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Abstract. Applying Feynman diagrammatics to non-fermionic strongly correlated

models with local constraints might seem generically impossible for two separate

reasons: (i) the necessity to have a Gaussian (non-interacting) limit on top of which

the perturbative diagrammatic expansion is generated by Wick’s theorem, and (ii)

Dyson’s collapse argument implying that the expansion in powers of coupling constant

is divergent. We show that for arbitrary classical lattice models both problems can be

solved/circumvented by reformulating the high-temperature expansion (more generally,

any discrete representation of the model) in terms of Grassmann integrals. Discrete

variables residing on either links, plaquettes, or sites of the lattice are associated with

the Grassmann variables in such a way that the partition function (as well as all

correlation functions) of the original system and its Grassmann-field counterpart are

identical. The expansion of the latter around its Gaussian point generates Feynman

diagrams. Our work paves the way for studying lattice gauge theories by treating

bosonic and fermionic degrees of freedom on equal footing.
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Grassmannization of classical models 2

1. Introduction

Feynman’s diagrammatic technique is a powerful tool of statistical mechanics. Among

the hallmarks of the method are the ability to deal—both analytically and numerically—

with the thermodynamic limit rather than a finite-size cluster, the possibility of partial

summations up to infinite order, and the fully self-consistent formulation in terms of

renormalized (dressed) quantities. The latter properties allow one to go beyond the

Taylor expansion in terms of the coupling constant or any other parameter.

The advantage of having a diagrammatic technique at our disposal comes however

at a price. The most serious issue is the divergence of the expansion in powers of the

coupling constant for systems prone to Dyson’s collapse [1] (i.e., pathological system

behavior when the coupling constant is rotated in the complex plane). For partial

summation techniques to work, the non-perturbed part of the theory has to be Gaussian

(in terms of either real, or complex, or Grassmann variables) to ensure the validity

of Wick’s theorem. These issues are often related; for example, the Ising and XY

models formulated in terms of the original spin variables do not suffer from Dyson’s

collapse but lack the Gaussian (non-interacting) limit, while their classical (lattice) field

counterparts with the well-defined Gaussian limit are subject to Dyson’s collapse. It

would be a mistake, however, to think that a meaningful diagrammatic series is only

possible for a very limited class of Hamiltonians, namely, when the original system is

that of interacting lattice fermions. As already clearly explained by Samuel in a series

of papers [2, 3, 4] a broad class of classical spin and dimer models can be reformulated

in terms of familiar interacting fermions and studied with field-theoretical techniques.

We note that similar techniques were also explored by other authors [5, 6, 7, 8, 9] and

that also rather arbitrary quantum spin/boson lattice models can be rigorously mapped

onto fermionic field theories [10, 11, 12].

As expected, grassmannian formulations of spin/link/boson models with local

constraints are generically strongly-coupled theories at low temperature, and even

the most advanced self-consistent treatments based on the lowest-order graphs are

not supposed to provide quantitatively (and often qualitatively) accurate answers.

Moreover, these theories may contain arbitrary multi-particle interaction vertexes, which

further complicate the structure of the diagrammatic expansion. One of the promising

numerical techniques currently under development for strongly correlated systems is

diagrammatic Monte Carlo (DiagMC). It is based on the stochastic evaluation of

irreducible Feynman graphs up to some high order and can be implemented in a number

of ways, from perturbative expansions in powers of the coupling constant to various self-

consistent skeleton schemes based on fully renormalized one- or two-body propagators.

In such contexts as resonant fermions [13], frustrated magnetism [14, 15], and out-of-

equilibrium impurity-like models [16, 17] the method was recently shown to be able

to go significantly beyond the state of the art. Also, significant progress has been

made in understanding superfluid properties of the Hubbard-type models [18, 19, 20].

Notably, the infamous sign-problem preventing conventional Monte Carlo methods
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Grassmannization of classical models 3

from simulating fermionic system with sizes large enough for reliable extrapolation to

the thermodynamic limit, is absent as such in DiagMC. Instead, the computational

complexity is now linked to the number of diagrams growing factorially with their

order. Nevertheless, millions of diagrams can be accounted for and the approach is

flexible enough to deal with an arbitrary interaction Hamiltonian/action.

The current paradigm for generic lattice gauge models, as they occur in lattice-QCD

as well as in solid state and ultra-cold atomic physics, is to work with finite-size systems

and to treat link variables separately from the fermionic sector. More precisely, link

variables are simulated using classical Monte Carlo techniques (with local updates), and

fermions (quarks) are described by determinants. This approach suffers from a severe

sign-problem for finite density of fermions (non-zero chemical potential) [21, 22]. If link

variables are straightforwardly represented by bosonic fields, then the thermodynamic

limit can be addressed within the diagrammatic approach that treats bosonic and

fermionic degrees of freedom on equal footing. However, in this formulation the bosonic

fields pose a fundamental problem, which manifests itself in a zero convergence radius.

It is thus desirable to have a generic scheme for replacing link variables with Grassmann

fields to ensure that the diagrammatic expansion has proper analytic properties around

the Gaussian point.

In this paper, we introduce a general procedure of grassmannization for classical

lattice models. It is by no means a unique one, and in certain specific cases more

compact/simpler representations can be found. There is a strong connection to the

anti-commuting variables approach introduced by S. Samuel [2, 3, 4], which can solve

the 2D Ising model exactly (free fermion operators to solve the Ising model exactly were

first found by Kaufman [23] and refined by Schultz, Mattis and Lieb [24]) and provides

a good starting point for field-theoretic studies of the 3D Ising model. For the latter

system our approach amounts to an alternative but equally complicated field theory.

Our goal is to build on these ideas and develop a scheme that is flexible enough to

apply to a broader class of link models with arbitrary multi-bond interactions and local

constraints.

The idea of grassmannization is to represent the partition function of the model as

a Grassmann integral from the exponential of a Grassmann functional. The Feynman

rules then emerge by Taylor-expanding the non-Gaussian part of the exponential and

applying Wick’s theorem to the Gaussian averages. Paradigmatic lattice systems are

link and plaquette models featuring discrete degrees of freedom—integer numbers—

residing on links (plaquettes) of square lattices and subject to certain local constraints

in terms of the allowed values of the sum of all link (plaquette) variables adjacent to

a given site (edge). It turns out that it is these constraints that require special tricks

involving multiple Grassmann variables for each value of each discrete variable. Link

models often emerge as high-temperature expansions of lattice systems [25] in Ising,

XY, O(3), etc. universality classes no matter whether the original degrees of freedom

are discrete or continuous (e.g., classical vector-field variables). Link models may also

emerge as dual (low-temperature) expansions, and specific examples are provided by
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Grassmannization of classical models 4

the 2D Ising model [26] and the 3D |ψ|4 model (the latter case leads to the so-called

J-current model with long-range interactions). Similarly, plaquette models emerge as

a high-temperature expansion of lattice gauge theories, but sometimes they represent

the dual (low-temperature) expansion, as in the case of the 3D Ising model. Finally, it

is worth mentioning how the models with the same general structure are generated by

strong-coupling expansions in lattice-QCD [27].

The paper is structured as follows. In Sec. 2 we explain how a partition function of

a discrete link model can be written as a Grassmann integral. The equivalence between

the two formulations is readily proved through term-by-term comparison. Standard

properties of Grassmann variables then immediately allow one to express the Grassmann

weight in the exponential form in order to define the field-theory. In Sec. 3 we discuss

generalizations of the proposed grassmannization scheme. We start by describing the

procedure for a broad class of plaquette models. Next we show a simple way to introduce

Grassmann variables for non-local link models with pairwise interactions between the

link variables. The construction is further simplified when constraints are replaced with

statistical penalties for certain configurations of link (plaquette) variables. We conclude

this section with defining the meaning of the term “order of expansion” for the resulting

field theory. In Sec. 4 we deliberately choose the most general grassmannization scheme

for the 2D Ising model to illustrate how our construction works in practice. Results are

shown in Sec. 5. We conclude with prospects for future work in Sec. 7. There are also

2 appendices, where we provide implementation details for the solution of the 2D Ising

model in the bare and bold expansion schemes, respectively.

2. Grassmannization of local link models

2.1. Local link models

For the purposes of this article, we mean by a link model a classical statistical model

with states labeled by a set of discrete variables {αb} residing on links (bonds) of a

certain lattice. In addition, we require that the ground state is unique. Without loss of

generality, it can be chosen to be the state with αb = 0 on each link b.

We further narrow the class of link models—to which we will refer to as local link

models—by the requirement that the statistical weight of a state factors into a product

of link and site weights (to be referred to as link and site factors, respectively). A link

factor, fb, is a function of the corresponding link variable, fb ≡ f(αb). The site factor,

gj, is a function that depends on all variables residing on links attached to the site

j, denoted as {αb}j. Then, gj ≡ g({αb}j). Solely for the purpose of avoiding heavy

notations, we consider translational invariance when f(αb) ≡ fb is the same function on

all links and gj site independent, gj ≡ g. Given that only the relative weights of the

states matter, we set f(0) = 1 and g(0j) = 1, where 0j stands for the {αb = 0}j set.
The site factors play the key role in link models. They describe interactions between

(otherwise independent) link degrees of freedom. In particular, this interaction can take
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Grassmannization of classical models 5

Figure 1. Assignment of Grassmann fields for link (left) and site (right) factors. Upon

integration, the labels of the Grassmann variables must be equal in order to connect

variables from all factors (see text).

the extreme form of a constraint on the allowed physical configurations of {αb}j (e.g.,

the zero-divergency constraint in J-current models [28], or the even-number constraint

in the high-temperature expansion of Z2 models), in which case gj({αb}j) is identically
zero for each non-physical state of {αb}j.

2.2. Grassmannization

For each label α �= 0 of the link b, introduce four Grassmann variables: ξα,b, ξ
′
α,b, ξ̄α,b,

and ξ̄′α,b. For a textbook introduction to Grassmann variables, we refer to Ref. [29]. For

α = 0 we assume that ξ0,b = ξ′0,b = ξ̄0,b = ξ̄′0,b = 1. In terms of these variables, define the

Grassmann weight—a product of link, Ab, and site, Bj, factors such that tracing over

all degrees of freedom yields the partition function Z = Tr
∏
Ab

∏
Bj—by the following

rules,

Ab = exp

{∑
α �=0

[
ξ̄′α,bξ

′
α,b√

f(α)
+
ξ̄α,bξα,b√
f(α)

]}

=
∏
α �=0

exp

{
ξ̄′α,bξ

′
α,b√

f(α)
+
ξ̄α,bξα,b√
f(α)

}
, (2.1)

Bj =
∑
{αb}j

g({αb}j)
∏

b∈{b}j
ξ̆αb,b ξ̆

∗
αb,b

= 1 +
∑

{αb}j �=0j

g({αb}j)
∏

b∈{b}j
ξ̆αb,b ξ̆

∗
αb,b

. (2.2)

Here {b}j stands for the set of all links incident to the site j, and variables ξ̆αb,b and

ξ̆∗αb,b
are defined differently for different links. We first introduce the notion of direction

(on each link) so that one of the two link ends becomes “incoming” and its counterpart

“outgoing” (with respect to the site adjacent to the end). Next, we assign (see Fig. 1

for an illustration)

ξ̆αb,b = ξαb,b , ξ̆∗αb,b
= ξ′αb,b

(for incoming end),

ξ̆αb,b = ξ̄′αb,b
, ξ̆∗αb,b

= ξ̄αb,b (for outgoing end) .
(2.3)

The claim is that the Grassmann integral of the weight over all variables reproduces

the partition function of the original link model. For a link b to yield a non-zero
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Grassmannization of classical models 6

contribution to the integral the link labels in (2.2) for the sites of the incoming (j = 1)

and outgoing (j = 2) ends of the link should match each other: α1 = α2. Indeed,

at α1 �= α2, it is not possible to find an appropriate term in the expansion of the

link exponential (2.1) such that—upon multiplying by the site factors ξ̆α1,b ξ̆
∗
α1,b

and

ξ̆α2,b ξ̆
∗
α2,b

—all powers of the Grassmann variables ξα1,b, ξ
′
α1,b

, ξ̄α1,b, ξ̄
′
α1,b

, ξα2,b, ξ
′
α2,b

, ξ̄α2,b,

ξ̄′α2,b
are exactly equal to 1 to ensure that the Grassmann integral is non-zero. For

α1 = α2 ≡ α, we need to consider two cases: α = 0 and α �= 0. In the first case, the

non-zero contribution to the integral comes from the product of second terms in the

expansion of the link exponentials (2.1):∏
γ �=0

∫
D[ξ̄′ξ′ξ̄ξ]γ exp

{
ξ̄′γξ

′
γ√

f(γ)
+

ξ̄γξγ√
f(γ)

}

=
∏
γ �=0

∫
D[ξ̄′ξ′ξ̄ξ]γ

[
1 +

ξ̄′γξ
′
γ√

f(γ)

] [
1 +

ξ̄γξγ√
f(γ)

]

=
∏
γ �=0

1

f(γ)
≡ 1

f∗
, (2.4)

where we defined f∗ in the last step. In the second case, the two end sites contribute the

factor ξα,b ξ
′
α,b ξ̄

′
α,b ξ̄α,b = ξ̄′α,b ξ

′
α,b ξ̄α,b ξα,b. Now we have to consider the first term in the

expansion of the link exponential for state α, while for other variables the calculation is

repeated as in (2.4)∏
γ �=0

∫
D[ξ̄′ξ′ξ̄ξ]γ ξ̄′αξ̄α

[
1 +

ξ̄′γξ
′
γ√

f(γ)

] [
1 +

ξ̄γξγ√
f(γ)

]
ξαξ

′
α

=
∏

γ �=0,α

1

f(γ)
=
f(α)

f∗
. (2.5)

We see that, apart from the irrelevant global factor
∏

b 1/f∗, we reproduce the

configuration space and weight factors of the original link model.

2.3. Field-theoretical formulation

To generate the Feynman diagrammatic expansion, we need to represent the Grassmann

weight factor in the exponential form. The link factors (2.1) have the form of Gaussian

exponentials already. Hence, it is only the site factors that need to be rewritten

identically as

Bj = exp

⎡
⎣∑

{αb}j
λ({αb}j)

∏
b∈{b}j

ξ̆αb,b ξ̆
∗
αb,b

⎤
⎦ . (2.6)

The constants λ({αb}j) are readily related to the site factors g({αb}j) by simple algebraic

equations obtained by expanding the exponential and equating sums of similar terms to

their counterparts in the r.h.s. of Eq. (2.2).

By expanding the non-Gaussian part of the exponential (2.6) and applying Wick’s

theorem, we arrive at Feynman rules for the diagrammatic series. The reader should
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Grassmannization of classical models 7

avoid confusion by thinking that an expansion of the exponential (2.6) takes us back to

Eq. (2.2). Recall that connected Feynman diagrams are formulated for the free energy

density, not the partition function, and summation over all lattice sites is done for a

given set of interaction vertexes in the graph, as opposite to the summation over all

vertex types for a given set of lattice points. Therefore, the “coupling constants” in

Feynman diagrams are λ’s, not g’s.

2.4. Absorbing link factors into site factors

The separation of the weight factors into link and site ones is merely a convention.

Indeed, each link factor can be ascribed to one of the two site factors at its ends. This

leads to a slightly different Grassmannization protocol. This trick may prove convenient

for generalization to non-local models considered below.

3. Generalizations

3.1. Plaquette models

A plaquette model can be viewed as a certain generalization of the local link model.

States (configurations) of a plaquette model are indexed by a set of discrete labels

residing on (oriented) plaquettes of a hyper-cubic lattice. The plaquette label α takes

on either a finite or countably infinite number of values. The statistical weight of each

state factors into a product of plaquette and edge weights (to be referred to as plaquette

and edge factors, respectively). A plaquette factor, f , is a function of the corresponding

plaquette variable, f ≡ f(α). An edge factor, g, is a function which depends on the

labels of all plaquettes sharing this edge (this set of labels will be denoted as {αp}j for
the edge j); it encodes, if necessary, constraints on the allowed sets of {αp}j.

Without loss of generality (up to a global normalization factor), we identify the

“ground state” as αp = 0 for all plaquettes, and set f(0) = 1. The orientation of

the plaquette (for some models it is merely a matter of convenience) is enforced by

an ordered enumeration of sites at its boundary. For a plaquette p, the vertex label

ν ≡ νp = 0, 1, 2, 3 enumerates four vertices in such a way that ν ± 1 modulo 4 stands

for the next/previous vertex with respect to the vertex ν in the clockwise direction.

For each state α �= 0 of the plaquette p, we introduce eight Grassmann variables:

ξα,p,νp , ξ̄α,p,νp , νp = 0, 1, 2, 3. As before, for α = 0 the variables ξ and ξ̄ are not

Grassmannian, ξ0,p,ν = 0, ξ̄0,p,ν = 1. The corresponding plaquette weight in the

Grassmann partition function reads

Ap = exp

⎧⎨
⎩
∑
α �=0

[−f(α)]−1/4

3∑
νp=0

ξ̄α,p,νp ξα,p,νp

⎫⎬
⎭ . (3.1)

Note a close analogy with Eq. (2.1). Site weights Eq. (2.2) are now replaced with edge

weights Bj. Using the notation {p}j for the set of all plaquettes sharing the edge j, and

Page 7 of 34 AUTHOR SUBMITTED MANUSCRIPT - NJP-105564.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Grassmannization of classical models 8

0j for the state when all plaquettes in this set have αp = 0, we write

Bj = 1 +
∑

{αp}j �=0j

g({αp}j)
∏

p∈{p}j
ξ
α,p,(ν

(j)
p +1)

ξ̄
α,p,ν

(j)
p
, (3.2)

where ν
(j)
p is the site enumeration index within the plaquette p, with respect to which the

edge j is outgoing. [Accordingly, the edge j is incoming with respect to site (ν
(j)
p +1).] In

what follows, we will associate ν
(j)
p not only with the site, but also with the corresponding

edge.

The proof that the classical and Grassmannian partition functions are identical (up

to a global factor) is similar to the one for the link model after we notice that a non-zero

contribution from plaquette p is possible only if the same plaquette label αp is used in

all edge weights. The α = 0 contribution comes from the term

−
∏
γ

1

f(γ)

3∏
νp=0

ξ̄γ,p,νp ξγ,p,νp (at α = 0) (3.3)

in the expansion of the exponential (3.1). It contributes a factor 1/q∗, where

q∗ =
∏
γ

(−1)f(γ) . (3.4)

The α �= 0 contribution comes from the plaquette term

∏
γ �=α

1

f(γ)

3∏
νp=0

ξ̄γ,p,νp ξγ,p,νp (at α �= 0) (3.5)

multiplied by the product
∏3

νp=0 ξ̄α,p,νp ξα,p,νp originating from the boundary edge terms

ξ
α,p,(ν

(j)
p +1)

ξ̄
α,p,ν

(j)
p
. Because of the Grassmann anticommutation rules, this four-edge

factor yields an additional minus sign, explaining the use of the negative sign in front

of f(α) in Eq. (3.1). Upon Grassmann integration, the contribution to the partition

function of the resulting term equals to f(α)/q∗.
Feynman diagrammatics for the plaquette model is obtained by following the same

basic steps as for the link models. The Gaussian part is given by Eq. (3.1) with four

pairs of Grassmann fields for every non-zero plaquette state. The interaction part of

the Grassmann action is contained in edge weights (3.2) after they are written in an

exponential form

Bj = exp

⎡
⎣∑

{αp}j
λ({αp}j)

∏
p∈{p}j

ξ
α,p,(ν

(j)
p +1)

ξ̄
α,p,ν

(j)
p

⎤
⎦ , (3.6)

with the constants λ({αb}j) unambiguously related to the edge factors g({αb}j).
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Grassmannization of classical models 9

3.2. Unconstrained discrete models with pair-wise interaction

The hallmark of the considered link (plaquette) models is the non-trivial interaction

introduced via site (edge) factors. It is due to this type of interaction—and, in particular,

its extreme form of a constraint on allowed combinations of discrete variables—that we

had to introduce multiple Grassmann variables for each state of the link (plaquette). The

situation simplifies dramatically if we are dealing with unconstrained discrete degrees

of freedom with pair interactions between them.

Consider a link model defined by the statistical weight

W ({αb}) =
∏
b1,b2

F (αb1 , b1; αb2 , b2) , (3.7)

based on products of two-link factors. Without loss of generality, these factors can be

cast into the exponential form

W ({αb}) =
∏
b1,b2

e
−(1/2)ηαb1

,b1;αb2
,b2 , (3.8)

We assume that all factors in the product are bounded and properties of the η-matrix

are well-conditioned. Grassmannization of this model can be done by taking advantage

of properties of Gaussian integrals that allow one to express (3.8) identically (up to

normalization) as

W ({αb}) =
∫

DX
∏
b

eiXαb,b WG({Xαb,b}) . (3.9)

Here {Xαb,b} is a collection of auxiliary real continuous variables. For briefness, we do

not show explicitly the Gaussian weight WG that is uniquely defined by the values of

all pairwise averages performed with this weight

ηαb1
,b1;αb2

,b2 = 〈Xαb1
,b1Xαb2

,b2〉 . (3.10)

What we achieve for a fixed set of X variables is a link model that contains only

single-link factors

∀b : fb(αb) = eiXαb,b . (3.11)

For models with site constraints, link factors can be attributed to site factors at the

incoming (or outgoing) ends with subsequent Grassmannization of the latter as discussed

above. For unconstrained models, Grassmannization is accomplished by replacing sums

over link variables with

∑
αb

fb(αb) → W (G)
b = exp

[
ξ̄bξb

(∑
αb

eiXαb,b

)]
. (3.12)

Note that here Grassmann variables have nothing to do with the discrete index αb,

in contrast with previous considerations. The resulting formulation contains both

Grassmann and real-number integrations.
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Grassmannization of classical models 10

Clearly, all considerations can be repeated identically (up to a trivial change in

notations) for a model based on discrete variables αs residing on lattice sites when the

configuration weight is given by

W ({αs}) =
∏
s1,s2

e−(1/2)ηαs1 ,s1;αs2 ,s2 . (3.13)

3.3. Order of expansion

The notion of the order of expansion is absolutely central for practical applications when

diagrammatic series are truncated. Normally, it is defined as an integer non-negative

power of a certain dimensionless parameter ζ playing the role of a generalized coupling

constant, such that the diagrammatic expansion corresponds to a Taylor expansion

in ζ about the point ζ = 0. Without loss of generality, we can always select ζ (by

an appropriate rescaling) in such a way that the physical value of ζ is 1. This is

especially convenient in cases when there is more than one interaction vertex, and

ascribing different powers of ζ to them results in (re-)grouping of different terms in the

series. A reasonable guiding principle behind such a (re-)grouping is the requirement to

end up with Taylor series having finite convergence radius around ζ = 0. The latter is

guaranteed if the theory is analytic in ζ at the origin; the necessary condition for this

to be true is the absence of Dyson’s collapse when changing the sign (more generally,

the phase) of ζ.

As an illustration, consider the theory (3.7)-(3.8) and its Grassmann counterpart

(3.12). Introduce the ζ-dependence by the replacement

eiXαb,b → eiζXαb,b . (3.14)

In terms of the original theory, the replacement (3.14) means η → ζ2η, for all η’s in

Eq. (3.8). If amplitudes of all η values in (3.8) are bounded, we expect that such a

dependence on ζ is analytic not only for a finite system, but also in the thermodynamic

limit at finite temperature. In the Grassmann action (3.12), the expansion of the

exponential eiζXs,αb in powers of ζ generates an infinite series of interaction vertexes

(the zeroth-order term defines the harmonic action):

ξ̄bξb
∑
αb

(
iζXαb,b −

1

2
ζ2X2

αb,b
− i

3!
ζ3X3

αb,b
+ . . .

)
. (3.15)

Higher-order vertexes in X come with a higher power of ζ and this sets unambiguously

the rules for defining the diagram order.

4. Illustration for the 2D Ising model

In this Section we follow the most general protocol of introducing Grassmann

variables and deliberately avoid any possibility is using more efficient, model specific,

formulations. The 2D case is considered exclusively for reasons of presenting explicitly
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Grassmannization of classical models 11

the final formulation in a relatively compact form. Let us mention again the crucial

property we want from our theory: analyticity in the expansion parameter ζ at the

origin, as seen from the absence of Dyson’s collapse when changing the phase of ζ. This

should become apparent in the derivation presented in this section.

4.1. Model and observables

Consider the 2D Ising model on the square lattice with the Hamiltonian

−H/T = β
∑
〈i,j〉

σiσj +
∑
i

hiσi. (4.1)

The Ising variables σ = ±1 live on the sites of the 2D square lattice and interact

ferromagnetically with their nearest neighbors, as is represented by the first term in the

Hamiltonian. We write the dimensionless coupling as β in units of the temperature T .

Additionally, every spin feels a dimensionless magnetic field hi = h, which can be taken

h ≥ 0 without loss of generality. The partition function of the Ising model reads

Z =
∑
{σi}

∏
〈i,j〉

eβσiσj

∏
i

ehiσi . (4.2)

The most typical observable of the Ising model is the spin-spin correlation function ρij,

ρij = 〈σiσj〉 = 1

Z

∂2Z

∂hi∂hj

∣∣∣∣
hi=hj=h

. (4.3)

4.2. Grassmannization of the high-temperature expansion

Using the well-known identities

eβσiσj = cosh β (1 + σiσj tanh β)

ehσi = coshh (1 + σi tanhh) , (4.4)

the partition function can be written as Z = Z0Z
′ with Z0 = (cosh β)2N(coshh)N for

a lattice of N sites and 2N links. With the notation ζ = tanh β and η = tanhh the

remaining factor is given by

Z ′ =
∑
{σi}

∏
〈i,j〉

(1 + σiσjζ)
∏
i

(1 + σiη). (4.5)

Upon summation over spin variables we are left with a link model, where link variables

take only two values, 0 or 1, to specify whether we are dealing with the first or the

second term in the sum (1 + σiσjζ). In the partition function, terms with an odd

power of σi on any of the sites yield zero upon spin summation. The remaining terms

depend on link variables in a unique way. The formalism of the previous section can be

straightforwardly applied, and we obtain

f(0) = 1 , f(1) = f∗ = ζ , (4.6)

g(0) = g(2) = g(4) = 1 , g(1) = g(3) = η . (4.7)
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Grassmannization of classical models 12

Here we label site factors using the total sum of incident link variables,
∑

b∈{b}j αb, to

avoid unnecessary rank-4 tensor notations. If we further redefine Z0 → Z02
Nf 2N

∗ , then

the Grassmann representation of the partition function Z ′ is given by

Z ′ =
∫

D[ξ̄′ξ′ξ̄ξ]{αb}
∏
{αb}

exp

(
1√
ζ
ξ̄′αb
ξαb

+
1√
ζ
ξ̄αb
ξαb

)

× exp

⎛
⎝∑

j

λα{b}

∏
bj

ξ̆αb
ξ̆∗αb

⎞
⎠ . (4.8)

4.3. Vertex coefficients

We now compute the factors λ. To this end, we first introduce notations (for a fixed

site j and suppressing the site index for clarity)

V1=ξ̆Rξ̆
∗
R + ξ̆U ξ̆

∗
U + ξ̆Lξ̆

∗
L + ξ̆Dξ̆

∗
D = nR + nU + nL + nD,

V2=nRnU + nRnL + nRnD + nUnL + nUnD + nLnD,

V3=nRnUnL + nRnUnD + nRnLnD + nUnLnD,

V4=nRnUnLnD, (4.9)

and then Taylor expand

exp [λ1V1 + λ2V2 + λ3V3 + λ4V4] . (4.10)

The only non-zero terms generated by this expansion are V 2
1 = 2V2, V

3
1 = 6V3, V

4
1 =

24V4, V1V2 = 3V3, V1V3 = 4V4 and V 2
2 = 6V4. All other powers and multiplications of

operators yield zero. Note that operators from different sites commute and may be

excluded from consideration here. The final result is

exp [λ1V1 + λ2V2 + λ3V3 + λ4V4] =

1 + λ1V1 + λ2V2 + λ3V3 + λ4V4

+
1

2

(
λ212V2 + λ226V4 + 2λ1λ23V3 + 2λ1λ34V4

)
+

1

6

(
λ316V3 + 3λ21λ212V4

)
+

1

24
λ4124V4. (4.11)

Term-by-term matching with Eq. (4.7) then leads to

g1 = η = λ1 , (4.12)

g2 = 1 = λ2 + λ21 , (4.13)

g3 = η = λ3 + 3λ1λ2 + λ31 , (4.14)

g4 = 1 = λ4 + 3λ22 + 4λ1λ3 + 6λ2λ
4
1 + λ41 . (4.15)

The solution is immediate

λ1 = η , (4.16)

λ2 = 1− η2 , (4.17)

λ3 = − 2η + 2η3 , (4.18)

λ4 = − 2 + 8η2 − 6η4 . (4.19)
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Grassmannization of classical models 13

Figure 2. (Color online) Four classes of generic pre-diagrams for link models on a

square lattice. The elements in the first and the third row can only occur at the

end points of the spin correlator (indicated by the open circle), the elements in the

second and fourth row are the generic basic vertexes of the theory ascribed to the

sites of the underlying lattice. There are hence 4 V1 vertexes with 1 leg (first row,

U,R,D, and L), 6 V2 vertexes with 2 legs (second row, RU,RD,LD,LU,UD and

LR), 4 V3 vertexes with 3 legs (third row, LUR,URD,LDR, and DLU), and 1 V4

vertex with 4 legs (fourth row, RULD). Connected to the legs of these vertexes are

pairs of bi-Grassmann fields (thick dash lines (blue and red)) that reside on the links

of the underlying 2D lattice. Thin dashed lines (showing lattice links adjacent to the

site of the vertex) are to guide the eye and have no other meaning than showing the

underlying 2D lattice. The generalization to other dimensions is straightforward.

In zero external field the only vertexes with non-zero coupling in the partition

function are V2 and V4,

∏
j

exp(V
(j)
2 + V

(j)
4 ) = exp

{∑
j

(V
(j)
2 − 2V

(j)
4 )

}
, (4.20)
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Grassmannization of classical models 14

Figure 3. (Color online) The first- and third-order diagrams for ρ(1,0) (at h = 0)

based on expanding (4.3). The contribution of these diagrams is ζ + 2ζ3.

and the spin-spin correlation function is given by

ρij =
1

Z ′
∏
b

∫
D[...]b exp

(
1√
ζ
ξ̄′bξ

′
b +

1√
ζ
ξ̄bξb

)

exp

{∑
j

(V
(j)
2 − 2V

(j)
4 )

}

× (V
(i)
1 − 2V

(i)
3 )(V

(j)
1 − 2V

(j)
3 ). (4.21)

4.4. Feynman rules

In order to derive the Feynman rules generating the diagrammatic series, we write the

partition function in the form

Z ′ = Z�

( ∞∑
n=0

∑
x1,...,xn

(+1)n

n!
〈V (x1) . . . V (xn)〉0

)
, (4.22)

where Z� is the partition function of the Gaussian part (it is the product of local

link contributions), Z� =
∏

b

∫ D[...] exp(ξ̄′bξ
′
b +

1
ζ
ξ̄bξb) = (1 + ζ)(2N). The Feynman

rules for the correlation function of the 2D Ising model now follow from the textbook

considerations:

(i) The bare propagators G(0) =
√
ζ for primed and non-primes variables are local

and reside on the links of the original lattice. In the correlation function they

always occur in pairs of conjugate Grassmann variables and each pair contributes a

factor ζ. The propagation lines do not have arrows. The bare interaction vertexes

(or pre-diagrams, see Fig. 2) are also local and live on the sites of the lattice.

There are different types belonging to the V2 and V4 classes with weight 1 and

−2, respectively [see Eq. (4.20)]. On the first (and last) site of the correlator we
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Grassmannization of classical models 15

Figure 4. (Color online) Fifth-order diagrams for ρ(1,0) (at h = 0) based on expanding

(4.3): These four diagrams involve a three-leg end vertex. Each diagram contributes

(−2)ζ5.

Figure 5. (Color online) Fifth-order diagrams for ρ(1,0) (at h = 0) based on expanding

(4.3): These four counterparts of the diagrams shown in Fig. 4 are obtained by replacing

a three-leg end vertex with a one-leg end vertex. Each diagram contributes ζ5.
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Grassmannization of classical models 16

Figure 6. (Color online) The four remaining counterparts (cf. Fig. 5) to Fig. 4.

Figure 7. (Color online) Additional fifth-order diagrams for ρ(1,0) (at h = 0) involving

two one-leg end vertexes. Each diagram contributes ζ5.

have a vertex belonging to the class V1 or V3 (see Figs. 3-7) with weight 1 and −2,

respectively [see (4.21)].

(ii) Draw in order n all topologically distinct connected diagrams with n pairs of bi-

grassmann variables living on the links of the lattice. The number of interaction

vertexes, excluding the end points, is at most n− 1.

(iii) For links with multiple occupancy, a minus sign occurs when swapping 2 Grassmann
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Grassmannization of classical models 17

Figure 8. (Color online) Fifth-order diagrams for ρ(1,0) (at h = 0) containing a link

with multiple Grassmann pairs. The net sum of the shown diagrams is −ζ5, because

there are three ways of associating the primed and non-primed propagators along the

bottom link, two of them contribute with the negative sign (upper right and lower left

panel) and the third one is contributing with the positive sign (lower right panel). The

remaining possibility (shown in the upper left panel) is not allowed since it produces

a disconnected diagram.

variables. The minus sign can also be found by counting all closed fermionic loops.

(iv) The total weight of the diagram in order n is hence (−1)P (−2)qζn with P the

signature of the exchange permutation and q the sum of all type-3 and type-4

vertexes.

Disconnected diagrams are defined with respect to both the primed and non-primed

Grassmann variables simultaneously. Thus, a link can lead to a disconnected diagram

only if the primed and non-primed variables simultaneously lead to disconnected pieces

(such as the upper left panel in Fig. 8). We check the connectivity of a diagram by

the breadth-first algorithm. We have implemented the Feynman rules in two different

appraoches: An algorithm that enumerates and evaluates all possible diagrams, as well

as a diagrammatic Monte Carlo approach. Details about the implementation can be

found in the Appendix Appendix A

4.5. Example: the first element of the spin correlation function

For illustrative purposes, let us focus on the first element of the correlation function

connecting the sites (0, 0) and (1, 0) (using translational invariance, any 2 neighboring

sites 〈r1, r2〉 can be taken). To first order, we put a V1 vertex on the origin and target
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Grassmannization of classical models 18

site. There is one way to combine them, thus the total contribution is ζ. By the

symmetry of the lattice, even expansion orders do not contribute. In third order, we

can construct a diagram by putting a V2 (RD) vertex on the site (0, 1) and a V2 vertex

(LD) on the site (1, 1). The mirror symmetry of this diagram about the x-axis is also a

valid diagram. Hence, the contribution is 2ζ3. These diagrams contributing in first and

third order are shown in Fig. 3.

In fifth order, there are 4 diagrams with a V3 vertex on one of the endpoints, yielding

a contribution −8ζ5 . There are 14 diagrams consisting of only V1 and V2 vertexes and

single pair-lines, yielding a contribution 14ζ5. The contributions to fifth order are shown

in Figs. 4, 5, 7, and 8. There are however additional diagrams with 2 pairs of Grassmann

variables living on the same link, as is shown in Fig. 8 (there are equivalent diagrams

obtained by mirror symmetry around the x-axis which are not shown). They all have

on the origin a V1 and a V2 (RU) vertex, and on the target site (1, 0) a V1 and a V2
(UL) vertex. On the site (1, 1) there is a V2 (LD) and on site (0, 1) a V2 (RD) vertex.

Let us look more carefully at the link between the origin and target site:

1

ζ2

∫
D [

ξ̄′ξ̄ξξ′
]
ξ̄′ξ̄ξξ′ξ̄′ξ̄ξξ′. (4.23)

The origin is associated with ξ̄′ξ̄ and the target with ξξ′ by our convention. Applying

Wick’s theorem, there are 4 possible ways to pair the Grassmann variables:

(i) The pairing combination ξ̄′ ξ̄ξ ξ′ ξ̄′ ξ̄ξ ξ′ comes with the sign +1 and leads to a

connected diagram (this is the lower right panel in Fig. 8).

(ii) The pairing combination ξ̄′ ξ̄ ξξ′ξ̄′ξ̄ ξ ξ′ comes with the sign -1 and leads to a

connected diagram (this is the upper right panel in Fig. 8)

(iii) The pairing combination ξ̄′ ξ̄ξ ξ′ξ̄′ ξ̄ξ ξ′ comes with the sign -1 and leads to a

connected diagram (this is the lower left panel in Fig. 8)

(iv) The pairing combination ξ̄′ ξ̄ ξ ξ′ξ̄′ ξ̄ ξ ξ′ leads to a disconnected diagram and does

not contribute to the correlation function (this is the upper left panel in Fig. 8).

The net contribution of these 4 distinct diagrams is hence−1 (also the diagrams obtained

by mirror symmetry around the x-axis yield −1, so the total contribution to fifth order

is (−8 + 14− 2)ζ5 = 4ζ5.

It is instructive to notice that the sum of all diagrams in which multiple Grassmann

pairs live on the same link always produces zero in case all diagrams are connected,

in line with the nilpotency of Grassmann variables. Wick’s theorem splits however

these contributions in connected and disconnected diagrams, where the disconnected

diagrams cancel against the denominator of the Feynman expansion. It is this non-

trivial regrouping imposed by Wick’s theorem that can yield non-zero contributions

from terms like (4.23); and, in particular, from arbitrarily high powers of one and the

same interaction vertex.
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Grassmannization of classical models 19

5. Results

We now proceed with the results for the spin-spin correlation function and the magnetic

susceptibility obtained with the bare expansion. Let us in passing mention that

in Appendix Appendix B we show how a bold G2W scheme (which conceptually

distinguishes our approach from the usual high-temperature series expansion approach)

can resum whole classes of diagrams and reproduce the bare series when expanded to

the same order and accuracy.

5.1. Spin-spin correlation function

Our results for the spin-spin correlation function are shown in Table. 1. The correlation

function is known recursively from Refs. [30, 31, 32]. It is also known as a Painlevé-

VI nonlinear differential equation[33] but this is not so well suited to obtain the series

coefficients. Along the principal axes and the diagonal it can also be expressed as a

Toeplitz determinant. The first element along and the axis and the diagonal can be

recast in terms of complete elliptic integrals (see pp. 200-201 in Ref. [26]), which are

convenient for series expansions,

ρ(1,0) = coth(2β)

[
1

2
+

cosh2 2β

π
(2 tanh2 2β − 1)K(k>)

]
→ ζ + 2ζ3 + 4ζ5 + 12ζ7 + 42ζ9 + . . . (5.1)

ρ(1,1) =
2

πk>

[
K(k>) + (k2> − 1)K(k>)

]
(5.2)

→ 2ζ2 + 4ζ4 + 10ζ6 + 32ζ8 + 118ζ10 + . . .

with k> = sinh2(2β), K(.) and E(.) the complete elliptic K and E functions, respectively.

The above-cited recursion relations could be initialized with these expansions and shown

to yield the same results as the top 2 rows in Table. 1.

5.2. Magnetic susceptibility

The spin susceptibility is related to the zero momentum value of the Green function by

β−1χ = 1 + ρ(p = 0). We can hence sum over the entire lattice to obtain

β−1χ = 1 + 4ζ + 12ζ2 + 36ζ3 + 100ζ4 + 276ζ5

+ 740ζ6 + 1972ζ7 + 5172ζ8 + 13492ζ9

+ 34876ζ10 + 89764ζ11 + 229628ζ12

+ 585508ζ13 + 1486308ζ14 + . . . (5.3)

To this order the series expansion agrees with the ones from Ref. [35] and Ref. [34]. For

a library of high-temperature series expansions, see Ref. [36]. Currently, the series is

known (at least) up to order 2000 and still topic of active research.[34, 32] The series is

convergent for any finite expansion order, i.e., in the thermodynamic limit the infinite

series will diverge first at the phase transition point. It is hence possible to study the
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Grassmannization of classical models 20

site/order ζ ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11

(1,0) 1 0 2 0 4 0 12 0 42 0 164

(1,1) 0 2 0 4 0 10 0 32 0 118 0

(2,0) 0 1 0 6 0 16 0 46 0 158 0

(2,1) 0 0 3 0 11 0 31 0 97 0 351

(2,2) 0 0 0 0 6 0 24 76 0 248 0

(3,0) 0 0 1 0 12 0 48 0 152 0 506

(3,1) 0 0 0 4 0 26 0 92 0 298 0

(3,2) 0 0 0 0 10 0 55 0 201 0 684

(3,3) 0 0 0 0 0 20 0 120 0 480 0

(4,0) 0 0 0 1 0 20 0 118 0 7 452 0

(4,1) 0 0 0 0 5 0 52 0 244 0 885

(4,2) 0 0 0 0 0 15 0 118 0 521 0

(4,3) 0 0 0 0 0 0 25 0 259 0 1176

(4,4) 0 0 0 0 0 0 0 70 0 560 0

(5,0) 0 0 0 0 1 0 30 0 250 0 1200

(5,1) 0 0 0 0 0 6 0 92 0 574 0

(5,2) 0 0 0 0 0 0 21 0 231 0 1266

(5,3) 0 0 0 0 0 0 0 56 0 532 0

(5,4) 0 0 0 0 0 0 0 0 126 0 1176

(5,5) 0 0 0 0 0 0 0 0 0 252 0

(6,0) 0 0 0 0 0 1 0 42 0 474 0

(6,1) 0 0 0 0 0 0 7 0 149 0 1215

(6,2) 0 0 0 0 0 0 0 28 0 416 0

(6,3) 0 0 0 0 0 0 0 0 84 0 1026

(6,4) 0 0 0 0 0 0 0 0 0 210 0

(6,5) 0 0 0 0 0 0 0 0 0 0 462

(7,0) 0 0 0 0 0 0 1 0 56 0 826

(7,1) 0 0 0 0 0 0 0 8 0 226 0

(7,2) 0 0 0 0 0 0 0 0 36 0 699

(7,3) 0 0 0 0 0 0 0 0 0 120 0

(7,4) 0 0 0 0 0 0 0 0 0 0 330

(8,0) 0 0 0 0 0 0 0 1 0 72 0

(8,1) 0 0 0 0 0 0 0 0 9 0 326

(8,2) 0 0 0 0 0 0 0 0 0 45 0

(8,3) 0 0 0 0 0 0 0 0 0 0 165

(9,0) 0 0 0 0 0 0 0 0 1 0 90

(9,1) 0 0 0 0 0 0 0 0 0 10 0

(9,2) 0 0 0 0 0 0 0 0 0 0 55

(10,0) 0 0 0 0 0 0 0 0 0 1 0

(10,1) 0 0 0 0 0 0 0 0 0 0 11

(11,0) 0 0 0 0 0 0 0 0 0 0 1

Table 1. Expansion coefficients for the correlation function up to order 11.
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Figure 9. (Color online) The magnetic susceptibility versus ζ for different expansion

orders from 12 to 1 (top to bottom), compared to the order 100 result—the converged

answer over this plotting range—obtained from Ref. [34], which shows a divergence in

good agreement with the critical exponent γ = 7/4 starting from β ≥ 0.38
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1/n
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1/ζc = 2.4161 +/- 0.0081

γ = 1.7113 +/- 0.0900

data

linear regression

Figure 10. (Color online) Ratio of consecutive coefficients χ[n − 1] and χ[n] in the

expansion of the susceptibility as a function of the inverse of the expansion order 1/n.

Linear regression according to Eq. (5.5) allows to determine the critical temperature

with an accuracy of 0.5% and the critical exponent γ with an accuracy of 5%. The

fitting regime included orders 9 through 14.
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Grassmannization of classical models 22

critical behavior of the susceptibility, which is governed by the critical exponent γ = 7/4.

We plot in Fig. 9 the susceptibility versus β for different expansion orders, and also plot

the asymptotic behavior for comparison.

The critical temperature and the exponent γ can be found from a study of the

convergence radius of the series. Since

β−1χ =
∑
n

χnζ
n ∝ (1− ζ/ζc)

−γ (5.4)

= 1 +
∞∑
n=1

γ(γ − 1) · · · (γ + n− 1)

n!

(
ζ

ζc

)n

the ratio of coefficients asympotically behaves as

χn

χn−1

=
1

ζc
+
γ − 1

ζc

1

n
. (5.5)

In Fig. 10 we extract the critical point ζc from the intercept and the critical exponent

γ from a linear fit through the ratio of the coefficients. The critical point could be

determined with an accuracy of 0.5%, whereas the error on γ is of the order of 5%.

However, according to more advanced extrapolation techniques discussed in Ref. [37],

γ can be determined independently from ζc as γ ≈ 1.751949 on the square lattice when

the series is known up to 14th order, i.e., an accuracy of 0.5%.

6. The Ising model in one dimension

Let us show that the proposed approach solves the 1D Ising model exactly, both in the

bare formulation as well as in the G2W skeleton formulation (cf Sec. Appendix B).

6.1. Bare series

In 1D, the only allowed vertex is RL (the last one in the second line of Fig. 2). It has

weight +1. The only allowed endpoints are L and R (the second and fourth vertexes

shown in the first line of Fig. 2). As expected, this means that there are no loops, no

fermionic exchanges, and no minus signs in 1D. At order n of the expansion for the

spin correlator there is only one contributing diagram with weight ζn (up to the lattice

symmetry). The susceptibility is hence

Tχ = 1 + 2(ζ + ζ2 + . . .) = 1 + 2
ζ

1− ζ
, (6.1)

reproducing the exact solution with asymptotic behavior χ ∝ β exp(2β) as T → 0.

6.2. G2W formulation

The G2W skeleton expansion becomes exact already in 0th order,

Π = Π0 = ζ (6.2)

Σ = 0 (6.3)
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Grassmannization of classical models 23

which yields G = G0 =
√
ζ, W = V/(1 − VΠ) = 1/(1 − ζ), and also Π = ζ/(1 − ζ).

This immediately leads to the same result as in Eq. (6.1) when adding the end-point

vertexes L and R to Π.

7. Conclusion

We have developed a general scheme for mapping a broad class of classical statistical

link (plaquette) models onto interacting Grassmann-field theories that can be studied by

taking full advantage of the diagrammatic technique. This mapping, in particular, would

allow to formulate an all-diagrammatic approach to (d + 1)-dimensional lattice gauge

theories with finite density of fermions. The resulting field-theory looks very complex

because it contains a large number of Grassmann variables with numerous multi-point

interaction vertexes. Moreover, it is generically strongly-coupled at low temperature

meaning that an accurate solution using diagrammatic methods is only possible when

calculations are performed to high order and extrapolated to the infinite-order limit.

The complexity of the problem should not be taken as an indication that the

entire idea is hopeless. Monte Carlo methods were designed to deal with configuration

spaces of overwhelming size and complexity and arbitrary weights. In this sense,

diagrammatic Monte Carlo methods simulating the configuration space of irreducible

connected Feynman graphs are based on the same general principles and one should

not be surprised that they can evaluate the sum of millions of bare (or skeleton)

graphs, enough to attempt an extrapolation to the infinite-order limit. What makes

diagrammatic Monte Carlo distinctly unique (apart from working with ever-changing

number of continuous variables without systematic errors) is the radical transformation

of the sign problem. It is completely eliminated in conventional sense because the

thermodynamic limit is taken first. Given that the number of diagrams increases

factorially with their order, finite convergence radius in ζ is only possible if same-

order diagrams cancel each other to such a degree that at high order their combined

contribution is not increasing factorially. In other words, non-positive weights are

required for the entire approach to work and we call it the “sign-blessing” phenomenon.

Diagram weights for Grassmann/fermion fields alternate in sign depending on the

diagram topology; this leads to the sign-blessing phenomenon for lattice models.

We illustrated the proposed approach by considering the 2D Ising model as a

prototypical example. We have deliberately chosen to work with the generic formulation

to avoid model specific simplifications because our goal was to demonstrate how one

would proceed in the general case. The ultimate goal is to explore how this field-

theoretical approach can help with understanding properties of lattice gauge models.
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The Appendix contains two technical developments: In Appendix Appendix A

we provide details on how we generated the bare diagrammatic series for the 2d Ising

model using a diagrammatic Monte Carlo approach and a direct enumeration scheme. In

Appendix Appendix B we discuss the lowest order diagrams of a bold expansion in the

G2W scheme, and show how it reproduces the bare series when expanded to the same

order and accuracy. This illustration constitutes a major difference between our field-

theoretic approach and high-temperature series expansions, where such a boldification

is not possible.

Appendix A. Implementation

We explored two ways of evaluating the (bare) series for the spin-correlator: a stochastic

Monte Carlo approach and a deterministic full evaluation of all diagrams.

Appendix A.1. Monte Carlo sampling

In order to perform a Monte Carlo sampling over all Feynman diagrams, we introduce

a head and a tail that represent the endpoints of the correlation function. By moving

them around the lattice and changing the diagrammatic elements in between the head

and tail, we are able to reach an ergodic sampling. The algorithm can be formulated

as follows: The tail remains stationary at the origin whereas the head can move around

the lattice. When the head and tail are on the same site and the expansion order is

0, the value of the correlation function is 1 which can be used for normalization of the

Monte Carlo process. A Monte Carlo measurement contributes +1 or −1 depending on

the sign of the diagram weight. The simplest Monte Carlo procedure samples according

to the absolute weights of the diagrams and consists of the following pairs of reciprocal

updates:

(i) MOVE–RETRACT. We choose one of the 4 directions randomly, and attempt

to place the head on the site adjacent to the current head site according to this

direction. In case this direction does not correspond to backtracking, the current

V1 type of the tail turns into a V2, otherwise the head goes back and changes the

previous V2 into a V1 type (unless the diagram order is 0 or 1, when only V1 types

are possible). When moving forward, the way of pairing primed and non-primed

variables is always unique which in turns implies that we can only retract when

the head is connected via a “straight pair connection” to the previous vertex (both

primed and non-primed Grassmann variables of the head are connected to the same

vertex on the previous site). We only allow the MOVE–RETRACT updates if the

end vertex types are V1.
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(ii) SWAP VERTEX. Swaps between the vertexes V1 + V2 ↔ V3 (for head and/or tail)

and V2 + V2 ↔ V4 (anywhere in the diagram). This update is its own reciprocal.

(iii) RELINK. On a given link, relink primed and non-primed Grassmann variables.

This can change the sign of the weight only. This update is its own reciprocal.

The second and third type of updates may lead to disconnected diagrams. In such cases,

the configuration is unphysical. We opt to allow such configurations, but a Monte Carlo

measurement is forbidden and type-1 updates remain impossible until the diagram is

connected again. For small values of ζ the sign problem is nearly absent, but only low

expansion orders can be reached. For higher values of ζ (close to and above the critical

one) an increasing number of orders contributes significantly, consequently more time is

spent in higher orders and the sign problem significantly worsens.

Appendix A.2. Deterministic full evaluation

For the case of the 2D Ising model, a Monte Carlo approach offers no advantages over

a full series expansion approach. With this we mean the explicit listing and evaluation

of all possible diagrams as opposed to the stochastic sampling over all topologies. This

is because all diagrams in a given expansion order contribute a number of order unity

(times the same power of ζ), often with alternating sign, leading to huge cancellations.

Only the exact cancellation has physical information, and this requires that every

diagram is evaluated multiple times before the correct convergence can be seen. A

Monte Carlo approach makes much more sense if the dominant contributions to the

total weight are coming from a narrow parameter region, which is usually the case if

there are additional integrals over internal momenta.

We therefore wrote a code that evaluates all diagrams for the correlation function

up to a maximum order. The construction is based on the fact that there is an easy way

to construct all the “easy” diagrams (the ones that formally look like originating from

a high-temperature series expansion). These can serve as parent diagrams, from which

further offspring diagrams can be constructed which have one or multiple V3 and V4
vertexes as well as possible fermionic exchanges. All diagrams in order n can be found

as follows:

(i) Write down all possible words of the form X1X2 . . . Xn with the alphabet Xj ∈
{0, 3} corresponding to the 4 directions on the square lattice. Make sure that

subsequent directions are not backtracking. For example, if X4 is in the positive

+x̂ direction, then X5 cannot be in the negative −x̂ direction. From this word

we also know all sites and links that are visited, as well as all type-1 and type-2

vertexes that are used to make this diagram.

(ii) Such a parent diagram is added to a list of different topologies only if it has a unique

topology. To store the topological information of a bare vertex, we need to store

a pair consisting of a site index and a vertex type. The diagram is then stored as

an ordered map where the “key” values are given first by the lattice site index and
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second by the vertex type (in binary format). The ordered map may have multiple

entries with the same key if multiple vertexes reside on the same site and if they

are of the same type (e.g., two RL vertexes on the same site).

(iii) We iterate over this configuration list and check if the tail and head sites can be

merged into a type-3 vertex by combining them with type-2 vertexes that reside on

the same lattice site. If so, and if the resulting topology is unique, the diagram is

added to the list. This step is performed in three parts: first for the head and tail

together (in order to find all diagrams with 2 V3 ends), then for the head alone,

and finally for the tail alone.

(iv) We iterate again over the full configuration list and check if 2 type-2 vertexes that

live on the same site can be merged into a type-4 vertex. This last step has to be

repeated until no further merges are possible (since it may happen that a diagram

has multiple type-4 vertexes or even multiple type-4 vertexes on the same site).

Diagrams thus created are also added the configuration list if their topology is

unique. After completion of this step, all possible topologies have been generated.

(v) We compute the product of all the vertex weights, according to the Feynman rules.

(vi) From this list of parent diagrams we need to generate all offspring diagrams which

feature all possible fermionic permutations for multiply occupied links. This first

requires that we know how the vertexes are connected in the parent diagram, which

is stored in the configuration list. The parent diagram always has permutation sign

+1 (because the connections of the primed and non-primed Grassmann variables

are always the same). Next we generate all possible permutations by relinking the

primed and/or the non-primed Grassmann variables using Heap’s algorithm. If a

link has occupation number m, then there are (m!)2 combinations to be generated

(and there may be more than one multiply occupied link). The permutation

signature is also stored.

(vii) We check the connectivity of the diagram using the breadth-first algorithm.

Disconnected diagrams contribute 0.

(viii) Finally, we compute the isomorphism factor: ifm identical vertexes on the same site

are found, a factor 1/m! must be taken into account. This is a consequence of how

we construct the diagrams: topology checks were only performed on the parent

diagrams (and based on vertexes only), not on offsprings obtained by fermionic

exchange. (It would be prohibitively expensive to add the offspring diagrams to

the list of all possible diagrams.) Hence, just as we generate illegal disconnected

diagrams, we also have a double counting problem when identical vertexes occur in

the list.

In order 14, there were about 140,000 parent diagrams contributing to the first

entry on the diagonal of the correlator. The hugest number of permutations was

(4!)4(3!)4 ≈ 108. Since the sum of these permutations has a net contribution of or-

der 1, Monte Carlo has roughly a sign problem of the order of 10−8 for these diagrams.

The first time a nontrivial isomorphism factor is seen is in order 6 for the first element
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Figure B1. Two low-order contributions to the generalized Luttinger-Ward functional

Ψ. Dashed lines denote bold Green functions for primed and non-primed Grassmann

variables, and wavy solid lines are effective potential lines.

on the diagonal of the spin correlator: There are diagrams in which two links are doubly

occupied, and those links are connected by an identical V2 vertex, hence the isomorphism

factor 1/2. More efficient ways of evaluating and storing the diagrams can probably be

devised and implemented, but the above scheme is sufficient to check the validity of the

technique and study the transition.

Appendix B. The G2W skeleton scheme

The expansion of susceptibility in terms of ζ is, of course, identical to the one found

by the high-temperature series expansion method. To make the distinction between the

high-temperature series formalism and Grassmannization approach clear, we discuss

the skeleton formulation of the interacting fermionic field-theory based on dressed (or

“bold”) one-body propagators (G) and bold interaction lines (W ). This leads to the

so-called G2W skeleton scheme (see for instance Refs. [38, 39] for the terminology):

all lines in all diagrams are assumed to be fully renormalized propagators and effective

potentials, but vertex functions remain bare. In Sec. 6 we show that the G2W -expansion

scheme offers a very simple way to solve the 1D Ising model exactly.

Appendix B.1. Objects and notation

The key objects in the standard skeleton scheme are the selfenergy (Σ) and the

polarization function (Π). They are related to the Green function (G) and the effective

potential (W ) by their respective Dyson equations. The diagrams for Π and Σ are

obtained by removing one W - or G-line, respectively, from connected graphs for the

generalized Luttinger-Ward functional Ψ, shown to second order in Fig. B1. In this

setup, the expansion order is defined by the number ofW -lines (obviously, the discussion

of Sec. 3.3 does not apply to the self-consistent skeleton sequence). All objects of

interest are tensors; they have a coordinate (or momentum) dependence, as well as the

legs orientation dependence for the incoming and outgoing parts. This conventional

scheme has to be supplemented with Ψ-graphs involving V4 vertexes to account for all

contributions. We start with neglecting V4 vertexes, and discuss their role later.
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In more detail, the formalism of the G2W expansion in the absence of V4 vertexes

is as follows:

(i) There are six bare two-body interaction vertexes V2 (RU,RL,RD,LU, UD,LD),

see the second line in Fig. 2. They reside on the sites of the original square lattice

and all have weight 1. Symbolically, we encode the tensor structure of V2 using a

convenient short hand notation V2 =
∑4

α,γ=1 V (α, γ)nαnγ, where

V (α, γ) =

⎡
⎢⎢⎢⎣
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎤
⎥⎥⎥⎦ . (B.1)

The row index represents the first leg enumerated according to the convention

(R,U, L,D) → (0, 1, 2, 3), and the column index represents the second leg. By

doing so, we artificially double the number of vertexes from 6 to 12. For example,

the element (0, 2) corresponds to nLnR whereas (2, 0) corresponds to nRnL, which

is exactly the same term.

(ii) The selfenergies Σ for the primed and non-primed Grassmann variables take the

same value. Thus, we have to compute only one of them and we can suppress the

index that distinguishes between the two Grassmann fields. The selfenergy defines

the Green function through the Dyson equation

G(α, γ) = G(0)(α, γ) +
∑
μ,ν

G(0)(α, μ)Σ(μ, ν)G(ν, γ) . (B.2)

For a link going from site i to site j, the first index α refers to site i (in the above-

defined sense), and the second index γ refers to site j. Note the absence of the

momentum dependence in Eq. (B.2): The bold Green function remains local on the

links in any order of renormalization. It means, in particular, that the only non-

zero element for a link between sites (0, 0) and (1, 0) is G02; it can be alternatively

denoted as Gx and, by 90o rotation symmetry of the square lattice, is the same for

all links.

(iii) The matrix structure of polarization Π is similar to that of V . The 0th order

expression based on bare Green functions is given by

Π
(0)
(x,y)(α, γ) = ζ

⎡
⎢⎢⎢⎣

0 0 δx,1δy,0 0

0 0 0 δx,0δy,1
δx,−1δy,0 0 0 0

0 δx,0δy,−1 0 0

⎤
⎥⎥⎥⎦ . (B.3)

(iv) The effective potential W is defined through the Dyson equation in momentum

representation

Wq(α, γ) = V (α, γ) +
∑
μ,ν

V (α, μ)Πq(μ, ν)Wq(ν, γ) . (B.4)
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Figure B2. Divergence of the 0th order result for Wq=0 at ζc = 1/3 is compared with

the Frobenius norm and a reference line with power −1.

We expect to see signatures of the ferromagnetic transition in matrix elements of

Wq=0 because they directly relate to the divergent uniform susceptibility χ.

Appendix B.2. Zeroth order result

To obtain the 0th order result, we replace Π with Π(0) in Eq. (B.4). For any ζ we

compute Wq=0 from Eq. (B.4) by matrix inversion. We find a divergence at ζc = 1/3

(shown in Fig. B2) that can be also established analytically. We see that W diverges

as (ζc − ζ)−1. We get the same power law behavior for the (0, 1) matrix element as well

as for the Frobenius norm—they just differ by a constant factor. It is not surprising

that our ζc is below the exact value for this model; the skeleton approach at 0th order

is based exclusively on simple “bubble” diagrams in terms of bare Green functions

that are all positive, leaving to an overestimate of the critical temperature. Fermionic

exchange cycles and vertexes with negative weights do not contribute at this level of

approximation.

Appendix B.3. First order result

We now include the diagrams with one W line for the selfenergy and the polarization.

In real space we find

Σ(1)
x = Σ(1) = −GxW(1,0)(2, 0) = −GW(1,0)(2, 0)

Π(1) = G4W(0,0)(0, 0) + cycl. (B.5)

The matrix structure of Π(1) is identical to that of Π(0) and is not shown here explicitly.

Coupled self-consistent Eqs. (B.5), (B.2), and (B.4) are solved by iterations.
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Figure B3. (Color online) Shown is the Frobenius norm of Wq=0 (to second order)

on a lattice of size 64 × 64. For comparison, the 0th order result is also shown. The

critical point is found to be at ζc ≈ 0.35 and the exponent is close to 1.1.

Appendix B.4. Second order result

As mentioned previously, to account for second-order terms in Σ, one goes to the second

order graphs for Ψ and removes a G line, whereas the second-order terms for Π are

obtained by removing oneW -line from the third-order graphs for Ψ. The corresponding

expressions in real space are

Σ(2) = −W(0,0)(0, 0)W(0,0)(2, 2)G
3

Π
(2)
(0,0)(0, 0) = G6W(0,0)(2, 2)W(1,0)(0, 2)

Π
(2)
(1,0)(0, 2) = G6W 2

(1,0)(0, 2) +

G6W(0,0)(0, 0)W(0,0)(2, 2). (B.6)

The remaining non-zero contributions are obtained by invoking discrete lattice

symmetries. Note that to this order the polarization function is extremely local and

contains only same site and n.n. terms. Again, coupled self-consistent GW-equations

are solved by fixed-point iterations. The resulting behavior forW is analyzed in Fig. B3.

The transition point has slightly shifted to larger values of ζ compared to the zeroth-

order result, and the exponent has also slightly increased.

Appendix B.5. Relating Π to the spin correlation function

The G2W -expansion scheme treats different bare vertexes (see Fig. 2) on unequal

footing: the V2 vertexes are fully dressed, but the V4 vertexes are included perturbatively

(we neglected them so far). These higher-rank vertexes have a weight of comparable

magnitude to the V2 vertexes (-2 for V4 vs +1 for V2). In addition, the difference in
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sign between the weights is expected to result in important cancellations between the

diagrams and better convergent series for the spin correlation function (this is how ζc
increases towards its exact value).

Formally, there is no valid reason for neglecting the V4 vertexes altogether. Let us

show how they can be taken care of in the spirit of the shifted action approach.[40] This

discussion also gives us the opportunity to explain how the spin correlator is related

to the G2W skeleton expansion, which is most easily understood in the limit ζ � 1.

By assuming that the skeleton sequence (without V4) is solved, we introduce the full

polarization function Π̄(α̂, β̂) through the Dyson equation

Π̄q(α, γ) = Πq(α, γ) +
∑
μ,ν

Πq(α, μ)V (μ, ν)Π̄q(ν, γ) . (B.7)

To be specific, we focus on the n.n. element ρ(1,0); similar manipulations hold for any

other distance. Now consider all diagrams for this correlator without the V4 vertexes

within the G2W formulation (see Ref. [40]):

• Put one V1 vertex on the origin site (0, 0) and the other V1 vertex on the target

site r = (1, 0), see Eq. (4.21). There are 4 × 4 = 16 different ways of doing that

depending on the directions of legs. Connect the legs with Π̄r(α, γ). For example,

in the limit of ζ � 1, choosing the (α=0)-leg on site (0, 0) and the γ = 2-leg on

site (1, 0) results in the contributions ζ − 4ζ5 + . . .. Similarly, the choice of α = 1

and γ = 1 leads to the contribution ζ3.

• Put V3 on (0, 0) and V1 on (1, 0), and connect all legs with Π̄ lines. There are four

ways to orient the V3 vertex and for each one there are two choices for connecting

legs with Π̄ propagators. The leading contribution to ρ(1,0) goes hence as −8ζ5.

• Putting V1 on (0, 0) and V3 on (1, 0) gives the same contribution by symmetry.

• Put one V3 vertex on (0, 0) and the other V3 vertex on (1, 0). Now there are 16

ways of orienting both V3 vertexes, and for each orientation there are 15 choices for

connecting the legs. These contributions start at order ∝ ζ9.

Next, we repeat the above procedure of connecting legs by adding one V4 vertex,

which can be put on any site, after that we can add two V4 vertexes etc. to generate a

perturbative expansion in the number of V4 terms. Compared to the original bare series

in powers of ζ, we have reordered the series: the effective potential is summing up all

V2 vertexes, whereas we expand (and sample in a Monte Carlo framework) in powers of

λ4.

To illustrate this framework, let us take ζ = 0.01 and recall that in the bare series

ρ(1,0) = ζ+2ζ3+4ζ5+12ζ7+. . .. The first 3 terms can be reproduced without V4 vertexes

and with only 1 V3 on either the origin or the target site, see Figs. 3–8. The fifth order

coefficient originates from 16 “simple” diagrams containing just V1 and V2 vertexes

without any exchange. The diagrams containing a V3 vertex yield a coefficient −8, and

the exchange diagrams yield a coefficient −4. On a 16 × 16 lattice, the propagators
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obtained in Sec. Appendix B.2 (i.e., to zeroth order) are

Π̄
(0)
(x,y)=(1,0)(0, 2) = 1.00000002× 10−02, (B.8)

Π̄
(0)
(x,y)=(1,0)(1, 1) = 1.00010011× 10−06, (B.9)

Π̄
(0)
(x,y)=(1,0)(1, 2) = 1.00080057× 10−10, (B.10)

Π̄
(0)
(x,y)=(0,0)(1, 2) = 1.00020021× 10−08. (B.11)

We do not mention explicitly other symmetry-related elements. The sum of all matrix

elements for Π̄
(0)
(x,y)=(1,0) is 0.01000200160. One clearly recognizes the coefficients 1, 2 and

16 for the first-, third- and fifth-order contributions to the bare series. Contributions

from the V3 vertexes can be estimated from multiplying Π̄
(0)
(x,y)=(0,0)(1, 2)×Π̄

(0)
(x,y)=(1,0)(0, 2)

which yields ≈ 10−10. There are four different diagrams, each with weight −2, resulting

in the above-mentioned coefficient −8.

On a 16×16 lattice, the propagators obtained in Sec. Appendix B.4 (i.e., to second

order) are

Π̄(x,y)=(1,0)(0, 2) = 9.99999980× 10−03 (B.12)

Π̄(x,y)=(1,0)(1, 1) = 1.00009999× 10−06 (B.13)

Π̄(x,y)=(1,0)(1, 2) = 1.00120089× 10−10 (B.14)

Π̄(x,y)=(0,0)(1, 2) = 1.00020005× 10−08 (B.15)

The sum of all matrix elements for Π̄
(0)
(x,y)=(1,0) is 0.01000200120. One clearly recognizes

the coefficients 1, 2 and 12 for first, third and fifth order contributions to the bare series.

For the fifth order contribution, we now obtain 12 instead of 16 thanks to the Grassmann

exchange contribution that is accounted for properly at this level of approximation. By

adding the V3 diagrams in the way described above we recover the correct result to this

order in ζ (which is +4).

The first instance of a V4 vertex occurs in order ζ6 in the bare series. The relevant

bare diagrams are the ones for ρ(1,1) with a V4 vertex on site (1, 0) (and all cases related by

the lattice symmetry). Our bold expansion can correctly account for this contribution

if we put a V4 vertex on this site and connect all unpaired legs with Π̄ propagators.

However, with the propagators obtained in Sec. Appendix B.4 we are not supposed to

account for all possible diagrams in the bare series to order 6 because our bold expansion

in Sec. Appendix B.4 is only accurate up to order ζ3: Consider again ρ(1,1) and the bare

diagrams where exchanges are possible on the links between the sites (0, 0)− (1, 0) and

(1, 0)− (1, 1). Then there are irreducible non-local contributions that are not accounted

for in Sec. Appendix B.4 with a positive weight that involves exchanges on both links

in a correlated fashion. These contributions would obviously be accounted for in higher

order corrections to Ψ, when Π becomes non-local. This is also seen in the numerics:

the G2W approach to second order yields a coefficient of 6 for ζ6 contribution to ρ(1,1),

which is below the correct value of 10.
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