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Abstract
Wedesign fast protocols to separate or recombine two ions in a segmentedPaul trap. By inverse
engineering the time evolutionof the trappingpotential composed of a harmonic and a quartic term, it is
possible to perform these processes in a fewmicrosecondswithoutfinal excitation. These times aremuch
shorter than the ones reported so far experimentally. The design is basedondynamical invariants and
dynamical normalmodes.Anharmonicities beyond the harmonic approximation at potentialminima
are taken into account perturbatively. The stability versus anunknownpotential bias is also studied.

1. Introduction

Trapped cold ions provide a leading platform to implement quantum informationprocessing. Separating ion chains
is in the toolkit of basic operations required. (Merging chains is the corresponding reverse operation sowe shall only
refer to separationhereafter.) It has beenused to implement two-qubit quantumgates [1]; also to purify entangled
states [2, 3], or teleportmaterial qubits [4].Moreover, an architecture for processing information scalable tomany
ions could be developedbasedon shuttling, separating andmerging ion crystals inmultisegmented traps [5].

Ion-chain separation is known to be a difficult operation [6]. Experiments have progressed towards lower
final excitations and shorter times butmuch room for improvement still remains [7–9]. Problems identified
include anomalous heating, so devising short-time protocols via shortcuts to adiabaticity (STA) techniques was
proposed as away-outworth exploring [10]. STAmethods intend to speed up different adiabatic operations
[11, 12]without inducing final excitations. An example of an elementary (fast quasi-adiabatic) STA approach
[11]was already applied for fast chain splitting in [7]. Here, we design, using amore general and efficient STA
approach based on dynamical normalmodes (NM) [13, 14], protocols to effectively separate two equal ions,
initially in a common electrostatic linear harmonic trap, into afinal configurationwhere each ion is in a different
well. Themotion is assumed to be effectively one-dimensional due to tight radial confinement. The external
potential for an ion at q is approximated as

V t q t q , 1ext
2 4a b= +( ) ( ) ( )

which is experimentally realizable with state-of-art segmented Paul traps [6, 15].
Using dynamical NM [13, 14] aHamiltonianwill be set which is separable in a harmonic approximation

around potentialminima. Bymeans of Lewis–Riesenfeld invariants [16]we shall design first the approximate
dynamics of an unexcited splitting, taking into account anharmonicities in a perturbativemanner, and from that
inversely find the corresponding protocol, i.e. theα(t) andβ(t) functions.

TheHamiltonian of the systemof two ions ofmassm and charge e is, in the laboratory frame

H
p

m

p

m
V

V t q q t q q
C

q q

2 2
,

, 2c

1
2

2
2

1
2

2
2

1
4

2
4

1 2

a b

= + +

= + + + +
-( ) ( )( ) ( ) ( )

OPEN ACCESS

RECEIVED

19May 2015

REVISED

8August 2015

ACCEPTED FOR PUBLICATION

25August 2015

PUBLISHED

17 September 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/9/093031
mailto:mikel.palmero@ehu.eus
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/9/093031&domain=pdf&date_stamp=2015-09-17
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/9/093031&domain=pdf&date_stamp=2015-09-17
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


where p1, p2 are themomentumoperators for both ions, q1, q2 their position operators, and Cc
e

4

2

0
=

p
, 0 being

the vacuumpermittivity.We use on purpose a c-number notation sincewe shall also consider classical
simulations. The context willmake clear if c-numbers or q-numbers are required.We suppose that, due to the
strongCoulomb repulsion, q q1 2> . Byminimizing the potential part of theHamiltonianV, wefind for the
equilibriumdistance between the two ions, d(t), the quintic equation [6]

t d t t d t C2 2 0, 3c
5 3b a+ - =( ) ( ) ( ) ( ) ( )

whichwill be quite useful for inverse engineering the ion-chain splitting, evenwithout an explicit solution for d
(t). At t= 0 a single external well is assumed,β(0)= 0 and 0 0a >( ) , whereas in the final double-well
configuration t t0, 0f fb a> <( ) ( ) . At some intermediate time ti the potential becomes purely quartic
( t 0ia =( ) ). Our aim is to design the functionsα(t) andβ(t) so that each of the ions ends up in a different
external well as shown infigure 1, in times as short as possible, andwithout anyfinal excitation.

2.Dynamical NormalModes

Todefine dynamical NMcoordinates, we calculate first at equilibrium (the point q q,1
0

2
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which define theNM frequencies as lW =  corresponding to center-of-mass (−) and relative (stretch)
motions (+). These relations, with equation (3)written as
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allowus towriteα(t) and d(t) as functions of theNM frequencies
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Substituting these expressions into equation (6),β(t)may also bewritten in terms ofNM frequencies.

Figure 1. Scheme of the separation process. At t= 0 (left), both ions are trappedwithin the same external harmonic potential. Atfinal
time tf (right), the negative harmonic term, and a quartic term build a double well external potential. The aimof the process is to set
each of the ions in a different well without any residual excitation.
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The normalized eigenvectors are
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. The (massweighted) dynamical NMcoordinates are defined in terms of the

laboratory coordinates as

a m q q b m q q . 101 1
0

2 2
0q = - + -  ( ) ( ) ( )( ) ( )

The unitary transformation-of-coordinatesmatrix is

U q q q q q q, , , , . 111 2 1 1 2 2q q q q q q⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦d d= á ñ = - -+ - + - + -( ) ( )∣ ( )

TheHamiltonian in the dynamical equation for Uy y¢ñ = ñ∣ ∣ , where yñ∣ is the lab-frame time-dependent wave
function (in q1, q2 coordinates) evolvingwithH, is given by
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plus qubic and higher order terms in the potential that we neglect by now (theywill be considered in section 4
below). Similarly to [13, 14], we apply a further unitary transformation e m di 2q = - +

˙ ( ), to write down an
effectiveHamiltonian for y yñ = ¢ñ∣ ∣ with the formof two independent harmonic oscillators inNMspace,
H H i t   ¢¢ = ¢ - ¶( )† † ,

H
m d

H H

2

1

2

¨

2

2

1

2
. 13

2
2

2

2

2
2 2

p
q

p
q

⎛
⎝⎜

⎞
⎠⎟¢¢ = + W +

W

+ + W =  + 

+
+ +

+

-
- - + - ( )

These oscillators have dynamical invariants of the form [16]

I x x

x

1

2

1

2
, 14

2

0
2

2

p q

q

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

r r

r

= - - -

+ W
-

      


 



( ) ( )˙ ˙

( )

where the auxiliary functions r and x+ satisfy
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with 00W = W ( ), and, due to symmetry, x 0=- .
The physicalmeaning of the auxiliary functionsmay be grasped from the solutions of the time-dependent

Schrödinger equations (for eachNMHamiltonian H in equation (13)) proportional to the invariant
eigenvectors [22]. They form a complete basis for the space spanned by eachHamiltonian H and take the form
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xqs =

r
- 


, and n sF ( ) are the eigenfunctions of the static harmonic oscillator at time t= 0. Thus r are

scaling factors proportional to the state ‘width’ inNMcoordinates, whereas the x are the dynamical-mode
centers in the space ofNMcoordinates.Within the harmonic approximation there are dynamical states of the
factorized form t t ty y y ñ =  ñ  ñ+ -∣ ( ) ∣ ( ) ∣ ( ) for the ion chain dynamics, where theNMwave functions ty ñ∣ ( )
evolve independently with H. Theymay bewritten as combinations of the form t C t

n n nåy y ñ =  ñ  ∣ ( ) ∣ ( ) ,
with constant amplitudes Cn. The average energies of the nth basis states for the twoNMare
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3.Design of the control parameters

Once theHamiltonian and Lewis–Riesenfeld invariants are defined, we proceed to apply the invariant based
inverse engineering technique and design STA. The results for the simple harmonic oscillator in [11] serve as a
reference but have to be extended here since the twomodes are not really independent from the perspective of
the inverse problem. This is because a unique protocol, i.e., a single set ofα(t) andβ(t) functions has to be
designed.

Wefirst set the initial and target values for the control parametersα(t) andβ(t). At time t= 0, the external
trap—for a single ion—is purely harmonic, with (angular) frequency 0w . From equation (5), wefind that

0 0wW =-( ) and 0 3 0wW =+( ) . The equilibriumdistance is d 0 C

m

2 c

0
2

3=
w

( ) . For thefinal time, we set a tenfold

expansion of the equilibriumdistance, t dd 10 0f =( ) ( ), and tf 0wW =-( ) . This also implies
t t1.002f 0 fwW = » W+ -( ) ( ), i.e., the final frequencies of bothNMare essentially equal, theCoulomb

interaction is negligible, and the ions can be considered to oscillate in independent traps.
The inverse problem is somewhat similar to the expansion of a trapwith two equal ions in [14], but

complicated by the richer structure of the external potential. TheHamiltonian (13) and the invariant (14)must
commute at both boundary times H t I t, 0b b =[ ( ) ( )] ,

t t0, , 19b f= ( )

to drive initial levels into final levels via a one-to-onemapping. This is achieved by applying appropriate
boundary conditions (BCs) to the auxiliary functions r, x and their derivatives

t0 1, , 20fr r g= =  ( )( ) ( )

t t¨ 0, 21b br r= = ( ) ( )˙ ( )

x t x t x t¨ 0, 22b b b= = =+ + +( ) ( ) ( )˙ ( )
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t
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f
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W





( )
( ) . Let us recall that x 0=- for all times so this parameter does not have to be considered

further.
Inserting the BC for x tb+( ) and x t¨ b+( ) in equation (16)wefind that d t¨ 0b =( ) . Additionally, d t 0b =˙ ( ) is to

be imposed so that t 1b =( ) . According to equation (8), d t d t¨ 0b b= =˙ ( ) ( ) by imposing
t t¨ 0b bW = W = 

˙ ( ) ( ) .With d t d t¨ 0b b= =˙ ( ) ( ) theHamiltonians andwave functions coincide at the
boundaries, H t H tb b¢ = ¢¢( ) ( ), t tb by y¢ ñ =  ñ∣ ( ) ∣ ( ) , which simplifies the calculation of the excitation energy.

From equation (15), theNM frequenciesmay bewritten as

¨
. 230
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Thus the BC t t¨ 0b bW = W = 
˙ ( ) ( ) are satisfied by imposing on the auxiliary functions the additional BC

t t 0. 24b br r= = ( ) ( )⃛ ⃜ ( )

Wemay nowdesign ansatzes for the auxiliary functions r that satisfy the ten BC in equations (20), (21) and
(24), plus the BC for x tb+( ) and x tb+˙ ( ) in equation (22) (since d t¨ 0b =( ) , x t¨ 0b =+( ) is then automatically
satisfied, see equation (16)). Finally, from theNM frequencies given by equation (23)we can inverse engineer the
control parameters ta ( ) and tb ( ) from equations (6), (7) and (8) .

A simple choice for tr-( ) is a polynomial ansatz of 9th order b s
i i

i
0

9år =- =
, where s t tf= . Substituting

this form in the ten BC in equations (20), (21) and (24), wefinally get
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For r+wewill use an 11th order polynomial a s
n n

n
0

11år =+ =
to satisfy aswell x t x t 0b b= =+ +( ) ˙ ( ) . The

parameters a0 9- are fixed so that the ten BC for r+ are fulfilled (see the appendix), whereas a10, a11 are left free,
andwill be numerically determined by a shooting program [17] (‘fminsearch’ inMATLABwhich uses the
Nelder–Mead simplexmethod for optimization), so that the remaining BC for x tb+( ) and x tb+˙ ( ) are also
satisfied. Specifically, for each pair a a,10 11{ }, tW( ) and d(t) are determined from equations (8) and (15), to
solve equation (16) for x t+( )with initial conditions x x0 0 0= =+ +( ) ˙ ( ) . The free constants are changed until
x t 0f =+( ) and x t 0f =+˙ ( ) are satisfied.Numerically a convenient way tofind the solution is tominimize the
energy E tn f+ ( ) in equation (18).

Figures 2(a) and (b)depict the control parameters ta ( ) and tb ( ) foundwith thismethod, using
equations (6) and (7), for some value of tf and 0w , see the caption, whilefigure 2(c) represents the equilibrium
distance between ions as a function of time (8), andfigure 2(d) theNM frequencies. Infigure 3(a) the excitation
energy is shown, versus final time, for optimized parameters given infigure 3(b). The initial state is the ground
state of the two ions. It is calculated by propagating an initial guess of thewave function in imaginary time until it
relaxes to the lowest eigenfunction [18]. The excitation energy is E E t E tex f 0 f= -( ) ( ), where E tf( ) is thefinal
energy, calculated in the lab frame, and E t0 f( ) is thefinal ground-state energy. Thewave function evolution is
calculated using the ‘split-operatormethod’with the fullHamiltonian (2). If the harmonic approximationwere
exact, therewould not be any excitationwith this STAmethod, E t E t E t E tf 0 f 0 f 0 f=  +  =+ -( ) ( ) ( ) ( ), see
equation (18). The actual result is perturbed by the anharmonicities andNMcouplings. Thefinal ground state is
also calculatedwith an ‘imaginary-time evolution’. The corresponding final ground state energy is essentially
two times a harmonic oscillator ground state energy plus the (negligible)Coulomb repulsion at distance td f( ).
For thefinal times of all the examples, as it was noted in previousworks [10, 13, 14, 19], classical simulations
(solvingHamiltonʼs equations from the equilibrium configuration instead of Schrödingerʼs equation) give
indistinguishable results in the scale offigure 3(a).

The excitation energy infigure 3(a) (solid line) increases at short times since the harmonicNM
approximation fails [13, 14]. However, it goes down rapidly below one excitation quantumat timeswhich are
still rather small compared to experimental values used so far [7, 8]. In the following sectionwe shall apply a
perturbative technique tominimize the excitation further.

Figure 2.Evolution of (a) ta ( ); (b) tb ( ); and (c) d(t). In (d) theNM frequencies, solid line for the ‘–’ and dashed line for the ‘+’ are
depicted. Two 9Be+ ions were separated in the simulation, with 2 20w p =( ) MHz, t 5.2f = μs, m 20 0

2a w= , and d 0 5.80=( ) μm.

Figure 3. (a) Final excitation energy versusfinal timeusing the inverse engineering designof section3 (solid blue), and the design that
takes into account anharmonicities in section 4 (dashed red). (b)Values of the free parameters a10 (solidblue) and a11 (dashed red) that
minimize the excitation energy for the 11thorderpolynomial (A1). (c)Parameters c10 (solid blue), c11 (dashed red) and c12 (dashed–dotted
green) thatminimize the excitation energy for the 12th order polynomial (A2). Two 9Be+ ionswhere split,with 2 20w p =( ) MHz.
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4. Beyond the harmonic approximation

An improvement of the protocol is to consider the perturbation of the higher order terms neglected in the
Hamiltonian (13). These ‘anharmonicities’ [20] are cubic and higher order terms in the Taylor expansion of the
Coulomb term C q qc 1 2-( ),
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InNMcoordinates the terms take the simple form
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whichmay be regarded as a perturbation to be added to H+ in equation (13). (The perturbation does not couple
the center-of-mass and relative subspaces.)Tofirst order, the excess energy due to these perturbative terms at
final time is given by

E t V t , 28n
j

n
j

nf fd y d y= á   ñ+ + +( ) ( )∣ ∣ ( )( ) ( )

where the ny ñ+∣ are the unperturbed states in equation (17). Inverse engineering the splitting processmay now
be carried out by considering a 12th order polynomial for r+ (see (A2)), with three free parameters so as tofix the
BC for x+ and alsominimize the excitation energy. In practice we useMATLABʼs ‘fminsearch’ function for the
shooting tominimize E t E0 f 0

3d++ +( ) ( ) as no significant improvement occurs by including higher order terms.
Figure 3(a) compares the performance of such a protocol with the simpler onewith the 11th-order polynomial
(A1). Figure 3(c) gives the values of optimized parameters at differentfinal times.

5.Discussion

A large quartic potential is desirable to control the excitations produced at the point where the harmonic term
changes its sign [10]. At this point, the harmonic potential switches from confining to repulsive, which reduces
the control of the system and potentially increases diabaticities and heating. In the inverse approach proposed
here there is no special design of the protocol at this point, but themethod naturally seeks high quartic
confinements there. Infigure 2(b)β reaches itsmaximumvalue right at the timewhereα changes sign (see
figure 2(a)). However, themaximumvalue thatβ can reachwill typically be limited in a Paul trap [6].

In table 1we summarize the differentmaximal values ofβ and critical times (final times at which excitations
below 0.1 quanta are reached) for different values of 0w using the 11th order polynomial (A1) for r+.

Themaximumβ decreases with tf, such that the shortest possible tf at a givenmaximum tolerable excitation
energy is limited by the achievableβ. The trap used in [8] yields amaximumβ of about 10−4 Nm−3, at±10 V
steering range. In a recent experiment reported in [23], the value usedwasβ≈ 5× 10−3 Nm−3. The numbers
reported in the table are thuswithin reach, as theβ coefficients scale with the inverse 4th power of the overall trap
dimension, and technological improvements on arbitrary waveform generatorsmay allow for operation at an
increased voltage range.

Another potential limitation themethod could encounter in the laboratory is due to biases (a linear slope) in
the trapping potential,V q q qext

2 4a b l= + + , withλ constant and unknown [10]. Figure 4 represents the
excitation energy versus the energy difference between the twofinalminima of the external potential,ΔE (also
versusλ). To calculate the results,α(t) andβ(t) are designed as ifλ= 0, but the dynamics is carried outwith a
non-zeroλ, in particular the initial state is the actual ground state, including the perturbation. Note thatΔE

Table 1.Maximumvalues ofβ, and critical times
(final times at which excitations below 0.1 quanta
are reached) for different values of 0w . The calcu-
lationswere performedwith the 11th order poly-
nomial for r+.

0w (MHz) maxb (10−3N m−3) tcrit (μs)

3 44.2 2.9

2 11.4 4.4

1.2 2.082 7.4

0.8 0.539 11.2
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should bemore than a thousand vibrational quanta to excite the final energy by one quantum. In [8] an energy
increase of ten phonons at about 150 zN and 80 μs separation timewas reported, so the STA ramps definitely
improve the robustness against bias.

Further experimental limitationsmay be due to randomfluctuations in the potential parameters, or higher
order terms in the external potential.We leave these important issues for a separate study but note that the
structure of the STA techniques used here is well adapted to deal with noise or perturbations [24–26].
Combining STAwith optimal-control-theorymethods is also feasible, see e.g. [12].

Finally, we compare infigure 5 the performance of the protocols based on the polynomials (25) and (A1)
with a simple non-optimized protocol based on those experimentally used in [8]. There, the equilibrium
distance d isfirst designed as t t s sd d 0 d d 0 sin 2f

2 p= + -( ) ( ) [ ( ) ( )] ( ), where s t tf= . From the family of
possible potential ramps consistent with this function, we chose a polynomial that drivesα from 0 0a a=( ) to

t 2f 0a a= -( ) (as infigure 2) andwhose first derivatives are 0 at both boundary times.β is given by
equation (3). For the times analysed infigure 5, themethod based on equations (25) and (A1) clearly
outperforms the non-optimized ramp. To get excitations below the singlemotional excitation quantumwith the
non-optimized protocol, final times as long as t 80 sf m~ would be needed, which is in linewith current
experiments.

We conclude that themethod presented here, could bring a clear improvementwith respect to the best
results experimentally reported so far [7, 8]. The parameters required are realistic in current trapped ions
laboratories. The simulations show that, under ideal conditions, the separation of two ions could be performed
in a few oscillation periods, at times similar to those required for other operations as transport [13] or
expansions [14], also studiedwith STA.

Figure 4.Excitation energy versus different tilt values of the external potential in terms of the energy difference between bothwells
(upper axis) and values of theλ parameter (lower axis), when using the 11th order polynomial in the evolution. Same parameters as in
figure 2.

Figure 5.Excitation energy versusfinal time comparing the 11th order polynomial (solid blue) and a non-optimized trajectory
experimentally used in [8] (dashed red) in the evolution. Same parameters as infigure 2.

7

New J. Phys. 17 (2015) 093031 MPalmero et al



Acknowledgments

Thiswork has been possible thanks to the close collaborationwith three ion-trap groups at Boulder,Mainz and
Zurich.We acknowledge in particular discussions withDidi Leibfried, Ludwig deClercq, Joseba Alonso, and
JonathanHome that provided essential elements to develop the approach. It was supported by the Basque
CountryGovernment (GrantNo. IT472-10),Ministerio de Economí a yCompetitividad (GrantNo. FIS2012-
36673-C03-01), and the programUFI 11/55 ofUPV/EHU.MP and SM-G acknowledge fellowships byUPV/
EHU. This researchwas funded by theOffice of theDirector ofNational Intelligence (ODNI), Intelligence
AdvancedResearch Projects Activity (IARPA), through theArmyResearchOffice grantW911NF-10-1-0284. All
statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed
as representing the official views or policies of IARPA, theODNI, or theUSGovernment.

Appendix. Ansatz for r+

The ansatz for r+ that satisfies the BC 0 1r =+( ) , tfr g=+ +( ) , t t t t¨ 0b b b br r r r= = = =+ + + +˙ ( ) ( ) ⃛ ( ) ⃜ ( ) with two
free parameters takes the form

a a s

a a s

a a s

a a s

a a s

a s a s

1 126 126 5

420 420 5 24

540 540 10 45

315 315 10 40

70 70 5 15

. A1

10 11
5

10 11
6

10 11
7

10 11
8

10 11
9

10
10

11
11

r g

g

g

g

g

= - - + +

+ - + +

- - + +

+ - + +

- - + +

+ +

+ +

+

+

+

+

( )
( )
( )
( )
( )

( )

Tominimize the perturbation energy in equation (28), three free parameters are introduced,

c c c s

c c c s

c c c s

c c c s

c c c s

c s c s c s

1 126 126 5 15

420 420 5 24 70

540 540 10 45 126

315 315 10 40 105

70 70 5 15 35

. A2

10 11 12
5

10 11 12
6

10 11 12
7

10 11 12
8

10 11 12
9

10
10

11
11

12
12

r g

g

g

g

g

= - - + + +

+ - + + +

- - + + +

+ - + + +

- - + + +

+ + +

+ +

+

+

+

+

( )
( )
( )
( )
( )

( )
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