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Abstract

In one dimensional systems, it is possible to create periodic structures in phase space through driving,
which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if
for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a
driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice
structure in phase space is complex and contains rich physics. A phase space lattice differs
fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a
noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the
behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing
lattice structures in phase space provides a new platform to simulate the condensed matter
phenomena and study the intriguing phenomena of driven systems far away from equilibrium.

1. Introduction

The quantum phenomenona in periodic structures have been of great interest since the beginning of modern
solid state physics. Some phenomena which are difficult to observe in natural solid crystals, such as Bloch
oscillations [2, 3] and Wannier—Stark ladders [4], have been observed in superlattices [5, 6] and optical lattices
[7, 8], which are artificial periodic structures in position space [9—16]. Meanwhile, novel periodic structures in
time domain (time crystals [ 17-19]) and in momentum space (superradiance lattice [20]), have been proposed
to be new platforms to study the rich physics in periodic structures. In a recent paper [1], we introduced the idea
of phase space crystals, i.e., a lattice structure in phase space created by breaking the continuous phase rotational
symmetry via a driving field. Phase space crystals have the key advantage of being conveniently tunable in
experiments through changes in the driving field and may provide a new platform to simulate condensed matter
phenomena.

In our previous work of phase space crystals [ 1], we used the model of ultracold atoms trapped in a time-
dependent power-law potential, i.e., ~x" cos(wjyt), to illustrate our idea. However, the power-law trapping [21—
25] is technically difficult to be realized in experiments. In this work, we present a realistic model, i.e, the
ultracold atom in driven optical lattice to realize phase space crystals. In this model, the power-law driving is
replaced by a cosine-type driving, i.e., ~cos(kx + w;t). The model proposed here synthesizes a more complex
phase space lattice structure than that produced in [1]. We analyze the quasienergy band structure and identify
the artificial (magnetic) gauge field in phase space, which is a result of the noncommutative geometry of phase
space. We investigate the dissipative dynamics and study the thermal properties which can be observed in
experiments.

The article is organized as follows. In section 2, we describe our model of ultracold atoms in driven optical
lattice and introduce the Floquet Hamiltonian under rotating wave approximation(RWA). We scale various
experimental parameters into three dimensionless parameters, i.e., the effective Planck constant ), the scaled
detuning e and the scaled driving strength . In the case of zero detuning ¢ = 0, the properties of our system only
depend on the effective Planck constant A. In section 3, we first analyze the symmetries of phase space lattice
produced by our model. Then, we introduce the quasinumber theory, which is an application of Bloch theorem
in solid state theory to phase space crystals. In section 4, we calculate the quasienergy band structure based on the
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Figure 1. Ultracold atoms in driven optical lattice: ultracold atoms (green dots) are confined in a harmonic potential (blue parabolic
curve). The ground sate of confinement potential is represented by a Gaussian wave packet with width b = 27///(mw) . The red
curve represents a propagating optical lattice with period d, amplitude 24 and velocity w;/k. The potential for creating phase space
lattice is the sum of them.

tight-binding model. We calculate the quantum tunnelling rate by developing WKB theory. We find the
tunnelling rate is a complex number which can be explained by the noncommutative geometry of phase space.
In section 5, we investigate the dissipative dynamics by the method of master equation at finite temperature. To
test our theory, we study the thermal properties which can be observed in the experiments. In section 6, we first
discuss a gap to gapless transition of quasienergy bands. Then we discuss the possibility to realize phase space
crystals in circuit-QED system. In section 7, we summarize our work and give an outlook of future work.

2. Model and hamiltonian

The model we propose here can be realized by ultracold atoms trapped in a time-dependent optical lattice. The
Hamiltonian is given by

2
H() = zp— + %mwzxz + 2A cos(kx + wyt). 1
m

Here, the parabolic term is the harmonic confinement potential of ultracold atoms, which can be created by a
gaussian beam profile of alaser [26] or introduced by another external field. As sketched in figure 1, the
characteristic length of the ground state in the confinement potential is b = 27/ h/(mw) . Experimentally the
optical lattice is created by the interference of two counter-propagating laser beams, which form an optical
standing wave with period d = 27 /k. The ultracold atoms are trapped by the interaction between the laser light
field and the oscillating dipole moment of atoms induced by the laser light [27]. We can drive the optical lattice
simply by tuning the phase difference of the two laser beams linearly as described by Hamiltonian (1). Effectively,
this creates a propagating optical lattice with a velocity of w;/k. An important parameter is

A = (b/d)? = hk?/(mw), which defines the ‘quantumness’ of our system. The parameter \is large in the
quantum regime and goes to zero in the semiclassical limit. We emphasize that the optical potential is time-
dependent and the confinement potential also plays an important role. Thus, our system does not have spatial
periodicity and the Bloch theory in real space does not apply directly for the Hamiltonian (1).

We are interested in the regime near the high-order resonant condition w; ~ nw with alarge integer n > 1.
For the duration of this paper we will use n = 30. The detuning éw = w — wy/n is much smaller than the
natural frequency w. We perform a unitary transformation of the Hamiltonian H () via the operator
U = elw/mi'at yihere 4 is the annihilation operator of the oscillator. In the spirit of the rotating wave
approximation (RWA), we drop the fast oscillating terms and arrive at the time-independent Hamiltonian (see
the detailed derivations in appendix A)

¢ = Xe(ata + %) + Ml(i)ze—i—i%n L*(%) + h.c.]. Q)

In the context of Floquet theory[28-33], § is called quasi-energy Hamiltonian , which has been scaled by the
energy m(w/k)?> = hw/\. The eigenvalues of § are called quasienergies. The parameters € = dw/w and

p = AA/(hw) are the dimensionless detuning and driving strength respectively. Functions L ;" (+) are the
generalized Laguerre polynomials, as a function of the photon number a'd|k) = k|k), where |k) are the Fock
states.
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Figure 2. Phase space lattice: (a) 3D plot of quasienergy, i.e., Hamiltonian (2) in the semiclassical limit, versus Re[a] and Im[a] for
n=30, ¢ = 0 and p = 1. (b) 2D plot of quasienergy, which forms a lattice structure with n-fold symmetry. The color represents the
value of quasienergy g, which indicates the whole lattice is composed of two identical sublattices because of the chiral symmetry. (c)
Quasienergy along the angular direction with a fixed radius as indicated in the figure of b by the blue dashed circle. The Hamiltonian
shows a angular periodicity with a lattice constant 7 = 27 /. (d) Quasienergy along the radius direction with angle § = 0 and

6 = 7/n. Theroots of g (r) = 0 divide the whole lattice into many loops, which are labelled by Roman numerals as indicated on the
top of this figure. The corresponding localized quantum levels inside the loops are labelled by Level I-1, Level I-2, Level II-1, etc.

3. Quasinumber theory

3.1. Symmetries
In the following, we are particularly interested in the resonant condition, i.e., the detuning is zero ¢ = 0.
Without loss of generality, we set the scaled driving strength to unity, i.e., = 1. In this case, the RWA
Hamiltonian (2) has two new symmetries which are not visible in the original Hamiltonian (1). To visualize
them, we replace the operator d by a complex number in the semiclassical limit and plot the quasienergy gin the
phase space spanned by Re[a] and Im[a]. As displayed in figure 2(a) and figure 2(b), we first see the discrete
angular symmetry g (6) = g (8 + 27 /n). Additionally we have the chiral symmetry g(0) = —g (0 + 7/n),
which divides the whole lattice structure into two identical sublattices as indicated in figure 2(b) by the different
colors.

To describe the two symmetries in quantum mechanics, we define a unitary operator T. = e~i™'@ with the
properties YA": aT. = de '™ and f: anT, = de~" Since T: a'aT. = a%a, itis not difficult to check that the RWA
Hamiltonian (2) is invariant under this discrete transformation

Ti¢T, =§ for 7227”. 3)

We call this symmetry discrete phase translation symmetry. The chiral symmetry follows from the fact
Ti¢T, = —§ for T = m/n. The chiral symmetry suggests that the two sublattices are symmetric with respect to
g=0, exceptaphaseshift & — 6 + 7/n. The angular symmetry indicates it is convenient to introduce the radial

and angular operators 7 and 6 via
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Figure 3. Quasienergy band structure: (a) quasienergy spectrum of Hamiltonian (2) as function of parameter 1/ . The gap closes at
A & 5. (b) Gapless quasienergy spectrum with parameter A = 6 and gapped spectrum A\ = 4. (c¢) The quasienergy band structure in
the reduced Brillouin zone with A = 4. Parameter m is the quasinumber of each state. Parameter 7 = 27 /n is the angular lattice
constant.

a=e /2N and af = feil/ V2N, (4)

They obey the commutation relation
(72, ei’] = 2)el (5

where )\ plays the role of a dimensionless effective Planck constant.

3.2. Phase space lattice
In the semiclassical limit A — 0, the quantum Hamiltonian § can be written in its classical form (see more
details in appendix A)

nm

g= %Erz + 2uJ,(r)cos (n& — 7) (6)
Here, we have used the asymptotic property of Laguerre polynomials, i.e.,
lim L} (x/k) = k"e2kx"/%], (24/%),
k—o0

where J, (+) is the Bessel function of order n. The angular periodicity comes from the cosine function in
equation (6) while the radial structure is created by the Bessel function J, (r). A similar situation has recently
been studied in voltage biased Josephson junctions [34, 35].

As shown in figure 2(b), the zero lines of quasienergy (i.e., g (r, #) = 0) divide the whole phase space lattice
into many small ‘ cells’. The center of each cell is a stable point corresponding to either alocal minimum or a
local maximum of g (r, 6) (see more discussions in section appendix C). The area inside the cell represents the
basin of attraction for the stable state in the center. In figure 2(c), we plot the angular periodical structure of the
quasienergy ¢ for a fixed radius indicated by the dashed blue line in figure 2(b). In figure 2(d), we show the radial
structure of the quasienergy gby plotting it along two angular directions § = 0 and § = 7/n. We see the
quasienergy oscillates as a function of the radius r in the form of Bessel functions J, (r). We divide the whole
lattice structure into ‘loops’, which correspond to ring-like areas in figure 2(b) between two radii satisfying
J,(r) = 0. Welabel them from inside to outside by Roman numerals I, I, IIT and so on as indicated in
figure 2(d). The correspondinglocalized quantum levels inside the loops are labelled by Level I-1, Level I-2,
Level II-1, etc.

3.3. Quasinumber theory
We diagonalize the quantum Hamiltonian (2) and study the properties of its spectrum. With zero detuning
€ = 0 and driving = 1, the spectrum is only determined by the effective Planck constant A. In figure 3(a) we
show the structure of the quasienergy spectrum as function of the parameter 1 /. It is clear that the quasienergy
spectrum is symmetric with respect to g = 0 because of the chiral symmetry. We also see that the gaps are opened
for small A and closed for sufficiently large \. The transition happens around A = 5. We will calculate the gaps
using WKB theory and discuss the physical mechanism of gap closing in section 4. In figure 3(b) we show the
gapless quasienergy spectrum for A = 6 and the band structure for A\ = 4. The band structure comes from the
discrete phase translation symmetry.

We introduce the quasinumber theory [1] according to the Bloch’s theorem. Due to f: 8T, = gfor
T = 27/ n, the eigenstates v, (6) of the quasienergy Hamiltonian, g, (8) = g (m),,(0), have the form

4
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Figure 4. Quasinumber states: (a) Q-function of a quasinumber state with quasinumber m = 0. The periodicity of Q-function reflects
the n-fold symmetry of phase space lattice. (b) Probability distribution over Fock states of the quasinumber states in the bottom band
with m = 0 (red) and m = 15 (black), respectively.

U (0) = @, (0)e ™,

with a periodic function ¢, (8 + 7) = ¢,,(6). Here, the integer number m is called quasinumber, which is

conjugate to the phase . It is an analogue of the quasimomentum k in asolid crystal. In figure 3(c), we plot the
quasienergy band structure in the reduced Brillouin zone m7 € [0, 27). We count the bands from the bottom
and relabel the eigenstates 1/, () by ¥, ,, (), where the subscript I = 1, 2, ...1indicates the band that the
eigenstate belongs to.

To visualize the quasinumber states, we plot the Q-function of state ¢/ ( () in figure 4(a). The Q-function is
a quasi-probability distribution in phase space defined by [36]

Qo o) = % Haltrm () P,

where |a) is the coherent state given by dla) = ala)or|a) = e~loF/23~* ak/\/ﬁlk) The crystalline
structure of Q-function in angular direction reflects the n-fold discrete phase translation symmetry. In

figure 4(b), we plot the occupation number statistics of Fock states, i.e., Py ,,(k) = | (k|11 (6))|? for
quasinumber states with 7 = 0 and m = 15 in the firstband I = 1. As we can see from the probability distribution,
the quasinumber states are the superposition of Fock states with photon numbers being multiples of 7.

From the form of the Q-function we see that the eigenstates of the system 1/, (f) are delocalized states in
phase space, which are superposition of localized states corresponding to the discrete energy levels as indicated
in figure 2(d). We label these levels in the first loop by Level I — 1, Level I — 2 and those in the second loop
Level II — 1 etc. Inthe semiclassical limit, these quantum levels become classical orbits of iso-quasienergy
contours represented by the boundaries of the colored elliptical areas inside each cell shown in figure 2(b). The
shapes of these orbits vary in different loops as displayed on the top of figure 6(b).

4. Quasienergy band structure

The formation of quasienergy bands near the bottom can be understood in the frame of the tight-binding model.
If we neglect quantum tunnelling, the nlocalized states in each loop are n degenerate states. If we consider
quantum tunnelling, they are broadened and form bands. We can label the bands by the labels of corresponding
localized levels, e.g., the bottom band of the whole quasienergy spectrum is Band I — 1. We can describe the
structure of the I-th tight-binding band approximately by

g (m) = E; — 2|Jj|lcos(mt + §;7). 7)

Here, Ejrepresents the center of the I-th band and the quasienergy of the corresponding localized level. The I-th
bandwidth d;is determined by the amplitude of dynamical tunnelling rate ], i.e., d; = 4|Jj|. From figure 3(c) we
see that the bands are NOT symmetric with respect to the center of the Brillouin zone in general. We describe the
asymmetry by an asymmetry factord;. The asymmetry factor comes from the fact that the two dimensions of
phase space are not commutative. We will calculate the gap, bandwidth and asymmetry factor by WKB theory
below.
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Figure 5. Quantum tunnelling in phase space: (a) quantum tunnelling paths in the ‘r2/2 — ¢’ phase space. White dots are the unstable
saddle points. White arrows indicate the optimal tunnelling path of two neighbored Level I-1 states and the yellow arrows indicate
other possible tunnelling paths. (b) The quasienergy levels (left) and bandwidths (right) from WKB calculations (dashed lines) and
numerical simulations (solid lines). Parameter: n = 30 for both figures.

4.1. Dynamical quantum tunnelling in phase space
From the commutation relation (5), it can be shown that [1]

[1?2, 9] ~ i\
2

in the region of r >> 1. We thus can view operators #2/2 and 8 as ‘coordinate’ and ‘momentum’ respectively, i.e.,

0~ —i/\r*12

or

In the semiclassical limit, the variables r?/2 and 6 define the phase space for our WKB calculation. In figure 5(a),
we plot the quasienergy gin the range of @ € [—27/n, 27 /n]in the phase space spanned by r2/2 and 6. For a
fixed g, all the branches of classical orbits are obtained from equation (6)

2
0:(r) = T4 larccos[gia/z] + k2—7r, 8)
2 n 2], (1) n

where k takes integers 0, 1,2, *,and n — 1. Two real solutions 6. (r) together represent one closed classical
orbit. There are n identical orbital branches with a 27t /n-shift of . From the condition

2
— 2
‘ﬂ o1

2pt), (1)

we can determine the boundaries of classical motion for the fixed g as shown by the black closed curves in

figure 5(a). Outside the boundaries, the solutions 6..(r) have imaginary parts. In figure 5(a), we indicate the
maximal boundaries of classical motion by 1, r, and r5. The region between r, and r; is the classically forbidden
region for a fixed g. In the quantum regime, these states can tunnel into each other. In figure 5(a), we show how
the two neighboring Level I — 1 states tunnel into each other through the paths in phase space. The optimal
tunnelling path is indicated by the white arrows, i.e., one Level I — 1 state first tunnels into the nearest region in
Loop II across one saddle point (white dot) and then tunnels back to the neighboring Level I — 1 state across
another saddle point. There are also many other possible tunnelling paths which are indicated by yellow arrows
in figure 5(a). But the contributions from these paths are exponentially small compared to the main tunnelling
path (see more details in appendix B).

4.2. Quasienergy levels and bandwidths
From the WKB theory, we know the phase space area enclosed by the classical orbit is quantized according to the
so called Bohr-Sommerfeld quantization condition [37]

6
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s@= [ " 0. (ryrdr — f " 0 (ryrdr

f [ — 6r2/2]

=— arccos dr

n 20, (1)

= 27r)\(k + %), ©)

where k takes nonnegative integers. From the above condition we can calculate the quasienergy levels. As shown
in figure 5(b), the left subfigure shows several lowest levels calculated using the above quantization condition.
We compare our WKB calculations (dashed lines) to the numerical simulations (solid lines) in figure 5(b). The
agreements are satisfied. Noticeably, Level -2 and Level II-1 cross each othernear 1/A = 1.2. Thelevel
crossing has significant effect on the bandwidths as we discuss below.

The width of the I-th band d, is given by the tunnelling rate ], i.e., d; = 4|Jj|. The amplitude of J;is given by
the integral of the imaginary part of ‘momentum’ 6 in the classical forbidden region r, < r < r;

ds 2 o
il = ZW(dg) lg— glexp(—xj; Im[0] rdr). (10)

Here, S(g) in the prefactor as function of gis given by the first equality of equation (9). In appendix B, we give a
detailed description of the behavior of Im [#] in the classical forbidden region. Here we just present our results.
In figure 5(b) we show the bandwidths of Level I-1and Level I-2 calculated by equation (10) and compare them
to the numerical calculations. There is a cusp in the curve of Level I-2.This happens because of the crossing of
Level I-2and Level II-1which significantly enhances the quantum tunnelling of Level I-2.In this case, we need
to consider three interacting levels, i.e., two neighboring Level I-2 states and the medium state of Level II-1as
indicated by the closed orbits in figure 5(a). The Hamiltonian of three interacting levels (TIL) is described by the
following 3 x 3 matrix

& Jo
Hy=|h & h2|. (11)
i 2 $3)

Here g1, g represent the quasienergies of Level I-2and Level II-1 respectively. Parameter J;, represents the
tunnelling rate between the two neighboring Level I-2 states. Parameter J;, represents the tunnelling rate
between the state of Level I-2 and the state of Level II-1. The tunnelling rate ]}, is given by equation (10) by
taking ¢ = g, while the tunnelling rate J, is given by the following

-1
A [ dS 1 rs
Jio = E(@) |g:g2 eXP(_Xj; Im[0] 7dr)- (12)

2

We can get the modified quasienergy levels by diagonalizing the matrix Hyy;. Half of the level spacing Ay of the

two modified Level I-2 levels gives the effective tunnelling rate between them, i.e., Jo = 4\;;/2. Therefore, the
correctbandwidth of Band I-2is 4J.¢ = 2/\;;. Figure 5(b) shows our theoretical calculations (solid lines) agree
with the numerical calculations (dashed lines) very well.

4.3. Band asymmetry and artificial magnetic field

From figure 3(c), we see that the quasienergy bands are not symmetric with respect to the center of the reduced
Brillouin zone. The asymmetry is described by the asymmetry factor §;. In the frame of tight-binding
approximation, the Bloch eigenstate 1/, (6) is given by

1 nfl' R
Ui (0) = = Semar g, (0),

where ¢, (6) is the wave functions of localized states (which is called Wannier state in solid state physics). The
quantum tunnelling rate can be calculated by

1= = [ 1 6(0) 13010 do.
The corresponding quasienergy spectrum of the I-th band then is given by
2T X .
gm = [ UhOF0n()d ~ E — Jie — Je i
The band asymmetry comes from the fact that quantum tunnelling rate J;in driven systems is generally a

complex number [1, 38],i.e., J; = |Jile"**7, and the phase parameter &; is exactly the asymmetry factor. We can
calculate the phase §; using the WKB theory discussed above.

7



10P Publishing

NewJ. Phys. 18 (2016) 023006 L Guo and M Marthaler

In fact, when ris approaching one of the roots r® with J,(r©) = 0, from equation (8) we see the amplitude
of ‘momentum’ ) goes to infinity |0 (r)| — co. This means the WKB approximation breaks down near the
root ) and we need a connecting condition. In the range of r¥) >> 1, we can expand the phase translation
operator T. = e ™' by[1]

ata ~ X1r®)?2/2 +19/06.
The connecting condition, i.e., the neighboring localized state of ¢, (9), is given by
T.¢,(0) = e N2, 4 7).
Thus we get the symmetry factor

& =06+ L(f(o))za

where 69 is the residual asymmetry beyond WKB calculation and can be removed by redefining the phase
translation operator T, = e~7(@'4=4) The asymmetry factor 6 is linearly dependent on the parameter 1,/\ with
the slope (r(©)? /2 differing between bands. In appendix B, we give more detailed discussion on tunnelling paths
and show more results about the linear relationship between §; versus 1/ for different bands. If we count

r©® = 0 as the first root of J, (r), then the asymmetry factors of bands in the I-th (I > 2)loop are all given by the
I-th (I > 2) root of the Bessel function. But the asymmetry factors of the bands in the first loop are determined by
the second root of the Bessel function. The reason is that the localized states inside the first loop tunnel through
its upper boundary while states in other loops tunnel through lower boundaries.

The fact that the tunnelling amplitudes are complex means there is an artificial magnetic field B.gin phase
space. Imagine we have aloop of atoms forming a one dimensional lattice in real space with magnetic field B
across the loop. The magnetic field induces an additional phase to the tunnelling amplitude between neighbored
atoms J = |J|e7*, where § o B is called Peierls phase [39]. Comparing the Peierls phase to the asymmetry factor
of the phase space lattice calculated above, we can identify there is an effective magnetic field Beg oc 1/ A in
phase space. The coordinate system of a phase space lattice has a noncommutative geometry [40], which is
fundamentally different from spatial lattices. It is this noncommutative phase space which creates an artificial
magnetic field and is responsible for the asymmetry of the quasienergy band structure.

5. Dissipative dynamics

The above calculation of the quasienergy bandstructure does not consider the dissipative environment due to
the quantum and thermal fluctuations. We use the master equation method to describe the dissipative evolution
in experiments. Already previously it has been shown that a Lindblad type of master equation [33,41-44] is
sufficient as description,

Ip

9p _ 1., . DI 4t
5 5 [§, p] + k(1 + M) Dlalp + xaDla']p, (13)

where the time ¢ is dimensionless and scaled by the natural frequency w. The Lindblad superoperator is defined
through D[A]p = ApAT — (ATAp + pATA)/2.Bose distribution 7i = (e"“o/kT — 1)~! represents temperature
and dimensionless damping « is scaled by w. The type of Lindblad master equation is widely used in the field of
cold atoms [45—47].

Based on the master equation (13), we calculate the density matrix of the stationary distribution, i.e., (k| p|k),
in the basis of the Fock states {|k), k = 0, 1, ---}. By the relationship of k = 72/(2)) from equation (4), we
define the probability density p ()

p(r) = (Kplk) S5 = Z (kb

In figure 6(a), we plot p (r) for different temperatures 7 = 0 and 7i = 0.1. We see that p (r) oscillates with radius
r. The zero nodes of p (r) correspond to the loop boundaries of phase space lattice shown in figure 2(b).

The probabilities over the loops are not equally distributed because the quantum heating [48] of each loop is
not the same. On the bottom of each loop, the stationary distribution can be described by an effective
temperature 7. The localized ground state of each loop can be approximately described by a squeezed state with
the squeezing factor u and the corresponding effective temperature is given by (see the detailed calculations in
appendix D)

e = [ul* + A2 [u* + 1)

In our case, as we can see from figure 6(a), the peak of p () is in the third loop. The reason is the effective
temperature of the third loop is lower than the temperatures in other loops. In figure 6(b), we calculate the
squeezing factor 1 and the effective temperature 7, for the first ten loops and compare them to fully numerical
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Figure 6. Thermal properties: (a) density function of stationary distribution p (r) along the radius r at different temperatures 7 = 0.0
and 71 = 0.1. (b) The squeezing factor u and effective temperature 7, of the first ten loops of phase space lattice. The blue and red
colors correspond to the real temperatures 77 = 0.0 and 77 = 0.1, respectively. The circles on the top represent the shapes of classical
orbits near the bottom of each loop, which reflect the squeezing factor u.
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Figure 7. Gapped to gapless spectrum transition: bottom gap A as a function of effective Planck constant A for n = 20, 30 and 50.

simulations. The agreement is very good. Another interesting fact is the squeezing factor u changes from a
negative value to a positive value. This means the shape of the squeezed state in each loop is different as displayed
by the classical orbits on the top of figure 6(b). The orbital shapes are taken from the plot in figure 2(b). The third
orbit is very close to a round circle, which means the squeezing factor u ~ 0 and the resulting effective
temperature 71, /¢ i is the lowest one of all the loops. The stationary distribution can be directly measured in the
experiments [49].

6. Discussions

6.1. Transition from gapped to non-gapped spectrum

From figure 3(a), we see that the quasienergy spectrum undergoes a transition from gapless state to gapped state
as the effective Planck constant A decreases. In figure 7, we plot the behavior of bottom gap A near the critical
point A, =& 5 for n =20, 30 and 50, respectively. The results are obtained from numerical simulations and the
quantity A is determined by the largest level spacing. The critical point A, can be estimated by the condition that
the bottom gap s filled by the widths of neighboring bands. Basically, the value of the critical point depends on
the parameter n weakly. This transition may be explored in the study of heat transport in the ion traps [50, 51].

6.2. Possibility in circuit-QED systems
The phase space lattice may be realized in circuit-QED systems, i.e., a superconducting cavity coupled to
Josephson junctions with the Hamiltonian

Heqep = hwa'a + 2E; cos(4mefi™'®)cos .
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The Josephson junction can be driven by either a dc voltage [34, 35], which creates ¢ = ¢, + w4t with

wy = 2eV /i, or atime-dependent magnetic flux [52]® = wyt/(4mefi ). The effective Planck constant in this
caseis given by A = 8mwL/(h/e?), where Lis the inductance of the circuitand h/e? ~ 25.8k(2 is the von
Klitzing constant. The typical impedance wL of circuit-QED systems using only geometrical inductors and
capacitors, can not exceed the characteristic impedance of vacuum i,c ~ 376.732 [53], which means that we
have A\ < 0.015 in circuit-QED systems. However, there are several proposals to realized a super-inductance
based on the design of Josephson junction arrays [53, 54] which can increase the impedance significantly up to
35 kQ resulting A > 1. Thus, it is possible to realize phase space lattices in circuit-QED systems combined with a
proper design of Josephson junction arrays.

7.Summary and outlook

We have studied a type of phase space crystals, which can be realized by untracold atoms driven by optical lattice.
We discussed the physics near the high-order resonant condition, i.e., the driving frequency is close to a large
multiple of the frequency of trapping potential. In the framework of Floquet theory, we showed the Hamiltonian
under RWA has complex periodic lattice structure in phase space. We analyzed the discrete phase translation
symmetry and chiral symmetry of the phase space lattice in the case of zero detuning. Based on the quasinumber
theory, we studied the properties of the quasienergy bands and the quasinumber states. We calculated the
quasienergy band structure using WKB theory based on the tight-binding model. We discussed the quantum
tunnelling paths in phase space and found the quantum tunnelling rate is a complex number due to the
noncommutative geometry of phase space. The bands can touch each other and enhance their bandwidths
significantly. We investigated the dissipative dynamics of our phase space crystals due to quantum and thermal
fluctuations. We found the density distribution p (r) oscillates with the loops of phase space lattice. The whole
distribution can not be described by a uniform temperature but by a series of effective temperatures in different
loops. In the end, we discuss a transition from gapped to gapless quasienergy spectrum and the possibility to
realize phase space crystals in a circuit-QED system.

We should clarify that the quasienergy band theory discussed here is based on the single particle picture like
the band theory in the solid state physics. Future work may go beyond the single particle approximation and
consider the interactions between atoms.
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Appendix A. Hamiltonians

In this section, we give detailed derivation from the time-dependent Hamiltonian (1) to the RWA Hamiltonian
(2) and the semiclassical Hamiltonian (6) in the main text. Now, we introduce a, a' via

x = h/2mw)(a’ + a)and p = i\ymhw/2 (a’ — a). Byintroducing parameter A = fk?/(mw), we map the
Hamiltonian (1) to the following

H(t) = hwa'a + 2A cos [\/g(a* +a) + wdt]. (A.1)

We introduce the scaled coordinate and momentum operators Q= \/g (" + a)and P = i\/g (a" — a) with

the noncommutative relationship [Q, P] = i)\. We write Hamiltonian (A.1) in an alternative form

H@) = %ﬁw(@z + B%) + 24 cos(Q + wyt), (A.2)

Now, we employ an unitary operator U = el” 9"t 10 transform Hamiltonian (A.2) into a rotating frame with

frequency w;/n
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Hpr = UH (1) UT — ivuU"
= %ﬁéw(@z + P%) + 2AU cos(Q + wat) U*
= %héw(éz + PY) + (Aei'UeiQUT + h.c.)
_ Lhéw(QAz + 152) + {Aeiwdtei[écos(wdr/n)+ﬁsin(wdt/n)] + h.c.}
2
1 ~ N . A A
= ah&w(Qz + P + [Ae“'M (Q, P) + h.c.]. (A.3)
Here, we define M (Q, P) = eilQcostwst/m+Psin(wit/m] and the detuning 6w = wy — wy/n. To calculate the
matrix element of M (Q, P), we define the displacement operator D (cv, o) by
D(a, o) = exp(aa’ — ofa) = exp (Re[a](al — a) + i Im[a](@" + a)). (A.4)

Since the operator M (Q, P) can be written as

M(@Q, P)= exp [i (Q cos(wyt/n) + Psin(wgt/n))]

= exp[—\/gsin(w,,lt/n)(aT —a) + ig cos(wgt/n)(a’ + a)], (A.5)

we get the relationship between the parameter a of D (o, o) and parameters of M Q, P)

a = —\/g sin(wgt/n) + i\/g cos(wyt/n) = \/gei(“"/z), (A.6)

with ¢ = w,t/n. We further define the following notations

eSS ak

Coherent state: |a)Eef§|alz§ N k),
|
k=0 V k!

(Bla) = e =(alP+18%)/2,
Displaced Fock state: |a, k) = D(a, o)|k),
|0, k) =1k). (A7)

According to equation (3.11) in [55], we have
I _
(8, llov k) = (Bl - (B* = @Y LEH1B — al). (A-8)

Here, L' (+) is the Laguerre polynomials. Let 5 = 0, we have the exact form of matrix element of displacement
operator D («, o)

2y !
(o, k) = (ID (v, a¥)Jk) = e laF/2+im =gkt /%L,"’lﬂalz). (A.9)
Using the relationship (A.6) we get the explicit form of matrix elements of M Q, P
k-1
A A ) ! =
<l|M(Q’ P)|k> = e*)\/4+1(k71)(ﬂ'/27u)df/71) % (%) 2 L[k*l()\/z) (AIO)

Thus, quantum Hamiltonian (A.3) is

Hyge = %ﬁéw(@z + P + [Ae'M (Q, P) + h.c.]

= hbw (a*a + %) + [Ae M (Q, P) + h.c.]

= h&w(aTa + %) + A[Z(HM(Q, P)k)eat|l) (k| + h.c.]

k1

[\

:ﬁéw(a'l'a 4 l) +A|:Zeiwdte)‘/4+i(kl)(ﬂ/2wdt/")
k.1

k=1
X \/g (%) 2L O ) (K + h.c.]. (A.11)

=
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Under RWA, we drop the fast oscillating terms (k — I = n) and get RWA Hamiltonian (k — [ = n)

Hrwa

= héw (aTa + %) + A[Ze—/\/4+im/z
1

: (A)ZU(W) {1+ nl + hee
ad+mt \2) " .
= héw (a"'a + l) + AleA/4+inw/2(i)2
2 2

I
L h.c.
< Sl L)+ ]

n

~ofwa+ 1) + [(A)

I+ n)!
I

x >IN+ n L (A/2) + h.c.]
1

— héw(ata + %) + AleA/4inn/2(%) 2

x > |1 (lja" Lm(A/2) + h.c.]
1

= hbw (a’a + %) + Alek/‘*i””/z(%)za” Lm(A\/2) + h.c.]. (A.12)

Here we have used the relationship [55]L;" (x)/Li}"}, (x) = (—x)""(I + n)!/I!for x > 0. We now scale the RWA
Hamiltonian by w/ A and get the dimensionless Hamiltonian &

g EHRWA
n

= e(a'i'a + %) + ule’\/‘*m/z(%) 2 gn LiM(\/2) + h.c.], (A.13)

¢ = bw/wand p = AA/(hw) are the dimensionless detuning and driving strength, respectively.
Using the following asymptotic form of Laguerre polynomials [56, 57]

Jim L (e/k) = koeakx /Y, (24%), (A.14)

we have the following relationship in the limitof k, [ > |k — I|forafixedk — I

LE OV/2) m MR (kA /2 602 (24JkA/2)
A 2%D
= eA/“(E) Je—1(N2kX). (A15)

Thus, in the semiclassical limit, i.e., k, | — oo and fixed k — [, equation (A.10) goes to the following
(A2
<Z|M(Q, p)|k> — ef/\/4+i(kfl)(ﬂ'/27ap) s (E) 2 le_l(>\/2)

k!
~ ei(kl)(w/zwk(kl)/z\/l_T]kl(,/zk)\)
k!
~ elk=D/2=a (J2kN). (A.16)

1
Here, we have used the limit relationship % k&=D/2 _, 1. Therefore, we have the RWA Hamiltonian (A.13)
in the Fock representation § = Z;O:O o f (kD) |k) (1] with

Flk, 1)~ e (k + %)5k,l + " (WAGK F T+ D)ér g+ he.] (A17)
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We define the radial and angular operators # and § by a = e~7/+/2X and a’ = #ei’ /\/2X.In the Fock
representation, the operator e’ is defined by

e =S (k+ 1, and e =S|k + 1) (k. (A.18)
k=0 k=0

Using the above relationships, we have the following Hamiltonian in the semiclassical limit A — 0

¢ og= %61‘2 + 20, (r)cos(nf — ”7”). (A.19)

Appendix B. Quantum tunnelling in phase space

In this section, we give a detailed description about the quantum tunnelling process in phase space and the
analytical behavior of ‘momentum’ § in the complex plane. We also calculate the asymmetry factor ¢ and show
its linear relationship with 1/ for different bands. To be convenient, we define a new variable

£= A2/2.

The semiclassical Hamiltonian (A.19) can be rewritten as
g = €€ + 2u,(y/2€)cos (n0 - n77r)

by new variables £ and 6, which define the ‘¢ — 6’ phase space for our WKB calculation. For a fixed g, the general
solutions of classical orbits are

0.6 0)= "+ L 8= | 2 B.1
(& g) = - & —arccos (20 . (B.1)

where k = 0, 1, 2 ..., and n — 1represent the n branches of solutions. Here, we choose the parameters ¢ = 0
and ;o = — 1. In figure B.1, we show three classical orbits for a fixed g < 0. The two classical orbits in the first
loop are indicated by red closed curves, which correspond to the following solutions

g— &

_— | (B.2a)
201, ({26)

0.(& g) = LI larccos
n o n

(b) 0 o
.58

Im[@]

-n” 3 2 -1 0 1 2 3 ' n

8 (z/n) Re[0] (r/n)

Figure B.1. Quantum tunnelling in phase space. (a) Tunnelling processes of two states in the first loop. The red closed curves represent
two classical orbits in the first loop. The yellow closed curve represents the classical orbit in the second loop. Parameters &, &, and &;
indicate the classical boundaries of classical motions. Parameter ¢(© is the second zero point of Bessel function J, (\/E ). The blue
arrows indicate the upper tunnelling path while the white arrows indicate the lower tunnelling path. (b) Tunnelling diagram for
calculating tunnelling rate J. We show the analytical behavior of 0 in its complex plane. The red and yellow closed curves on the real
axis Re[#] correspond to the classical orbits with the same colors in the left figure (we deviate the orbits slightly from the real axis to
illustrate the shapes of orbits). The red and yellow vertical lines correspond to the behaviors of imaginary parts Im [6] in the classical
forbidden region. The blue curves with arrows indicate the tunnelling process. The jumping processes happen at the zero point £
where the imaginary partIm [0] = +o0.
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Figure B.2. Asymmetry factors of bands. (a) Asymmetry factor (multiplied by 7 = 27 /n) of the first band (i.e., the bottom band in the
firstloop) as function of 1/ A. (b) Extended asymmetry factors (i.e., 67 € R) of the first four bands in the first loop as function of 1 /.

They all have the same slope. (c) Extended asymmetry factors of the bottom bands in the first nine loops as function of 1/ A. They have
different slopes in general.

and
0., 2) T4 larccos g« (B.2b)
(6 8) =— = — —| .
noon 201, (26)
The classical orbit in the second loop is indicated by yellow closed curve, which corresponds to the following
solution
1 g§— <
0.(& g) = £—| 7 — arccos| —————| |. (B.3)
n 20 (4/26)

In the regime of | (g — €£) / (204, (\/Z )| < 1,tworeal solutions 6.(&, g) together represent one closed classical
orbit (&, g). In figure B.1 (left), the boundaries of classical motions are indicated by the white dashed lines, i.e.,
&, & and ;. Beyond the classical boundaries, the value of § (£, ¢) has imaginary part. In figure B.1 (right), we
show the analytical structures of solutions 6..(¢, ¢) in the complex plane. The closed curves on the real axis of 6
represent classical orbits (we deviate the orbits slightly from the real axis to illustrate the shapes of orbits). There
are nidentical orbital branches with only a 27 /n-shift of Re[6] for each type of solution.

In the quantum regime, the classical orbits can tunnel into each other through the classical forbidden region.
In figure B.1 (left), we show the quantum tunnelling process of the two states in the first loop in phase space. The
corresponding behavior of Im[6] is depicted in figure B.1 (right). Starting from the classical boundary &, to the
zero point of Bessel function £, the imaginary part Im[6] increases from zero to infinite, where it jumps to
another branch of solution. Then it goes back from infinite to zero as £ changes from £© to another classical
boundary &;. After that, Im[6] increases again from zero to infinite as { goes from &, to {(¥), where it jumps again
to another branch of solution. Finally, Im[6] decreases from infinite to zero as & changes from £© to the classical
boundary &;. As we have discussed in the main text, the amplitude of quantum tunnelling rate J;is given by the
integral of the imaginary part of ‘momentum’ 6 in the classical forbidden region &, < £ < &,

A(ds)! 2 S
il = E[@) le—sg exp(—x ff 2 Im[9]d§). (B.4)

The tunnelling process can also happen through lower boundary ¢ as indicated by the white arrows in figure B.1
(left). However, the lower path is much longer than the upper path. Thus, the contribution to |Jj| from the lower
path is exponentially smaller than the contribution from upper path.

The jumping processes between different branches of solutions give additional phases to the quantum
tunnelling rate J;, which makes it a complex number J; = |J;le 7. As we have discussed in the main text, the
connecting condition by jumping is given by the phase translation operator T. = ¢4, Since £© >> 1, we can
expand operator T by [1]474 ~ £© /X + 10/80. As a result, the connecting condition is
T.¢,(0) ~ e €”7/2$,(0 + 7). Thus we get the symmetry factor

8 =60+ £O/A, (B.5)

where 6} is the residual asymmetry beyond WKB calculation. In figure B.2(a), we compare the above linear
relationships between 6; and 1/ for different bands to our numerical simulations. In figure B.2 (b) and figure
B.2 (¢), we expand the asymmetry factor to the whole field of real number R and plot it as function of 1 / A for
different bands. The bands in figure B.2 (b) are all in the first loop. We see that, since the states in the first loop
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tunnel through the upper boundary, they all have the same slope given by £©, which is the second zero point of
Bessel function J, (\/z ). Here, we consider £©@ = 0 is the first zero point of Bessel function J, (\/E Yforn = 0.

In figure B.2 (c), we show the linear relationships between 6, and 1/ for the bottom bands in different
loops. We see their slopes are different. The reason is that the bands in different loops tunnel though different
paths with different jumping points £(©. Like the states in the first loop, the states in other loops can tunnel
through both the upper boundary and lower boundary. However, we have checked the integral f Im[0]d¢€ of
the upper path is always larger than that of the lower path. Therefore, the contribution to the tunnelling rate
from the upper path is exponentially smaller than the contribution from the lower path. Therefore, the slope of
all the bands in the I-th (I > 1)loop is given by the [-th zero point £ }O) of Bessel function J, (\/E ). In the flowing
table, we compare the slopes extracted form numerical simulation to our theoretical calculation.

Band index £© (Numerical) £O (Theory) Relative errors
I-1 642.241 651.545 —0.014
1I-1 629.514 651.545 —0.034
I11-1 860.600 844.308 0.019
V-1 1021.829 1032.972 —0.011
V-1 1186.088 1225.435 —0.032
VI-1 1427.519 1424.378 0.002
VII-1 1662.219 1631.067 0.019
VIII-1 1820.811 1846.185 —0.014
IX-1 2056.534 2070.142 —0.007

Appendix C. Squeezing parameters vand u

In this section, we calculate the squeezing factor u of localized states near the stable points of phase space lattice.
First, we determine all the extrema (r,, 6,) including stable points and unstable saddle points by the derivatives of
quasienergy (A.19) along both angular direction and radial direction

g

%I(m@,) = —2nuf, (1) sin (n@e - n%) =0, (C.1a)

%l(reﬁe) =€+ [ Un—1(re) — ]n+1(1’e))COS (nee - n%) = 0. (Clb)
The angular extrema can be obtained from equation (C.1a), thatis, §, = I7/2 + nn/2 with

1=0, £1, £2,...,£(n — 1), n,where 7 = 27 /nis defined as lattice constant of phase space lattice. To get the
radial extrema, we need to solve the equation (C.1b). The stability of these extrema (r,, 6,) is determined by the
second derivatives of g. If (0%¢/06%) x (0%¢/0r*)|,=r,0—4 > 0, the extrema are stable, otherwise unstable. The
second derivatives to angle # and radius r are

2
%I%@ = —2n2u]n(re)c08(nee - %ﬂ) (C.2a)
% 1 nm
ﬁl(feﬁe) =€+ Elu/(]n—Z(re) + Jura(r) — 2Ju(r))cos nf, — 7 . (C.2b)

Below, we label the stable points (maxima and minima) and unstable saddle points by (r,,, 6,,) and (r;, 6,),
respectively. We expand the quasienergy g near the stable points (r,,, 6,,) to the second order

1 0% 10%g
~ g (T O) + ——21 0 (10 — 10> + =2l g (F — Ty)?
Slocal = 8 ( )+ o 2007 ) € ) F S5 o ( )
A B
= g (tm> Om) + 5 + e X (C.3)

(4

Here, we have defined coordinate ¥ = r — r,, and momentum p = r,,(6 — 0,,) near the stable point. The
effective mass m, and effective frequency w, are given by

%Y g

2 -1

me = ”m(aez 00,0 and we =, m, o2 [
respectively.

Now, we define the displacement operator D, = exp (aa’ — oa) and the squeezing operator

Se = exp [% (*a? — 5@“)], which have the following properties
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DA(IaDA(, =a+a, §ga§5 =va + ud
with ¢ = rel’. The squeezing parameters are givenby v = coshr, u = —e'’sinh r . We transform the original
g tolocalized Hamiltonian g, _, at the stable point (r,,, 6,,) by three operators, i.e.,
. & A A ant ATt
glocal = Sf DCY Tﬁm ngm Dry Sf .
Here, we first change the orientation using phase space rotation operator Tg = e‘i‘gmm. Then we move the

Hamiltonian to the position of stable point using dlsplacement operator D, = e~ Finally, we squeeze the
Hamiltonian to fit the stable point using squeezing operator S; = el¢™@~¢ /2 By choosing

1, 1 1
=" [0, + u=—|Jmw, - ——|\, (C.4)
V2 [ JMew, ) 2 ( MeWe )
we get the localized Hamiltonian as follows
. 8 A A AT At al
glocal = 5D0¢ 0.8 f)mD(y (3
1
= \w, (a*a + E) + g (s O) + 0(N). (C.5)

Appendix D. Effective temperature 7,

We investigate the quantum dynamics near the bottom of a stable state. The dissipative dynamics is modified by
squeezing and can be described by an effective temperature 7i,. The original master equation is

%) i . _ _

L = —21g pl + £( + WDlalp + riADla'lp. (D.1)
or A

The Lindblad superoperator is defined through D[A]p = ApAT — (ATAp + pATA)/2, 71 = (e/o/ksT — 1)~
the Bose distribution and & is the dimensionless damping scaled w. By performing a transformation on the
density operator

& A A AT aTat
p =D, Ty, pTy OIS,
we transform the master equation (D.1) into the following form [58]

dp _

dT [glocal’ pl+ _{(1 + ”e)D[ﬂ]p + neD[a ]p}

+ EM(2(1T[)(JJr — ap — pat?) + EM*(Za,ba — a’p — pa?). (D.2)

Here, parameter M = uv*(27i + 1) is the squeezing number. The effective Bose distribution is given by
fle = A v + (1 + ) [ul? = [u? + A2 [u? + 1. (D.3)

Near the bottom of stable points, we can make the harmonic approximation. The squeezing number
M = wv*(27 + 1) has no contribution to the stationary distribution. The ration of probability over adjoint
levels thus is given approximately by [58]7,./(1 + 7,).
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