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Abstract
Applying Feynman diagrammatics to non-fermionic strongly correlatedmodels with local constraints
might seem generically impossible for two separate reasons: (i) the necessity to have aGaussian (non-
interacting) limit on top of which the perturbative diagrammatic expansion is generated byWick’s
theorem, and (ii)Dyson’s collapse argument implying that the expansion in powers of coupling
constant is divergent.We show that for arbitrary classical latticemodels both problems can be solved/
circumvented by reformulating the high-temperature expansion (more generally, any discrete
representation of themodel) in terms ofGrassmann integrals. Discrete variables residing on either
links, plaquettes, or sites of the lattice are associatedwith theGrassmann variables in such away that
the partition function (aswell as all correlation functions) of the original system and its Grassmann-
field counterpart are identical. The expansion of the latter around its Gaussian point generates
Feynman diagrams.Ourwork paves theway for studying lattice gauge theories by treating bosonic and
fermionic degrees of freedomon equal footing.

1. Introduction

Feynman’s diagrammatic technique is a powerful tool of statisticalmechanics. Among the hallmarks of the
method are the ability to deal—both analytically and numerically—with the thermodynamic limit rather than a
finite-size cluster, the possibility of partial summations up to infinite order, and the fully self-consistent
formulation in terms of renormalized (dressed) quantities. The latter properties allow one to go beyond the
Taylor expansion in terms of the coupling constant or any other parameter.

The advantage of having a diagrammatic technique at our disposal comes however at a price. Themost
serious issue is the divergence of the expansion in powers of the coupling constant for systems prone toDyson’s
collapse [1] (i.e., pathological systembehavior when the coupling constant is rotated in the complex plane). For
partial summation techniques towork, the non-perturbed part of the theory has to beGaussian (in terms of
either real, or complex, orGrassmann variables) to ensure the validity ofWick’s theorem. These issues are often
related; for example, the Ising andXYmodels formulated in terms of the original spin variables do not suffer
fromDyson’s collapse but lack theGaussian (non-interacting) limit, while their classical (lattice)field
counterparts with thewell-definedGaussian limit are subject toDyson’s collapse. It would be amistake,
however, to think that ameaningful diagrammatic series is only possible for a very limited class ofHamiltonians,
namely, when the original system is that of interacting lattice fermions. As already clearly explained by Samuel in
a series of papers [2–4] a broad class of classical spin and dimermodels can be reformulated in terms of familiar
interacting fermions and studiedwithfield theoretical techniques.We note that similar techniques were also
explored by other authors [5–9] and that also rather arbitrary quantum spin/boson latticemodels can be
rigorouslymapped onto fermionic field theories [10–12].
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As expected, grassmannian formulations of spin/link/bosonmodels with local constraints are generically
strongly-coupled theories at low temperature, and even themost advanced self-consistent treatments based on
the lowest-order graphs are not supposed to provide quantitatively (and often qualitatively) accurate answers.
Moreover, these theoriesmay contain arbitrarymulti-particle interaction vertexes, which further complicate the
structure of the diagrammatic expansion.One of the promising numerical techniques currently under
development for strongly correlated systems is diagrammaticMonte Carlo (DiagMC). It is based on the
stochastic evaluation of irreducible Feynman graphs up to some high order and can be implemented in a
number of ways, fromperturbative expansions in powers of the coupling constant to various self-consistent
skeleton schemes based on fully renormalized one- or two-body propagators. In such contexts as resonant
fermions [13], frustratedmagnetism [14, 15], and out-of-equilibrium impurity-likemodels [16, 17] themethod
was recently shown to be able to go significantly beyond the state of the art. Also, significant progress has been
made in understanding superfluid properties of theHubbard-typemodels [18–20]. Notably, the infamous sign-
problempreventing conventionalMonte Carlomethods from simulating fermionic systemwith sizes large
enough for reliable extrapolation to the thermodynamic limit, is absent as such inDiagMC. Instead, the
computational complexity is now linked to the number of diagrams growing factorially with their order.
Nevertheless,millions of diagrams can be accounted for and the approach isflexible enough to deal with an
arbitrary interactionHamiltonian/action.

The current paradigm for generic lattice gaugemodels, as they occur in lattice-QCD aswell as in solid state
and ultra-cold atomic physics, is toworkwithfinite-size systems and to treat link variables separately from the
fermionic sector.More precisely, link variables are simulated using classicalMonte Carlo techniques (with local
updates), and fermions (quarks) are described by determinants. This approach suffers from a severe sign-
problem forfinite density of fermions (non-zero chemical potential) [21, 22]. If link variables are
straightforwardly represented by bosonic fields, then the thermodynamic limit can be addressedwithin the
diagrammatic approach that treats bosonic and fermionic degrees of freedomon equal footing. However, in this
formulation the bosonic fields pose a fundamental problem,whichmanifests itself in a zero convergence radius.
It is thus desirable to have a generic scheme for replacing link variables withGrassmannfields to ensure that the
diagrammatic expansion has proper analytic properties around theGaussian point.

In this paper, we introduce a general procedure of grassmannization for classical latticemodels. It is by no
means a unique one, and in certain specific casesmore compact/simpler representations can be found. There is
a strong connection to the anti-commuting variables approach introduced by Samuel [2–4], which can solve the
2D Isingmodel exactly (free fermion operators to solve the Isingmodel exactly were first found byKaufman [23]
and refined by Schultz,Mattis and Lieb [24]) and provides a good starting point forfield theoretic studies of the
3D Isingmodel. For the latter systemour approach amounts to an alternative but equally complicated field
theory.Our goal is to build on these ideas and develop a scheme that is flexible enough to apply to a broader class
of linkmodels with arbitrarymulti-bond interactions and local constraints.

The idea of grassmannization is to represent the partition function of themodel as aGrassmann integral
from the exponential of aGrassmann functional. The Feynman rules then emerge by Taylor-expanding the non-
Gaussian part of the exponential and applyingWick’s theorem to theGaussian averages. Paradigmatic lattice
systems are link and plaquettemodels featuring discrete degrees of freedom—integer numbers—residing on
links (plaquettes) of square lattices and subject to certain local constraints in terms of the allowed values of the
sumof all link (plaquette) variables adjacent to a given site (edge). It turns out that it is these constraints that
require special tricks involvingmultipleGrassmann variables for each value of each discrete variable. Link
models often emerge as high-temperature expansions of lattice systems [25] in Ising,XY, O(3), etc universality
classes nomatter whether the original degrees of freedom are discrete or continuous (e.g., classical vector-field
variables). Linkmodelsmay also emerge as dual (low-temperature) expansions, and specific examples are
provided by the 2D Isingmodel [26] and the 3D 4y∣ ∣ model (the latter case leads to the so-called J-currentmodel
with long-range interactions). Similarly, plaquettemodels emerge as a high-temperature expansion of lattice
gauge theories, but sometimes they represent the dual (low-temperature) expansion, as in the case of the 3D
Isingmodel. Finally, it is worthmentioning how themodels with the same general structure are generated by
strong-coupling expansions in lattice-QCD [27].

The paper is structured as follows. In section 2we explain how a partition function of a discrete linkmodel
can bewritten as aGrassmann integral. The equivalence between the two formulations is readily proved through
term-by-term comparison. Standard properties of Grassmann variables then immediately allow one to express
theGrassmannweight in the exponential form in order to define thefield theory. In section 3we discuss
generalizations of the proposed grassmannization scheme.We start by describing the procedure for a broad class
of plaquettemodels. Nextwe show a simple way to introduceGrassmann variables for non-local linkmodels
with pairwise interactions between the link variables. The construction is further simplifiedwhen constraints are
replacedwith statistical penalties for certain configurations of link (plaquette) variables.We conclude this
sectionwith defining themeaning of the term ‘order of expansion’ for the resulting field theory. In section 4we
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deliberately choose themost general grassmannization scheme for the 2D Isingmodel to illustrate how our
constructionworks in practice. Results are shown in section 5.We concludewith prospects for future work in
section 7. There are also two appendices, wherewe provide implementation details for the solution of the 2D
Isingmodel in the bare and bold expansion schemes, respectively.

2.Grassmannization of local linkmodels

2.1. Local linkmodels
For the purposes of this article, wemean by a linkmodel a classical statisticalmodel with states labeled by a set of
discrete variables ba{ } residing on links (bonds) of a certain lattice. In addition, we require that the ground state is
unique.Without loss of generality, it can be chosen to be the statewith 0ba = on each link b.

We further narrow the class of linkmodels—towhichwewill refer to as local linkmodels—by the
requirement that the statistical weight of a state factors into a product of link and site weights (to be referred to as
link and site factors, respectively). A link factor, fb, is a function of the corresponding link variable, f fb baº ( ).
The site factor, gj, is a function that depends on all variables residing on links attached to the site j, denoted as

b ja{ } . Then, g gj b jaº ({ } ). Solely for the purpose of avoiding heavy notations, we consider translational
invariancewhen f fb ba º( ) is the same function on all links and gj site independent, g gj º . Given that only the

relative weights of the statesmatter, we set f 0 1=( ) and g 0 1j =( ) , where 0j stands for the 0b ja ={ } set.
The site factors play the key role in linkmodels. They describe interactions between (otherwise independent)

link degrees of freedom. In particular, this interaction can take the extreme formof a constraint on the allowed
physical configurations of b ja{ } (e.g., the zero-divergency constraint in J-currentmodels [28], or the even-
number constraint in the high-temperature expansion ofZ2models), inwhich case gj b ja({ } ) is identically zero
for each non-physical state of b ja{ } .

2.2. Grassmannization
For each label 0a ¹ of the link b, introduce fourGrassmann variables: b,xa , b,x¢a , b,xa¯ , and b,x ¢a¯ . For a textbook

introduction toGrassmann variables, we refer to [29]. For 0a = we assume that 1b b b b0, 0, 0, 0,x x x x= ¢ = = ¢ =¯ ¯ .

In terms of these variables, define theGrassmannweight—a product of link,Ab, and site,Bj, factors such that
tracing over all degrees of freedom yields the partition function Z A BTr b j=   —by the following rules
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Here b j{ } stands for the set of all links incident to the site j, and variables b,b
xa and b,b

*xa are defined differently for
different links.Wefirst introduce the notion of direction (on each link) so that one of the two link ends becomes
‘incoming’ and its counterpart ‘outgoing’ (with respect to the site adjacent to the end). Next, we assign (see
figure 1 for an illustration)

Figure 1.Assignment ofGrassmannfields for link (left) and site (right) factors. Upon integration, the labels of theGrassmann variables
must be equal in order to connect variables from all factors (see text).
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The claim is that theGrassmann integral of theweight over all variables reproduces the partition function of
the original linkmodel. For a link b to yield a non-zero contribution to the integral the link labels in (2.2) for the
sites of the incoming ( j = 1) and outgoing ( j = 2) ends of the link shouldmatch each other: 1 2a a= . Indeed,
at 1 2a a¹ , it is not possible tofind an appropriate term in the expansion of the link exponential (2.1) such that
—uponmultiplying by the site factors b b, ,1 1

*x xa a
  and b b, ,2 2
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  —all powers of theGrassmann variables b,1

xa ,

b,1
x¢a , b,1
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x ¢a¯ , b,2

xa , b,2
x¢a , b,2

xa¯ , b,2
x ¢a¯ are exactly equal to 1 to ensure that theGrassmann integral is non-zero.

For 1 2a a a= º , we need to consider two cases: 0a = and 0a ¹ . In thefirst case, the non-zero contribution
to the integral comes from the product of second terms in the expansion of the link exponentials (2.1):
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wherewe defined f* in the last step. In the second case, the two end sites contribute the factor

b b b b b b b b, , , , , , , ,x x x x x x x x¢ ¢ = ¢ ¢a a a a a a a a
¯ ¯ ¯ ¯ . Nowwe have to consider the first term in the expansion of the link

exponential for stateα, while for other variables the calculation is repeated as in (2.4)
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We see that, apart from the irrelevant global factor f1b * , we reproduce the configuration space andweight
factors of the original linkmodel.

2.3. Field theoretical formulation
To generate the Feynman diagrammatic expansion, we need to represent theGrassmannweight factor in the
exponential form. The link factors (2.1) have the formofGaussian exponentials already.Hence, it is only the site
factors that need to be rewritten identically as

B exp . 2.6j b j
b b

b b, ,
b j j

b b

*å l a x x=
a

a a
Î
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⎣
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⎥⎥({ } ) ( )

{ } { }

The constants b jl a({ } ) are readily related to the site factors g b ja({ } ) by simple algebraic equations obtained by
expanding the exponential and equating sums of similar terms to their counterparts in the rhs of equation (2.2).

By expanding the non-Gaussian part of the exponential (2.6) and applyingWick’s theorem,we arrive at
Feynman rules for the diagrammatic series. The reader should avoid confusion by thinking that an expansion of
the exponential (2.6) takes us back to equation (2.2). Recall that connected Feynman diagrams are formulated
for the free energy density, not the partition function, and summation over all lattice sites is done for a given set
of interaction vertexes in the graph, as opposite to the summation over all vertex types for a given set of lattice
points. Therefore, the ‘coupling constants’ in Feynman diagrams areλʼs, not gʼs.

2.4. Absorbing link factors into site factors
The separation of theweight factors into link and site ones ismerely a convention. Indeed, each link factor can be
ascribed to one of the two site factors at its ends. This leads to a slightly different Grassmannization protocol.
This trickmay prove convenient for generalization to non-localmodels considered below.
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3.Generalizations

3.1. Plaquettemodels
Aplaquettemodel can be viewed as a certain generalization of the local linkmodel. States (configurations) of a
plaquettemodel are indexed by a set of discrete labels residing on (oriented) plaquettes of a hyper-cubic lattice.
The plaquette labelα takes on either afinite or countably infinite number of values. The statistical weight of each
state factors into a product of plaquette and edgeweights (to be referred to as plaquette and edge factors,
respectively). A plaquette factor, f, is a function of the corresponding plaquette variable, f f aº ( ). An edge
factor, g, is a functionwhich depends on the labels of all plaquettes sharing this edge (this set of labels will be
denoted as p ja{ } for the edge j); it encodes, if necessary, constraints on the allowed sets of p ja{ } .

Without loss of generality (up to a global normalization factor), we identify the ‘ground state’ as 0pa = for
all plaquettes, and set f 0 1=( ) . The orientation of the plaquette (for somemodels it ismerely amatter of
convenience) is enforced by an ordered enumeration of sites at its boundary. For a plaquette p, the vertex label

0, 1, 2, 3pn nº = enumerates four vertices in such away that 1n  modulo 4 stands for the next/previous
vertexwith respect to the vertex ν in the clockwise direction.

For each state 0a ¹ of the plaquette p, we introduce eight Grassmann variables: p, , p
xa n ,

, 0, 1, 2, 3p p, , p
x n =a n
¯ . As before, for 0a = the variables ξ and x̄ are notGrassmannian, 0p0, ,x =n , 1p0, ,x =n

¯ .

The corresponding plaquette weight in theGrassmann partition function reads
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Note a close analogywith equation (2.1). Site weights equation (2.2) are now replacedwith edgeweightsBj.
Using the notation p j{ } for the set of all plaquettes sharing the edge j, and 0j for the statewhen all plaquettes in
this set have 0pa = , wewrite
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where p
jn( ) is the site enumeration indexwithin the plaquette p, with respect towhich the edge j is outgoing.

(Accordingly, the edge j is incomingwith respect to site 1p
jn +( )( ) .) Inwhat follows, wewill associate p

jn( ) not
only with the site, but alsowith the corresponding edge.

The proof that the classical andGrassmannian partition functions are identical (up to a global factor) is
similar to the one for the linkmodel after we notice that a non-zero contribution fromplaquette p is possible
only if the same plaquette label pa is used in all edgeweights. The 0a = contribution comes from the term
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*
, where

q f1 . 3.4
*  g= -

g
( ) ( ) ( )

The 0a ¹ contribution comes from the plaquette term

f

1
at 0 3.5p p

0

3

, , , ,
p

p p g
x x a ¹

g a n
g n g n

¹ =( )
¯ ( ) ( )
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¯ originating from the boundary edge terms p p, , 1 , ,p
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Because of theGrassmann anticommutation rules, this four-edge factor yields an additionalminus sign,
explaining the use of the negative sign in front of f a( ) in equation (3.1). UponGrassmann integration, the
contribution to the partition function of the resulting term equals to f q

*
a( ) .

Feynman diagrammatics for the plaquettemodel is obtained by following the same basic steps as for the link
models. TheGaussian part is given by equation (3.1)with four pairs of Grassmannfields for every non-zero
plaquette state. The interaction part of theGrassmann action is contained in edgeweights (3.2) after they are
written in an exponential form

B exp , 3.6j p j
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with the constants b jl a({ } ) unambiguously related to the edge factors g b ja({ } ).

5

New J. Phys. 18 (2016) 113025 L Pollet et al



3.2. Unconstrained discretemodels with pair-wise interaction
The hallmark of the considered link (plaquette)models is the non-trivial interaction introduced via site (edge)
factors. It is due to this type of interaction—and, in particular, its extreme formof a constraint on allowed
combinations of discrete variables—that we had to introducemultiple Grassmann variables for each state of the
link (plaquette). The situation simplifies dramatically if we are dealingwith unconstrained discrete degrees of
freedomwith pair interactions between them.

Consider a linkmodel defined by the statistical weight

W F b b, ; , , 3.7b
b b

b b
,

1 2

1 2

1 2a a a=({ }) ( ) ( )

based on products of two-link factors.Without loss of generality, these factors can be cast into the exponential
form

W e , 3.8b
b b,

1 2
b b b b

1 2

1, 1; 2, 2a = h- a a({ }) ( )( )

Weassume that all factors in the product are bounded and properties of the η-matrix arewell-conditioned.
Grassmannization of thismodel can be done by taking advantage of properties of Gaussian integrals that allow
one to express (3.8) identically (up to normalization) as

W X W Xe . 3.9b
b

X
b

i
G ,b b

b
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Here X b,ba{ } is a collection of auxiliary real continuous variables. For briefness, we do not show explicitly the
GaussianweightWG that is uniquely defined by the values of all pairwise averages performedwith this weight
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Whatwe achieve for afixed set ofX variables is a linkmodel that contains only single-link factors

b f: e . 3.11b b
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Formodels with site constraints, link factors can be attributed to site factors at the incoming (or outgoing) ends
with subsequentGrassmannization of the latter as discussed above. For unconstrainedmodels, Grass-
mannization is accomplished by replacing sums over link variables with
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Note that hereGrassmann variables have nothing to dowith the discrete index ba , in contrast with previous
considerations. The resulting formulation contains bothGrassmann and real-number integrations.

Clearly, all considerations can be repeated identically (up to a trivial change in notations) for amodel based
on discrete variables sa residing on lattice sites when the configurationweight is given by

W e . 3.13s
s s,

1 2
s s s s

1 2

1, 1; 2, 2a = h- a a({ }) ( )( )

3.3.Order of expansion
The notion of the order of expansion is absolutely central for practical applications when diagrammatic series
are truncated. Normally, it is defined as an integer non-negative power of a certain dimensionless parameter ζ
playing the role of a generalized coupling constant, such that the diagrammatic expansion corresponds to a
Taylor expansion in ζ about the point 0z = .Without loss of generality, we can always select ζ (by an appropriate
rescaling) in such away that the physical value of ζ is 1. This is especially convenient in cases when there ismore
than one interaction vertex, and ascribing different powers of ζ to them results in (re-)grouping of different
terms in the series. A reasonable guiding principle behind such a (re-)grouping is the requirement to end upwith
Taylor series havingfinite convergence radius around 0z = . The latter is guaranteed if the theory is analytic in ζ
at the origin; the necessary condition for this to be true is the absence ofDyson’s collapse when changing the sign
(more generally, the phase) of ζ.

As an illustration, consider the theory (3.7) and (3.8) and its Grassmann counterpart (3.12). Introduce the ζ-
dependence by the replacement

e e . 3.14X Xi i
b b b b, , za a ( )

In terms of the original theory, the replacement (3.14)means 2h z h , for all ηʼs in equation (3.8). If amplitudes
of all η values in (3.8) are bounded, we expect that such a dependence on ζ is analytic not only for a finite system,
but also in the thermodynamic limit atfinite temperature. In theGrassmann action (3.12), the expansion of the
exponential e Xi s b,z a in powers of ζ generates an infinite series of interaction vertexes (the zeroth-order term
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defines the harmonic action):

X X Xi
1

2

i

3
. 3.15b b b b b,

2
,

2 3
,

3

b

b b båx x z z z- - +
a

a a a ⎜ ⎟⎛
⎝

⎞
⎠¯

!
( )

Higher-order vertexes inX comewith a higher power of ζ and this sets unambiguously the rules for defining the
diagramorder.

4. Illustration for the 2D Isingmodel

In this sectionwe follow themost general protocol of introducingGrassmann variables and deliberately avoid
any possibility is usingmore efficient,model specific, formulations. The 2D case is considered exclusively for
reasons of presenting explicitly the final formulation in a relatively compact form. Let usmention again the
crucial property wewant fromour theory: analyticity in the expansion parameter ζ at the origin, as seen from the
absence ofDyson’s collapsewhen changing the phase of ζ. This should become apparent in the derivation
presented in this section.

4.1.Model and observables
Consider the 2D Isingmodel on the square lattice with theHamiltonian

H T h . 4.1
i j

i j
i

i i
,
å åb s s s- = +
á ñ

( )

The Ising variables 1s =  live on the sites of the 2D square lattice and interact ferromagnetically with their
nearest neighbors, as is represented by the first term in theHamiltonian.Wewrite the dimensionless coupling as
β in units of the temperatureT. Additionally, every spin feels a dimensionlessmagnetic field h hi = , which can
be taken h 0 without loss of generality. The partition function of the Isingmodel reads

Z e e . 4.2
i j i

h

,
i

i j i iå = P
s

bs s s

á ñ
( )

{ }

Themost typical observable of the Isingmodel is the spin–spin correlation function ijr

Z

Z

h h

1
4.3ij i j

i j
h h h

2

.i jr s s= á ñ =
¶

¶ ¶
= =∣ ( )

4.2. Grassmannization of the high-temperature expansion
Using thewell-known identities

h h

e cosh 1 tanh

e cosh 1 tanh , 4.4

i j

h
i

i j

i

b s s b

s

= +

= +

bs s

s

( )
( ) ( )

the partition function can bewritten as Z Z Z0= ¢with Z hcosh coshN N
0

2b= ( ) ( ) for a lattice ofN sites and
N2 links.With the notation tanhz b= and htanhh = the remaining factor is given by

Z 1 1 . 4.5
i j

i j
i

i
,i

å s s z s h¢ = + +
s á ñ

( ) ( ) ( )
{ }

Upon summation over spin variables we are left with a linkmodel, where link variables take only two values, 0 or
1, to specify whether we are dealingwith the first or the second term in the sum 1 i js s z+( ). In the partition
function, termswith an odd power of is on any of the sites yield zero upon spin summation. The remaining
terms depend on link variables in a uniqueway. The formalism of the previous section can be straightforwardly
applied, andwe obtain

f f f0 1, 1 , 4.6
*

z= = =( ) ( ) ( )

g g g g g0 2 4 1, 1 3 . 4.7h= = = = =( ) ( ) ( ) ( ) ( ) ( )

Herewe label site factors using the total sumof incident link variables, b b bj
aå Î{ } , to avoid unnecessary rank-4

tensor notations. If we further redefine Z Z f2N N
0 0

2

*
 , then theGrassmann representation of the partition

function Z ¢ is given by
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Z exp
1 1

exp . 4.8
j b

b

b

b b b b

b

j

b b

*

ò 

å 

x x xx
z
x x

z
x x

l x x

¢ = ¢ ¢ ¢ +

´

a
a

a a a a

a a a
 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

[¯ ¯ ] ¯ ¯

( )

{ }
{ }

{ }

4.3. Vertex coefficients
Wenow compute the factorsλ. To this end, wefirst introduce notations (for afixed site j and suppressing the site
index for clarity)

V n n n n

V n n n n n n n n n n n n
V n n n n n n n n n n n n
V n n n n

,

,
,

4.9

R R U U L L D D R U L D

R U R L R D U L U D L D

R U L R U D R L D U L D

R U L D

1

2

3

4

* * * *x x x x x x x x= + + + = + + +
= + + + + +
= + + +
=

       

( )

and thenTaylor expand

V V V Vexp . 4.101 1 2 2 3 3 4 4l l l l+ + +[ ] ( )

The only non-zero terms generated by this expansion are
V V V V V V V V V V V V2 , 6 , 24 , 3 , 41

2
2 1

3
3 1

4
4 1 2 3 1 3 4= = = = = andV V62

2
4= . All other powers andmultiplications

of operators yield zero. Note that operators fromdifferent sites commute andmay be excluded from
consideration here. Thefinal result is

V V V V

V V V V

V V V V

V V V

exp

1
1

2
2 6 2 3 2 4

1

6
6 3 12

1

24
24

4.11

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1
2

2 2
2

4 1 2 3 1 3 4

1
3

3 1
2

2 4 1
4

4

l l l l
l l l l

l l l l l l

l l l l

+ + +
= + + + +

+ + + +

+ + +

[ ]

( )

( )

( )

Term-by-termmatchingwith equation (4.7) then leads to

g , 4.121 1h l= = ( )

g 1 , 4.132 2 1
2l l= = + ( )

g 3 , 4.143 3 1 2 1
3h l l l l= = + + ( )

g 1 3 4 6 . 4.154 4 2
2

1 3 2 1
4

1
4l l l l l l l= = + + + + ( )

The solution is immediate

, 4.161l h= ( )
1 , 4.172

2l h= - ( )
2 2 , 4.183

3l h h= - + ( )
2 8 6 . 4.194

2 4l h h= - + - ( )

In zero externalfield the only vertexes with non-zero coupling in the partition function areV2 andV4

V V V Vexp exp 2 4.20
j

j j

j

j j
2 4 2 4 å+ = -

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( ) ( ) ( )( ) ( ) ( ) ( )

and the spin–spin correlation function is given by

Z

V V

V V V V

1
... exp

1 1

exp 2

2 2 .

4.21

ij
b

b b b b b

j

j j

i i j j

2 4

1 3 1 3

ò

å

r
z
x x

z
x x=

¢
¢ ¢ +

´ -

´ - -

⎪

⎪

⎪

⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧
⎨
⎩

⎫
⎬
⎭

[ ] ¯ ¯

( )

( )( )

( )
( ) ( )

( ) ( ) ( ) ( )

4.4. Feynman rules
In order to derive the Feynman rules generating the diagrammatic series, wewrite the partition function in the
form
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Z Z
n

V x V x
1

, 4.22
n x x

n

n
0 , ,

1 0

n1

å å¢ =
+

á ¼ ñ
=

¥

¼


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

!
( ) ( ) ( )

where Z is the partition function of theGaussian part (it is the product of local link contributions),

Z ... exp 1b b b b b
N1 2ò x x x x z=  ¢ ¢ + = +

z ( )[ ] ¯ ¯ ( )( ). The Feynman rules for the correlation function of the 2D

Isingmodel now follow from the textbook considerations:

(i) The bare propagators G 0 z=( ) for primed and non-primes variables are local and reside on the links of
the original lattice. In the correlation function they always occur in pairs of conjugateGrassmann variables
and each pair contributes a factor ζ. The propagation lines do not have arrows. The bare interaction vertexes
(or pre-diagrams, see figure 2) are also local and live on the sites of the lattice. There are different types
belonging to theV2 andV4 classes withweight 1 and−2, respectively (see equation (4.20)). On thefirst (and
last) site of the correlator we have a vertex belonging to the classV1 orV3 (see figures 3–7)withweight 1 and
−2, respectively (see (4.21)).

(ii) Draw in order n all topologically distinct connected diagrams with n pairs of bi-grassmann variables living
on the links of the lattice. The number of interaction vertexes, excluding the end points, is atmost n 1- .

(iii) For links with multiple occupancy, a minus sign occurs when swapping 2 Grassmann variables. The minus
sign can also be found by counting all closed fermionic loops.

(iv) The total weight of the diagram in order n is hence 1 2P q nz- -( ) ( ) with P the signature of the exchange
permutation and q the sumof all type-3 and type-4 vertexes.

Figure 2. Four classes of generic pre-diagrams for linkmodels on a square lattice. The elements in thefirst and the third row can only
occur at the end points of the spin correlator (indicated by the open circle), the elements in the second and fourth row are the generic
basic vertexes of the theory ascribed to the sites of the underlying lattice. There are hence 4V1 vertexes with 1 leg (first row,U R D, , ,
and L), 6V2 vertexes with 2 legs (second row, RU RD LD LU UD, , , , and LR), 4V3 vertexes with 3 legs (third row, LUR URD LDR, , ,
andDLU), and 1V4 vertexwith four legs (fourth row,RULD). Connected to the legs of these vertexes are pairs of bi-Grassmann fields
(thick dash lines (blue and red)) that reside on the links of the underlying 2D lattice. Thin dashed lines (showing lattice links adjacent
to the site of the vertex) are to guide the eye and have no othermeaning than showing the underlying 2D lattice. The generalization to
other dimensions is straightforward.
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Disconnected diagrams are definedwith respect to both the primed and non-primedGrassmann variables
simultaneously. Thus, a link can lead to a disconnected diagramonly if the primed and non-primed variables
simultaneously lead to disconnected pieces (such as the upper left panel infigure 8).We check the connectivity
of a diagramby the breadth-first algorithm.Wehave implemented the Feynman rules in two different
appraoches: an algorithm that enumerates and evaluates all possible diagrams, as well as aDiagMC approach.
Details about the implementation can be found in the appendix A

4.5. Example: thefirst element of the spin correlation function
For illustrative purposes, let us focus on thefirst element of the correlation function connecting the sites 0, 0( )
and 1, 0( ) (using translational invariance, any two neighboring sites r r,1 2á ñcan be taken). Tofirst order, we put a
V1 vertex on the origin and target site. There is oneway to combine them, thus the total contribution is ζ. By the
symmetry of the lattice, even expansion orders do not contribute. In third order, we can construct a diagramby
putting aV2 (RD) vertex on the site 0, 1( ) and aV2 vertex LD( ) on the site 1, 1( ). Themirror symmetry of this
diagram about the x-axis is also a valid diagram.Hence, the contribution is 2 3z . These diagrams contributing in
first and third order are shown infigure 3.

Infifth order, there are four diagramswith aV3 vertex on one of the endpoints, yielding a contribution 8 5z- .
There are 14 diagrams consisting of onlyV1 andV2 vertexes and single pair-lines, yielding a contribution 14 5z .
The contributions tofifth order are shown infigures 4, 5, 7, and 8. There are however additional diagramswith

Figure 3.The first- and third-order diagrams for 1,0r( ) (at h = 0) based on expanding (4.3). The contribution of these diagrams is
2 3z z+ .

Figure 4. Fifth-order diagrams for 1,0r( ) (at h = 0) based on expanding (4.3): these four diagrams involve a three-leg end vertex. Each
diagram contributes 2 5z-( ) .
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two pairs of Grassmann variables living on the same link, as is shown infigure 8 (there are equivalent diagrams
obtained bymirror symmetry around the x-axis which are not shown). They all have on the origin aV1 and aV2

(RU) vertex, and on the target site 1, 0( ) aV1 and aV2 (UL) vertex. On the site 1, 1( ) there is aV2 (LD) and on site
0, 1( ) aV2 (RD) vertex. Let us lookmore carefully at the link between the origin and target site:

1
. 4.23

2
òz

x xxx x xxx x xxx¢ ¢ ¢ ¢ ¢ ¢[¯ ¯ ] ¯ ¯ ¯ ¯ ( )

The origin is associatedwith x x¢¯ ¯ and the target with xx¢ by our convention. ApplyingWick’s theorem, there are
four possible ways to pair theGrassmann variables:

(i) The pairing combination comeswith the sign+1 and leads to a connected diagram (this is

the lower right panel infigure 8).

Figure 5. Fifth-order diagrams for 1,0r( ) (at h = 0) based on expanding (4.3): these four counterparts of the diagrams shown in
figure 4 are obtained by replacing a three-leg end vertexwith a one-leg end vertex. Each diagram contributes 5z .

Figure 6.The four remaining counterparts (seefigure 5) tofigure 4.
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(ii) The pairing combination comes with the sign−1 and leads to a connected diagram (this is

the upper right panel infigure 8).

(iii) The pairing combination comes with the sign−1 and leads to a connected diagram (this is

the lower left panel in figure 8).

(iv) The pairing combination leads to a disconnected diagram and does not contribute to the

correlation function (this is the upper left panel infigure 8).

The net contribution of these four distinct diagrams is hence−1 (also the diagrams obtained bymirror
symmetry around the x-axis yield−1, so the total contribution tofifth order is 8 14 2 45 5z z- + - =( ) .

It is instructive to notice that the sumof all diagrams inwhichmultiple Grassmann pairs live on the same
link always produces zero in case all diagrams are connected, in linewith the nilpotency ofGrassmann variables.

Figure 7.Additional fifth-order diagrams for 1,0r( ) (at h = 0) involving two one-leg end vertexes. Each diagram contributes 5z .

Figure 8. Fifth-order diagrams for 1,0r( ) (at h = 0) containing a linkwithmultiple Grassmann pairs. The net sumof the shown
diagrams is 5z- , because there are threeways of associating the primed and non-primed propagators along the bottom link, two of
them contribute with the negative sign (upper right and lower left panel) and the third one is contributingwith the positive sign (lower
right panel). The remaining possibility (shown in the upper left panel) is not allowed since it produces a disconnected diagram.
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Wick’s theorem splits however these contributions in connected and disconnected diagrams, where the
disconnected diagrams cancel against the denominator of the Feynman expansion. It is this non-trivial
regrouping imposed byWick’s theorem that can yield non-zero contributions from terms like (4.23); and, in
particular, from arbitrarily high powers of one and the same interaction vertex.

5. Results

Wenowproceedwith the results for the spin–spin correlation function and themagnetic susceptibility obtained
with the bare expansion. Let us in passingmention that in appendix Bwe showhow a bold G W2 scheme (which
conceptually distinguishes our approach from the usual high-temperature series expansion approach) can
resumwhole classes of diagrams and reproduce the bare series when expanded to the same order and accuracy.

5.1. Spin–spin correlation function
Our results for the spin–spin correlation function are shown in table 1. The correlation function is known
recursively from [30–32]. It is also known as a Painlevé-VI nonlinear differential equation[33] but this is not so
well suited to obtain the series coefficients. Along the principal axes and the diagonal it can also be expressed as a
Toeplitz determinant. Thefirst element along and the axis and the diagonal can be recast in terms of complete

Table 1.Expansion coefficients for the correlation function up to order 11.

Site/order ζ 2z 3z 4z 5z 6z 7z 8z 9z 10z 11z

(1, 0) 1 0 2 0 4 0 12 0 42 0 164

(1, 1) 0 2 0 4 0 10 0 32 0 118 0

(2, 0) 0 1 0 6 0 16 0 46 0 158 0

(2, 1) 0 0 3 0 11 0 31 0 97 0 351

(2, 2) 0 0 0 0 6 0 24 76 0 248 0

(3, 0) 0 0 1 0 12 0 48 0 152 0 506

(3, 1) 0 0 0 4 0 26 0 92 0 298 0

(3, 2) 0 0 0 0 10 0 55 0 201 0 684

(3, 3) 0 0 0 0 0 20 0 120 0 480 0

(4, 0) 0 0 0 1 0 20 0 118 0 7 452 0

(4, 1) 0 0 0 0 5 0 52 0 244 0 885

(4, 2) 0 0 0 0 0 15 0 118 0 521 0

(4, 3) 0 0 0 0 0 0 25 0 259 0 1176

(4, 4) 0 0 0 0 0 0 0 70 0 560 0

(5, 0) 0 0 0 0 1 0 30 0 250 0 1200

(5, 1) 0 0 0 0 0 6 0 92 0 574 0

(5, 2) 0 0 0 0 0 0 21 0 231 0 1266

(5, 3) 0 0 0 0 0 0 0 56 0 532 0

(5, 4) 0 0 0 0 0 0 0 0 126 0 1176

(5, 5) 0 0 0 0 0 0 0 0 0 252 0

(6, 0) 0 0 0 0 0 1 0 42 0 474 0

(6, 1) 0 0 0 0 0 0 7 0 149 0 1215

(6, 2) 0 0 0 0 0 0 0 28 0 416 0

(6, 3) 0 0 0 0 0 0 0 0 84 0 1026

(6, 4) 0 0 0 0 0 0 0 0 0 210 0

(6, 5) 0 0 0 0 0 0 0 0 0 0 462

(7, 0) 0 0 0 0 0 0 1 0 56 0 826

(7, 1) 0 0 0 0 0 0 0 8 0 226 0

(7, 2) 0 0 0 0 0 0 0 0 36 0 699

(7, 3) 0 0 0 0 0 0 0 0 0 120 0

(7, 4) 0 0 0 0 0 0 0 0 0 0 330

(8, 0) 0 0 0 0 0 0 0 1 0 72 0

(8, 1) 0 0 0 0 0 0 0 0 9 0 326

(8, 2) 0 0 0 0 0 0 0 0 0 45 0

(8, 3) 0 0 0 0 0 0 0 0 0 0 165

(9, 0) 0 0 0 0 0 0 0 0 1 0 90

(9, 1) 0 0 0 0 0 0 0 0 0 10 0

(9, 2) 0 0 0 0 0 0 0 0 0 0 55

(10, 0) 0 0 0 0 0 0 0 0 0 1 0

(10, 1) 0 0 0 0 0 0 0 0 0 0 11

(11, 0) 0 0 0 0 0 0 0 0 0 0 1
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elliptic integrals (see pp 200–201 in [26]), which are convenient for series expansions

K kcoth 2
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with k sinh 22 b=> ( ), K .( ) and E .( ) the complete ellipticK andE functions, respectively. The above-cited
recursion relations could be initializedwith these expansions and shown to yield the same results as the top two
rows in table. 1.

5.2.Magnetic susceptibility
The spin susceptibility is related to the zeromomentumvalue of theGreen function by p1 01b c r= + =- ( ).
We can hence sumover the entire lattice to obtain

1 4 12 36 100 276

740 1972 5172 13492

34876 89764 229628

585508 1486308 .

5.3

1 2 3 4 5

6 7 8 9

10 11 12

13 14

b c z z z z z
z z z z
z z z
z z

= + + + + +
+ + + +
+ + +
+ + +

-



( )

To this order the series expansion agrees with the ones from [34, 35]. For a library of high-temperature series
expansions, see [36]. Currently, the series is known (at least) up to order 2000 and still topic of active research
[32, 34]. The series is convergent for anyfinite expansion order, i.e., in the thermodynamic limit the infinite
series will diverge first at the phase transition point. It is hence possible to study the critical behavior of the
susceptibility, which is governed by the critical exponent 7 4g = .We plot infigure 9 the susceptibility versusβ
for different expansion orders, and also plot the asymptotic behavior for comparison.

The critical temperature and the exponent γ can be found from a study of the convergence radius of the
series. Since

n

n

1

1
1 1

5.4

n
n

n
c

n c

n

1

1

å

å

b c c z z z

g g g z
z
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- + -
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=

¥  ⎛
⎝⎜

⎞
⎠⎟

( )
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the ratio of coefficients asympotically behaves as

n

1 1 1
. 5.5n

n c c1

c
c z

g
z

= +
-

-

( )

Figure 9.Themagnetic susceptibility versus ζ for different expansion orders from 12 to 1 (top to bottom), compared to the order 100
result—the converged answer over this plotting range—obtained from [34], which shows a divergence in good agreement with the
critical exponent 7 4g = starting from 0.38b .
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Infigure 10we extract the critical point cz from the intercept and the critical exponent γ from a linearfit through
the ratio of the coefficients. The critical point could be determinedwith an accuracy of 0.5%, whereas the error
on γ is of the order of 5%.However, according tomore advanced extrapolation techniques discussed in [37], γ
can be determined independently from cz as 1.751949g » on the square lattice when the series is knownup to
14th order, i.e., an accuracy of 0.5%.

6. The Isingmodel in one-dimension

Let us show that the proposed approach solves the 1D Isingmodel exactly, both in the bare formulation as well as
in the G W2 skeleton formulation (see section appendix B).

6.1. Bare series
In 1D, the only allowed vertex isRL (the last one in the second line offigure 2). It has weight+1. The only
allowed endpoints are L andR (the second and fourth vertexes shown in thefirst line offigure 2). As expected,
thismeans that there are no loops, no fermionic exchanges, and nominus signs in 1D. At order n of the
expansion for the spin correlator there is only one contributing diagramwithweight nz (up to the lattice
symmetry). The susceptibility is hence

T 1 2 1 2
1

, 6.12c z z
z
z

= + + + = +
-

( ) ( )

reproducing the exact solutionwith asymptotic behavior exp 2c b bµ ( ) asT 0 .

6.2. G W2 formulation
The G W2 skeleton expansion becomes exact already in 0th order

6.20 zP = P = ( )

0 6.3S = ( )

which yields G G0 z= = ,W V V1 1 1 z= - P = -( ) ( ), and also 1z zP = -( ). This immediately
leads to the same result as in equation (6.1)when adding the end-point vertexes L andR toΠ.

7. Conclusion

Wehave developed a general scheme formapping a broad class of classical statistical link (plaquette)models
onto interactingGrassmann-field theories that can be studied by taking full advantage of the diagrammatic
technique. Thismapping, in particular, would allow to formulate an all-diagrammatic approach to
d 1+( )-dimensional lattice gauge theories with finite density of fermions. The resulting field theory looks very
complex because it contains a large number ofGrassmann variables with numerousmulti-point interaction

Figure 10.Ratio of consecutive coefficients n 1c -[ ] and nc [ ] in the expansion of the susceptibility as a function of the inverse of the
expansion order n1 . Linear regression according to equation (5.4) allows to determine the critical temperaturewith an accuracy of
0.5% and the critical exponent γwith an accuracy of 5%. Thefitting regime included orders nine through 14.
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vertexes.Moreover, it is generically strongly coupled at low temperaturemeaning that an accurate solution using
diagrammaticmethods is only possible when calculations are performed to high order and extrapolated to the
infinite-order limit.

The complexity of the problem should not be taken as an indication that the entire idea is hopeless.Monte
Carlomethodswere designed to deal with configuration spaces of overwhelming size and complexity and
arbitrary weights. In this sense, DiagMCmethods simulating the configuration space of irreducible connected
Feynman graphs are based on the same general principles and one should not be surprised that they can evaluate
the sumofmillions of bare (or skeleton) graphs, enough to attempt an extrapolation to the infinite-order limit.
WhatmakesDiagMCdistinctly unique (apart fromworkingwith ever-changing number of continuous
variables without systematic errors) is the radical transformation of the sign problem. It is completely eliminated
in conventional sense because the thermodynamic limit is takenfirst. Given that the number of diagrams
increases factorially with their order, finite convergence radius in ζ is only possible if same-order diagrams
cancel each other to such a degree that at high order their combined contribution is not increasing factorially. In
otherwords, non-positive weights are required for the entire approach towork andwe call it the ‘sign-blessing’
phenomenon. Diagramweights forGrassmann/fermion fields alternate in sign depending on the diagram
topology; this leads to the sign-blessing phenomenon for latticemodels.

We illustrated the proposed approach by considering the 2D Isingmodel as a prototypical example.We have
deliberately chosen toworkwith the generic formulation to avoidmodel specific simplifications because our
goal was to demonstrate howonewould proceed in the general case. The ultimate goal is to explore how this field
theoretical approach can helpwith understanding properties of lattice gaugemodels.
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The appendix contains two technical developments: in appendix Awe provide details on howwe generated the
bare diagrammatic series for the 2d Isingmodel using aDiagMC approach and a direct enumeration scheme. In
appendix Bwe discuss the lowest order diagrams of a bold expansion in the G W2 scheme, and showhow it
reproduces the bare series when expanded to the same order and accuracy. This illustration constitutes amajor
difference between ourfield theoretic approach and high-temperature series expansions, where such a
boldification is not possible.

AppendixA. Implementation

Weexplored twoways of evaluating the (bare) series for the spin-correlator: a stochasticMonte Carlo approach
and a deterministic full evaluation of all diagrams.

A.1.MonteCarlo sampling
In order to perform aMonte Carlo sampling over all Feynman diagrams, we introduce a head and a tail that
represent the endpoints of the correlation function. Bymoving them around the lattice and changing the
diagrammatic elements in between the head and tail, we are able to reach an ergodic sampling. The algorithm
can be formulated as follows: the tail remains stationary at the originwhereas the head canmove around the
lattice.When the head and tail are on the same site and the expansion order is 0, the value of the correlation
function is 1which can be used for normalization of theMonte Carlo process. AMonte Carlomeasurement
contributes+1 or−1 depending on the sign of the diagramweight. The simplestMonte Carlo procedure
samples according to the absoluteweights of the diagrams and consists of the following pairs of reciprocal
updates:

(i) MOVE–RETRACT. We choose one of the four directions randomly, and attempt to place the head on the
site adjacent to the current head site according to this direction. In case this direction does not correspond
to backtracking, the currentV1 type of the tail turns into aV2, otherwise the head goes back and changes the
previousV2 into aV1 type (unless the diagramorder is 0 or 1, when onlyV1 types are possible).When
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moving forward, theway of pairing primed andnon-primed variables is always uniquewhich in turns
implies that we can only retract when the head is connected via a ‘straight pair connection’ to the previous
vertex (both primed and non-primedGrassmann variables of the head are connected to the same vertex on
the previous site).We only allow theMOVE–RETRACTupdates if the end vertex types areV1.

(ii) SWAP VERTEX. Swaps between the vertexes V V V1 2 3+ « (for head and/or tail) and V V V2 2 4+ «
(anywhere in the diagram). This update is its own reciprocal.

(iii) RELINK. On a given link, relink primed and non-primed Grassmann variables. This can change the sign of
theweight only. This update is its own reciprocal.

The second and third type of updatesmay lead to disconnected diagrams. In such cases, the configuration is
unphysical.We opt to allow such configurations, but aMonte Carlomeasurement is forbidden and type-1
updates remain impossible until the diagram is connected again. For small values of ζ the sign problem is nearly
absent, but only low expansion orders can be reached. For higher values of ζ (close to and above the critical one)
an increasing number of orders contributes significantly, consequentlymore time is spent in higher orders and
the sign problem significantly worsens.

A.2.Deterministic full evaluation
For the case of the 2D Isingmodel, aMonte Carlo approach offers no advantages over a full series expansion
approach.With this wemean the explicit listing and evaluation of all possible diagrams as opposed to the
stochastic sampling over all topologies. This is because all diagrams in a given expansion order contribute a
number of order unity (times the same power of ζ), oftenwith alternating sign, leading to huge cancellations.
Only the exact cancellation has physical information, and this requires that every diagram is evaluatedmultiple
times before the correct convergence can be seen. AMonte Carlo approachmakesmuchmore sense if the
dominant contributions to the total weight are coming froma narrowparameter region, which is usually the
case if there are additional integrals over internalmomenta.

We therefore wrote a code that evaluates all diagrams for the correlation function up to amaximumorder.
The construction is based on the fact that there is an easy way to construct all the ‘easy’ diagrams (the ones that
formally look like originating from a high-temperature series expansion). These can serve as parent diagrams,
fromwhich further offspring diagrams can be constructedwhich have one ormultipleV3 andV4 vertexes aswell
as possible fermionic exchanges. All diagrams in order n can be found as follows:

(i) Write down all possible words of the form X X Xn1 2 ¼ with the alphabet X 0, 3j Î { } corresponding to the
four directions on the square lattice.Make sure that subsequent directions are not backtracking. For
example, ifX4 is in the positive x+ ˆ direction, thenX5 cannot be in the negative x- ˆ direction. From this
wordwe also know all sites and links that are visited, as well as all type-1 and type-2 vertexes that are used to
make this diagram.

(ii) Such a parent diagram is added to a list of different topologies only if it has a unique topology. To store the
topological information of a bare vertex, we need to store a pair consisting of a site index and a vertex type.
The diagram is then stored as an orderedmapwhere the ‘key’ values are givenfirst by the lattice site index
and second by the vertex type (in binary format). The orderedmapmay havemultiple entries with the same
key ifmultiple vertexes reside on the same site and if they are of the same type (e.g., twoRL vertexes on the
same site).

(iii) We iterate over this configuration list and check if the tail and head sites can be merged into a type-3 vertex
by combining themwith type-2 vertexes that reside on the same lattice site. If so, and if the resulting
topology is unique, the diagram is added to the list. This step is performed in three parts: first for the head
and tail together (in order tofind all diagramswith 2V3 ends), then for the head alone, and finally for the tail
alone.

(iv) We iterate again over the full configuration list and check if 2 type-2 vertexes that live on the same site can be
merged into a type-4 vertex. This last step has to be repeated until no furthermerges are possible (since it
may happen that a diagramhasmultiple type-4 vertexes or evenmultiple type-4 vertexes on the same site).
Diagrams thus created are also added the configuration list if their topology is unique. After completion of
this step, all possible topologies have been generated.

(v) Wecompute the product of all the vertexweights, according to the Feynman rules.

(vi) From this list of parent diagrams we need to generate all offspring diagrams which feature all possible
fermionic permutations formultiply occupied links. This first requires that we knowhow the vertexes are
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connected in the parent diagram,which is stored in the configuration list. The parent diagram always has
permutation sign+1 (because the connections of the primed and non-primedGrassmann variables are
always the same). Next we generate all possible permutations by relinking the primed and/or the non-
primedGrassmann variables usingHeap’s algorithm. If a link has occupation numberm, then there are
m 2( !) combinations to be generated (and theremay bemore than onemultiply occupied link). The
permutation signature is also stored.

(vii) We check the connectivity of the diagram using the breadth-first algorithm. Disconnected diagrams
contribute 0.

(viii) Finally, we compute the isomorphism factor: if m identical vertexes on the same site are found, a factor
m1 !must be taken into account. This is a consequence of howwe construct the diagrams: topology checks

were only performed on the parent diagrams (and based on vertexes only), not on offsprings obtained by
fermionic exchange. (It would be prohibitively expensive to add the offspring diagrams to the list of all
possible diagrams.)Hence, just as we generate illegal disconnected diagrams, we also have a double counting
problemwhen identical vertexes occur in the list.

In order 14, therewere about 140 000 parent diagrams contributing to the first entry on the diagonal of the
correlator. The hugest number of permutations was 4 3 104 4 8»( !) ( !) . Since the sumof these permutations has a
net contribution of order 1,Monte Carlo has roughly a sign problemof the order of 10−8 for these diagrams. The
first time a nontrivial isomorphism factor is seen is in order 6 for thefirst element on the diagonal of the spin
correlator: there are diagrams inwhich two links are doubly occupied, and those links are connected by an
identicalV2 vertex, hence the isomorphism factor 1/2.More efficient ways of evaluating and storing the
diagrams can probably be devised and implemented, but the above scheme is sufficient to check the validity of
the technique and study the transition.

Appendix B. TheG W2 skeleton scheme

The expansion of susceptibility in terms of ζ is, of course, identical to the one found by the high-temperature
series expansionmethod. Tomake the distinction between the high-temperature series formalism and
Grassmannization approach clear, we discuss the skeleton formulation of the interacting fermionic field theory
based on dressed (or ‘bold’) one-body propagators (G) and bold interaction lines (W). This leads to the so-called
G W2 skeleton scheme (see for instance [38, 39] for the terminology): all lines in all diagrams are assumed to be
fully renormalized propagators and effective potentials, but vertex functions remain bare. In section 6we show
that the G W2 -expansion scheme offers a very simple way to solve the 1D Isingmodel exactly.

B.1.Objects andnotation
The key objects in the standard skeleton scheme are the selfenergy (Σ) and the polarization function (Π). They
are related to theGreen function (G) and the effective potential (W) by their respectiveDyson equations. The
diagrams forΠ andΣ are obtained by removing oneW- orG-line, respectively, from connected graphs for the
generalized Luttinger–Ward functionalΨ, shown to second order infigure B1 . In this setup, the expansion
order is defined by the number ofW-lines (obviously, the discussion of section 3.3 does not apply to the self-
consistent skeleton sequence). All objects of interest are tensors; they have a coordinate (ormomentum)
dependence, as well as the legs orientation dependence for the incoming and outgoing parts. This conventional
scheme has to be supplementedwithΨ-graphs involvingV4 vertexes to account for all contributions.We start
with neglectingV4 vertexes, and discuss their role later.

Inmore detail, the formalism of the G W2 expansion in the absence ofV4 vertexes is as follows:

Figure B1.Two low-order contributions to the generalized Luttinger–Ward functionalΨ. Dashed lines denote boldGreen functions
for primed and non-primedGrassmann variables, andwavy solid lines are effective potential lines.
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(i) There are six bare two-body interaction vertexes V2 RU RL RD LU UD LD, , , , ,( ), see the second line in
figure 2. They reside on the sites of the original square lattice and all haveweight 1. Symbolically, we encode
the tensor structure ofV2 using a convenient short hand notationV V n n,2 , 1

4 a g= åa g a g= ( ) , where

V ,

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

. B.1a g =

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( ) ( )

The row index represents the first leg enumerated according to the convention
R U L D, , , 0, 1, 2, 3( ) ( ), and the column index represents the second leg. By doing so, we artificially
double the number of vertexes from6 to 12. For example, the element 0, 2( ) corresponds to n nL R whereas
2, 0( ) corresponds to n nR L, which is exactly the same term.

(ii) The selfenergiesΣ for the primed and non-primed Grassmann variables take the same value. Thus, we have
to compute only one of them andwe can suppress the index that distinguishes between the twoGrassmann
fields. The selfenergy defines theGreen function through theDyson equation

G G G G, , , , , . B.20

,

0åa g a g a m m n n g= + S
m n

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

For a link going from site i to site j, thefirst indexα refers to site i (in the above-defined sense), and the
second index γ refers to site j. Note the absence of themomentumdependence in equation (B.2): the bold
Green function remains local on the links in any order of renormalization. Itmeans, in particular, that the
only non-zero element for a link between sites 0, 0( ) and 1, 0( ) isG02; it can be alternatively denoted asGx

and, by 90o rotation symmetry of the square lattice, is the same for all links.

(iii) Thematrix structure of polarizationΠ is similar to that ofV. The 0th order expression based on bare Green
functions is given by

,

0 0 0

0 0 0

0 0 0

0 0 0

. B.3

x y

x y

x y

x y
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d d

d d
d d

P =
-

-

⎡

⎣
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(iv) The effective potentialW is defined through theDyson equation inmomentum representation

W V V W, , , , , . B.4q q q
,
åa g a g a m m n n g= + P
m n

( ) ( ) ( ) ( ) ( ) ( )

Weexpect to see signatures of the ferromagnetic transition inmatrix elements ofWq 0= because they directly
relate to the divergent uniform susceptibilityχ.

B.2. Zeroth order result
To obtain the 0th order result, we replaceΠwith 0P( ) in equation (B.4). For any ζwe compute Wq 0= from
equation (B.4) bymatrix inversion.Wefind a divergence at 1 3cz = (shown infigure B2 ) that can be also
established analytically.We see thatW diverges as c

1z z- -( ) .We get the same power law behavior for the 0, 1( )
matrix element as well as for the Frobenius norm—they just differ by a constant factor. It is not surprising that
our cz is below the exact value for thismodel; the skeleton approach at 0th order is based exclusively on simple
‘bubble’ diagrams in terms of bareGreen functions that are all positive, leaving to an overestimate of the critical
temperature. Fermionic exchange cycles and vertexes with negative weights do not contribute at this level of
approximation.

B.3. First order result
Wenow include the diagramswith oneW line for the selfenergy and the polarization. In real space wefind

G W GW

G W

2, 0 2, 0

0, 0 cycl. B.5
x x
1 1

1,0 1,0

1 4
0,0

S = S = - = -

P = +

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

Thematrix structure of 1P( ) is identical to that of 0P( ) and is not shown here explicitly. Coupled self-consistent
equations (B.2), (B.4) and (B.5), are solved by iterations.
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B.4. Second order result
Asmentioned previously, to account for second-order terms inΣ, one goes to the second order graphs forΨ and
removes aG line, whereas the second-order terms forΠ are obtained by removing oneW-line from the third-
order graphs forΨ. The corresponding expressions in real space are

W W G

G W W

G W

G W W

0, 0 2, 2

0, 0 2, 2 0, 2

0, 2 0, 2

0, 0 2, 2 . B.6

2
0,0 0,0

3

0,0
2 6

0,0 1,0

1,0
2 6

1,0
2

6
0,0 0,0

S =-

P =

P =

+

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( )
( ) ( )

( )
( )

( ) ( )

( )
( )

( )

( ) ( )

The remaining non-zero contributions are obtained by invoking discrete lattice symmetries. Note that to this
order the polarization function is extremely local and contains only same site and n.n. termsAgain, coupled self-
consistent GW-equations are solved byfixed-point iterations. The resulting behavior forW is analyzed in
figure B3. The transition point has slightly shifted to larger values of ζ compared to the zeroth-order result, and
the exponent has also slightly increased.

B.5. Relating P to the spin correlation function
The G W2 -expansion scheme treats different bare vertexes (see figure 2) on unequal footing: theV2 vertexes are
fully dressed, but theV4 vertexes are included perturbatively (we neglected them so far). These higher-rank

Figure B2.Divergence of the 0th order result for Wq 0= at 1 3cz = is comparedwith the Frobenius norm and a reference linewith
power−1.

Figure B3. Shown is the Frobenius normof Wq 0= (to second order) on a lattice of size 64×64. For comparison, the 0th order result is
also shown. The critical point is found to be at 0.35cz » and the exponent is close to 1.1.
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vertexes have aweight of comparablemagnitude to theV2 vertexes (–2 forV4 versus+1 forV2). In addition, the
difference in sign between theweights is expected to result in important cancellations between the diagrams and
better convergent series for the spin correlation function (this is how cz increases towards its exact value).

Formally, there is no valid reason for neglecting theV4 vertexes altogether. Let us showhow they can be taken
care of in the spirit of the shifted action approach [40]. This discussion also gives us the opportunity to explain
how the spin correlator is related to the G W2 skeleton expansion, which ismost easily understood in the limit

1z  . By assuming that the skeleton sequence (withoutV4) is solved, we introduce the full polarization
function ,a bP̄( ˆ ˆ ) through theDyson equation

V, , , , , . B.7q q q q
,
åa g a g a m m n n gP = P + P P
m n

¯ ( ) ( ) ( ) ( ) ¯ ( ) ( )

To be specific, we focus on the n.n. element ;1,0r( ) similarmanipulations hold for any other distance. Now
consider all diagrams for this correlator without theV4 vertexes within the G W2 formulation (see [40]):

• Put oneV1 vertex on the origin site 0, 0( ) and the otherV1 vertex on the target site r 1, 0= ( ), see
equation (4.21). There are 4 4 16´ = different ways of doing that depending on the directions of legs.
Connect the legs with ,r a gP̄ ( ). For example, in the limit of 1z  , choosing the ( 0a= )-leg on site 0, 0( )
and the 2g = -leg on site 1, 0( ) results in the contributions 4 5z z- + . Similarly, the choice of 1a = and

1g = leads to the contribution 3z .

• PutV3 on 0, 0( ) andV1 on 1, 0( ), and connect all legs with P̄ lines. There are fourways to orient theV3 vertex
and for each one there are two choices for connecting legs with P̄ propagators. The leading contribution to

1,0r( ) goes hence as 8 5z- .

• PuttingV1 on 0, 0( ) andV3 on 1, 0( ) gives the same contribution by symmetry.

• Put oneV3 vertex on 0, 0( ) and the otherV3 vertex on 1, 0( ). Now there are 16ways of orienting bothV3

vertexes, and for each orientation there are 15 choices for connecting the legs. These contributions start at
order 9zµ .

Next, we repeat the above procedure of connecting legs by adding oneV4 vertex, which can be put on any
site, after that we can add twoV4 vertexes etc to generate a perturbative expansion in the number ofV4 terms
Compared to the original bare series in powers of ζ, we have reordered the series: the effective potential is
summing up allV2 vertexes, whereas we expand (and sample in aMonteCarlo framework) in powers of 4l .

To illustrate this framework, let us take 0.01z = and recall that in the bare series
2 4 121,0

3 5 7r z z z z= + + + + ( ) . Thefirst three terms can be reproducedwithoutV4 vertexes andwith
only 1V3 on either the origin or the target site, see figures 3–8. Thefifth order coefficient originates from16
‘simple’ diagrams containing justV1 andV2 vertexes without any exchange. The diagrams containing aV3 vertex
yield a coefficient−8, and the exchange diagrams yield a coefficient−4.On a 16×16 lattice, the propagators
obtained in section B.2 (i.e., to zeroth order) are

0, 2 1.00000002 10 , B.8x y, 1,0
0 02P = ´=

-¯ ( ) ( )( ) ( )
( )

1, 1 1.00010011 10 , B.9x y, 1,0
0 06P = ´=

-¯ ( ) ( )( ) ( )
( )

1, 2 1.00080057 10 , B.10x y, 1,0
0 10P = ´=

-¯ ( ) ( )( ) ( )
( )

1, 2 1.00020021 10 . B.11x y, 0,0
0 08P = ´=

-¯ ( ) ( )( ) ( )
( )

Wedonotmention explicitly other symmetry-related elements. The sumof allmatrix elements for x y, 1,0
0P =

¯ ( ) ( )
( ) is

0.01 000 200 160.One clearly recognizes the coefficients 1, 2 and 16 for the first-, third- and fifth-order
contributions to the bare series. Contributions from theV3 vertexes can be estimated frommultiplying

1, 2 0, 2x y x y, 0,0
0

, 1,0
0P ´ P= =

¯ ( ) ¯ ( )( ) ( )
( )

( ) ( )
( ) which yields 10 10» - . There are four different diagrams, eachwithweight

−2, resulting in the above-mentioned coefficient−8.
On a 16×16 lattice, the propagators obtained in section B.4 (i.e., to second order) are

0, 2 9.99999980 10 , B.12x y, 1,0
03P = ´=

-¯ ( ) ( )( ) ( )

1, 1 1.00009999 10 , B.13x y, 1,0
06P = ´=

-¯ ( ) ( )( ) ( )

1, 2 1.00120089 10 , B.14x y, 1,0
10P = ´=

-¯ ( ) ( )( ) ( )

1, 2 1.00020005 10 . B.15x y, 0,0
08P = ´=

-¯ ( ) ( )( ) ( )

The sumof allmatrix elements for x y, 1,0
0P =

¯ ( ) ( )
( ) is 0.01 000 200 120.One clearly recognizes the coefficients 1, 2

and 12 forfirst, third andfifth order contributions to the bare series. For the fifth order contribution, we now
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obtain 12 instead of 16 thanks to theGrassmann exchange contribution that is accounted for properly at this
level of approximation. By adding theV3 diagrams in theway described abovewe recover the correct result to
this order in ζ (which is+4).

Thefirst instance of aV4 vertex occurs in order 6z in the bare series. The relevant bare diagrams are the ones
for 1,1r( ) with aV4 vertex on site 1, 0( ) (and all cases related by the lattice symmetry). Our bold expansion can
correctly account for this contribution if we put aV4 vertex on this site and connect all unpaired legs with P̄
propagators. However, with the propagators obtained in section B.4we are not supposed to account for all
possible diagrams in the bare series to order 6 because our bold expansion in section B.4 is only accurate up to
order 3z : consider again 1,1r( ) and the bare diagramswhere exchanges are possible on the links between the sites
0, 0 1, 0( )–( ) and 1, 0 1, 1( )–( ). Then there are irreducible non-local contributions that are not accounted for in
section B.4with a positive weight that involves exchanges on both links in a correlated fashion. These
contributions would obviously be accounted for in higher order corrections toΨ, whenΠ becomes non-local.
This is also seen in the numerics: the G W2 approach to second order yields a coefficient of 6 for 6z contribution
to 1,1r( ), which is below the correct value of 10.
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