion employed in section 3, the edge-effect of the pth acoustic basis function of the phase
matched acousticmode nb becomes:

R s c s nr ud , A5p
ijkl

ij ijkl kl
pedge

edge

eff eff[( ) ]( ˆ · ) ( )( )* *ò å=

with themodal (note the lower case) generalization of equation (A3)

s u u n n u u

n n c n n c u u

1

2

. A6

ij i j
n

j i
n

i
k

k k j
n

j k
n

i
klpq

k kjlp l q pb
n n

eff

1

b b b b

b b

( )

[ ] ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

⎡
⎣⎢

⎤
⎦
⎥⎥

å

å

= ¶ + ¶ - ¶ + ¶

+ ¶ + ¶
ab

ab a b b a
-

Appendix B. Ratio of FSBS andBSBS radiation pressure terms

In this appendixwe investigate the ratio between the acousto-optic coupling terms of forward and backward
SBS.Wefind that they are always of the same order and that the radiation pressure coupling is always greater for
forward SBS.
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Inserting e e e1 2[ ]( ) ( ) *= = into the explicit definitions equations (33) and (34) the forward and backward
coupling terms are

Q Q Q Q Q B1p p p p p
FSBS bulk,FSBS edge,FSBS

11;
bulk

11;
edge ( )= + = +

r e e p u

n n n n nr e e d d u

d

d , B2

klmn
r k l klmn m n

p

a b a b
p

0
bulk

2 2

edge
0

1 1
0

1

[ ]

[( ) ( ˆ ( ˆ ) ( ) ( ˆ · ) ( ˆ · )]( ˆ · ) ( )

( )

( )

* *

* * *

ò

ò

åe e

e e e e e e

= ¶

+ - ´ ´ - -- - -

Q Q Q Q Q B3p p p p p
BSBS bulk,BSBS edge,BSBS

12;
bulk

12;
edge ( )= + = +

r e e p u

n n n n nr e e d d u

d

d . B4

klmn
r k l klmn m n

p

a b a b
p

0
bulk

2 2

edge
0

1 1
0

1

[ ]

[( ) ( ˆ ( ˆ ) ( ) ( ˆ · ) ( ˆ · )]( ˆ · ) ( )

( )

( )

* * *

* * * * *

ò

ò

åe e

e e e e e e

= ¶

+ - ´ ´ - -- - -

The only difference is the complex conjugation of the second opticalmode. Due to the symmetry of
equations (18) and (19) the phases of the optical as well as the acousticmodes can be adjusted such that the in-
planefield components are purely real-valued and the axial components are purely imaginary. Thus, themain
effect of the complex conjugation is a sign reversal in the z-component of the second opticalmode. In the
photoelastic coupling term Qij n;

bulk the axial components of onemode and the transversal components of another
mode can be non-trivially combined depending on the orientation of the principal axes of pijkl relative to the
waveguide geometry. However, the edge term Qij n;

edge can be easily analysed. First we notice that the axial

component of u p( ) is irrelevant. Next, we decompose the transversal electromagnetic fields into components
normal and parallel to thewaveguide surface:

e n e, B5ˆ · ( )=^

e n n z ze e e . B6∣ ˆ ( ˆ · ) ˆ ( ˆ · )∣ ( )= - -

Within this notationwefind:

Q e e d nr ud , B7p a b z b a
pedge,FSBS

edge
0

2 2 1 1
0

1 2[( ) (∣ ∣ ∣ ∣ ) ( ) ∣ ∣ ]( ˆ · ) ( )( ) *ò e e e e e e= - + + -- - -
^

Q e e d nr ud . B8p a b z b a
pedge,BSBS

edge
0

2 2 1 1
0

1 2[( ) (∣ ∣ ∣ ∣ ) ( ) ∣ ∣ ]( ˆ · ) ( )( ) *ò e e e e e e= - - + -- - -
^

The factors a b( )e e- and b a
1 1( )e e-- - always have the same sign (note the reversal of subscripts). Therefore, the

radiation pressure contribution to the intra-mode forward SBS coupling is always greater than the
corresponding contribution to the backward SBS coupling. This result does not apply to the photoelastic
coupling.
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