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Abstract

We propose a method for acting on the spin state of a spin—% localized particle, or qubit, by means of a
magnetic signal effectively generated by the nearby transit of a magnetic soliton, there conveyed
through a transmission line. We first introduce the specific magnetic soliton of which we will make
use, and briefly review the properties that make it apt to represent a signal. We then show thata
Heisenberg spin chain can serve as transmission line, and propose a method for injecting a soliton into
the chain by acting just on one of its ends. We finally demonstrate that the resulting magnetic pulse can
indeed cause, just passing by the spin—% localized particle embodying the qubit, a permanent change in
its spin state, thus realizing the possibility of getting through to a single, localized qubit, and
manipulating its state. A thorough analysis of how the overall dynamical system operates depending
on the setting of its parameters demonstrates that fine tuning is not necessary as there exists an
extended region in the parameters space that corresponds to effective functioning. Moreover, we show
that possible noise on the transmission line does not invalidate the scheme.

1. Introduction

The ability of addressing, initializing, and possibly controlling one single qubit without spoiling its quantum
features or disturbing other nearby qubits is a necessary prerequisite for putting a quantum device into
operation. Depending on the specific device architecture, however, this can be a most challenging task, as it
implies the opening of the qubit towards an environment that, in one way or another, embodies some
macroscopic apparatus. One possibility for avoiding that this opening alters the fragile properties of the qubit is
to place the apparatus at a distance, and use a transmission line for conveying a suitable signal to the qubit itself.
In particular, when the qubit is represented by a localized magnetic particle [ 1-4] it comes quite natural that the
above signal is a time-dependent magnetic field, which nonetheless leaves the question open as to how to realize
the transmission line. For this purpose, we here propose the use of classical spin chains featuring soliton-like
excitations, a choice suggested by these observations: i) a soliton faithfully represents a signal in so far asitisa
finite-energy excitation which is well localized in space at any given time, and can travel at fixed velocity with
constant profile; ii) solitons are known to travel undisturbed within their medium, which allows us to place the
apparatus that generates the pulse at a great distance from the qubit and yet be sure that the signal will pass near
its target undeformed; iii) solitons relative to the very same model can have different shapes and energies, which
gives us the freedom of choosing the signal that best controls the qubit, without modifying the transmission line.

As for this latter component, we know that some classical fields defined on a one-dimensional space display
solitonic excitations, whose renowned stability stems from the competition between linear and non-linear terms
in the field’s equations of motion (EoM). Based on the well established connection between classical vector-field
theories and models of interacting spin-S particles in discrete one-dimensional lattices [5], one can expect
soliton-like excitations to typify some spin chains [6—11], which directly suggests that one such chain can serve
for supporting a solitonic signal. Moreover, as extensively shown in the literature [12—17], a renormalized
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classical approach [18-21] is often appropriate for describing the actual behavior of real compounds with
S > 1/2 [22-24], which allows us to treat the signal’s generation and propagation at a classical level.

The paper is structured as follows: in section 2 we introduce and characterize the soliton of which we will
make use as a non-linear excitation of a classical vector field. Based on the fact that such a field is the continuum
limit of a spin model in a one-dimensional lattice, namely the Heisenberg spin chain, in section 3 we numerically
check that the dynamical configurations corresponding to discrete versions of the above solitons can be
solutions of the chain’s EoM; in the same section we propose a method for injecting solitons by applying a time-
dependent magnetic field to one end of the chain. In section 4 we thoroughly analyze the effects of the soliton’s
transit on the spin state of the spin- Localized particle embodying the qubit, considering both an ideal and an
injected soliton, as well as the possibility of thermal noise along the chain. Comments about possible
experimental implementations of the scheme are put forward in section 5, with attention focused on the validity
of the assumptions we have made in order to make our scheme function.

2. Solitons as signals

Consider the classical vector-field in one spatial dimension, s (x, t), such that|s (x, )| = 1, with Hamiltonian
density

H(x) = %Jsz[axs(x, O +rHS[1 - 5 (x 0] (1)
its EoM
0;s(x, 1) = s(x, t) X [JS d%s(x, t) + yH], (2)

with H = (0, 0, H), has been shown [25] to permit analytical solutions, corresponding to localized excitations,
stable under collisions [26], that travel at constant velocity. In polar coordinates these solutions read

0P (x, ) = 2 sin(sin S sech &),
I (x, t): (})( ) (sin / 531 (3)
PP (x, t) = ¢y + cot f & + tan~!(tan § tanh &),
where
x—vt X t
£= == - (4)
Ao A T
and the parameter f univocally characterizes each v > 0 soliton, setting its characteristic
amplitude: 2/ = 2arccos (5)

”
2JISyH’

length: 15 = IS ,1 , (6)
yH sinp

energy: & = 85,/ JSyH sinf, (7)
. 1
time: 75 = ————. (8)
yH sin 2/

A dynamical (v > 0) soliton defined by equation (3) will be hereafter referred to as ‘-soliton’. Notice that
equation (5) sets a maximum value for the velocity, |v| < 2,/ JSyH, implying that the second term of the
Hamiltonian (1) must be finite in order for the model to support dynamical solitons. Once this condition is
fulfilled, a #-soliton can be readily seen as a signal, i.e., a field’s dynamical configuration with a distinctive trait
that can be spotted, for time intervals of the order of 75, in a spatial region of size Ag, that moves with constant
velocity in the one-dimensional space where the field is defined. An example of a f-soliton is shown in figure 1.

3. Heisenberg chain as transmission line

Let us now consider a classical spin chain, i.e., a one-dimensional array of (spin-)vectors §; = S s;, whose
magnitude S has the dimension of an action; the time dependence of the spin-variables will be hereafter
understood, whenever possible. The Heisenberg chain is defined by the Hamiltonian
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Figure 1. 2% (x, t)for tan § = 2: s* = 1 — 2 sin® B/cosh? £ asa function of x — vt and (inset) the corresponding trajectory of the
in-plane components s*and s”.

Hehain = — ]ZSZ “Spp1 — YH Zslz
1 1
ISZ 2 z
=72(s’_sl+1) +yHSZ(1 — 5 ) + const, 9)
1 1

where ] > 0 isaferromagnetic nearest-neighbor coupling, H = (0, 0, H) is an external magnetic field, and y is
the gyromagnetic ratio. In the (continuum) limit of vanishing lattice spacing d — 0 with finite S/d and Jd°,
model (9) reproduces equation (1) with

S=-= and J=Jd* (10)

SR

The EoM for s;, obtained from the Poisson brackets {s;%, 5]/3 } = 8§71 0y S“ﬂ”sl”, consistently have the same form as
equation (2), reading

at$1=51><|:]5(51+1+51_1> +}/H:|. (11)

Despite the analogy, analytical soliton-like solutions of equation (11) are not known; however, as the
continuum approximation does make sense whenever the relevant configurations vary slowly on the scale of the
lattice spacing, we expect that, for 15 >> d, the discrete counterpart of a #-soliton, Z'l(ﬂ ) (t) defined by

equation (3) with
E=1 /}/]—I; sin # — yHt sin 23, (12)

might still represent an excitation of model (9). In fact, by numerically solving equation (11), we have checked
that the Heisenberg spin chain properly supports -solitons whenever the Zeeman energy yHS is much smaller
than the bond energy JS%, as implied by Az > dviaequations (6) and (10). This result fits with the experimental
observation, in quasi one-dimensional systems, of magnetic behaviours whose origin can be unequivocally
ascribed to the presence of soliton-like excitations [23]. In what follows, we will therefore assume that the time-
dependent chain configuration {s; () = El(ﬂ ) (t)}is asolution of the discrete EoM (11), embodying the signal we
want to convey to the qubit, with the respective Heisenberg chain serving as transmission line.

3.1.Injecting a soliton into the chain

Let us now consider the problem of making one specific soliton El(ﬁ ) (t) exist and run through the Heisenberg
chain. In the process of accomplishing this goal, we first notice the following: consider a finite (though long at
will) chain, with (2L + 1) spins sitting on sites labelled from —L to +L. Suppose S_; (¢) evolved as if a soliton
were reaching it travelling from a fictitious, infinitely left-extended chain, / < —L; that soliton would continue
travelling towards the region [ > —L, i.e., it would be successfully injected into the chain, at least in the
continuum limit. Therefore, enforcing

s() =29 (13)

as a boundary condition should result in the selection of the configuration corresponding to X”(t) ,amongst all
those that solve equation (11). On the other hand, it can be easily seen that equation (11) with condition (13)
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Figure 2. Samples of generated soliton-like excitations I; (f; t) in a discrete chain of 500 spins; the parameters of the injected soliton
2,(/} )(t)are yH/JS = 0.05 and tan f§ = 2. Density plots are shown for the space—time evolution of s (t) at zero (upper left panel) and
finite temperature, indicated in the lower, right edge of each panel. The propagating soliton is reflected by the open boundary at site
n=500. The thin, red line reports the time dependence of s/ (¢) at the site n = 250. Thermal noise makes the generated soliton-like
excitation broader and faster.

enforced gives the EoM of a Heisenberg chain with —L < I < L, and an auxiliary magnetic field

B0 () =Ly A0 (14)
4

acting just on S_; ;1. This suggests that by applying the magnetic field (14) to one end of the transmission line, it
should be possible to generate a soliton-like signal, that will then travel through to its target. The consistency of
the above description has been checked for different values of /3, as follows.

First, we have numerically solved equation (11) with the time-dependent constraint equation (13), and
2Ld > Ap, by meansofasecond-order symplectic algorithm [27-31]. The chain has been initialized in the
ferromagnetic configuration, {s; = Z}, as well as in some possible thermal configurations. These have been
determined, with reference to the quadratic approximation of the Hamiltonian (9) which is diagonal in Fourier
space with frequencies w; = 2JS(1 — cos k) + yH, as inverse Fourier transforms of generated sets of
independent variables {s{, s/} with variances (s{'s*;) = (s{'s”;) = k, T /(Swy). The resulting configurations
have the thermal correlators ((s;* — s5,)%) = (s} — s.1)?) = T and ((s}*)?) = ((s/)*) =~ T/JS/yH, where
T=k,T/]S%

We have then analyzed the resulting solutions and found that when the field b (¢) is applied to s_; , 1, i.e.,
after the injection of Zl(ﬁ ) (t), dynamical configurations I (#; t),identifiable as soliton-like, actually appear in
the chain. In order to better characterize these configurations, we have numerically measured their velocity v/
and, assuming the validity of equation (5), we have obtained values for the respective amplitudes,
2p" = 2arccos[v'/(JSyH) |. These values have been found to agree with those independently determined by
fitting I;(f; t) with equation (3), for all values of § considered. Moreover, by monitoring the chain’s energy
throughout the numerical integration, we have calculated the total work done by the forcing term, and found it
to be very close to & 4, meaning that the work done on the chain does actually correspond to the energy needed to

generate a soliton X|” )(t). Summarizing, the above analysis confirms that:
e byapplying the field b') (¢) defined in equation (14) to the left tail of the chain,

e adynamical configuration Ij (; t) is generated inside the chain itself,

o with the essential features of a soliton 21(/} (1)

The above picture is also confirmed for 7> 0, and even for rather narrow injected solitons (s =~ 5d).In
figure 2 we show the colour-density plot of I'f (f; ) asa function of land JSt, for different 7. The strong
resilience of the generated signal is evident: even when fully embedded and barely recognizable within the
thermal noise, as in the last panel, its time propagation along the chain can still be easily followed.
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Figure 3. The qubit interacts with abunch of moments of the classical spin-chain, with couplings j, = g p;; a constant uniform field is
applied to the overall system.

4. Qubit dynamics

A qubitis a physical system that can be described by the spin-% operator %6' represented by the Pauli matrices
6 = (6%, 67, 6%);itsstate p () in terms of the Bloch vector n (t) = Tr [ (¢) 6], reads

(1) = %[Jl +6- n(t)]. (15)

In our scheme, the qubit is realized by a localized spin-~ particle, sitting near the site of the chain labelled by the
index ‘0’. We assume that the way the qubit feels the presence of the chain’s magnetic moments, as depicted in
figure 3, can be generally described as a Zeeman interaction with an effective magnetic field proportional to

HOEDYCIOR (16)
j

where s; are the unit vectors entering equation (9), and p; is expected to decrease rapidly with [f|. In fact, the
detailed dependence of p; on jis not relevant, particularly if, as in the present scheme, the time dependence of the
magnetic moments is primarily due to the transit of a signal whose length is of a finite number of lattice spacings.
Therefore, we can safely choose a Gaussian dependence p; = Aexp (—j%/2a?) , where A is such that Zj p=1,

and the standard deviation a characterizes the interaction range, in units of d.

From sections 2 and 3 we have learned that the presence of a constant and homogeneous magnetic field H is
necessary for the Heisenberg spin chain to support solitons with finite velocity: therefore, we take H # 0 and
identify its direction as the quantization axis used for encoding the qubit states into the spin degree of freedom of
the spin—% localized particle. The qubit’s Hamiltonian thus reads

; . i 7é
Hquvic = — [y(,Hz +g Ss(t)] S (17)
where y_is the gyromagnetic ratio of the particle realizing the qubit, and gis an overall coupling constant. The
corresponding evolution of the qubit’s Bloch vector is ruled by the equation
o.n=mnx [5:2+//t§(1)], (18)

where z = (0, 0, 1),and ¢ = yH t isthe (chain’s) dimensionless time that will be hereafter used. The two
dimensionless parameters

A )

Y YH

d= (19)
characterize the qubit’s interactions with the external and the effective field, H and §(¢), respectively. Notice that
despite the chain parameter y not appearing in the qubit’s Hamiltonian (17), it does enter the EoM for the qubit’s
Bloch vector via the definition of the dimensionless time 7; in fact, the relevant time scale of the overall dynamics
is exclusively set by the chain Hamiltonian (9), a statement based on the implicit assumption that the presence of
the qubit has no effect (no ‘back-action’) on the chain itself. We will further comment upon this assumption in
section 5.

Suppose now that a magnetic signal in the form of I} (#; 7) runs through the chain (7 = 0). In the early stage
of the process, at a time when the soliton is still far from the site 0, itis §(z) « 2 and the qubit Bloch vector
undergoes a uniform precession around z, unless it is not initially aligned along the z-axis itself. In order to
isolate the qubit evolution exclusively due to the soliton transit, it is therefore convenient to choose n (7;) = z,
with 7; as the earlier time when s_; # z. Notice that this does not imply the addition of a previous single-qubit
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Figure 4. Contour plots of n* (z¢ ) as a function of § and y, for @ = 0. In each panel the magnetic signal acting on the qubit is that
produced by an ideal f-soliton, 2,(/} ().

manipulation step in the overall scheme, but rather the preparation of the whole system in a globally aligned
state, which is readily obtained as H # 0.

Consider now a time 7¢ during the final stage of the process, i.e. after the soliton has travelled along the chain
far beyond the qubit; the qubit’s Bloch vector, set in motion by the soliton’s transit, can 1) align back to z, 2) tilt-
up and hence precess around 2, or 3) perfectly flip and anti-align along —Zz. Situations 2) and 3) are those in
which we are most interested, as they represent the possibility of permanently modifying the qubit state, which is
in fact the final goal of our scheme. In order to analyze the conditions under which they are obtained, one must
numerically integrate equation (18) with the effective field §(z) as from equation (16) with

sj (1) = I (p; 7). (20)

For the sake of clarity, in what follows we will specifically concentrate on the case when the qubit’s response to
the signal consists of a permanent flipping.

4.1. Qubit flipped by an ideal soliton

Let us first take I} (f; 7) = Z,(ﬂ )(7) and the chain initially prepared in the ferromagnetic state (7 = 0). When
a=0weknow [32] that whenever § = 0 the qubit always goes back to its initial state; therefore, in order to obtain
a permanent flipping, the physical object embodying the qubit must have a finite gyromagnetic ratio. As
studying n? (¢ ) suffices to distinguish the above situations 1), 2), and 3), in figure 4 we plot n* (z¢) in the plane
(8, u);when 6§ = y = 1the flipping is complete, while the change in n? (z; ) decreases monotonically when
getting far from this point. Remarkably, for § = p = 1there is no dependence on f; the qubit is flipped whatever
the amplitude of the signal running through the chain. An additional feature, numerically observed and clearly
seen in figure 4, is that n* (z¢ ) is symmetric in the exchange § < p, even though the evolution of the qubit may
be different in the two cases. The most relevant feature displayed by figure 4, however, is the presence of a region
where almost complete flipping occurs: this means that fine-tuning is not necessary and if d is difficult to alter
one can still act on p, or vice versa, depending on the specific physical realization of the scheme.

When a finite interaction range (@ # 0) is considered, as in the case shown in figure 5, the qubit’s dynamics
are qualitatively similar to those observed for & = 0 [33], but the value of n* (z¢) is found to be quite sensitive to «
itself. However, an almost complete flipping, even better than that observed in figure 5, can be obtained by
further adjusting the available parameters. In this respect, notice that the ratio h = yH/]JS is arelevant quantity,
when a # 0, as it contributes to setting the length scale of the soliton; for example, 4 = 0.05 and
tan # = 2, 1, 0.5, 0.2 define ff-solitons with A3 = 5d, 6.3d, 10d, 22.8d, respectively.
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Figure 5. Time lapse of qubit’s evolution (represented by n (7)) while a f-soliton propagates along the chain. The graphs on the left
side display 5% () (fulllines) and §* (r) (dashedlines), i.e., the components of the effective field acting on the qubit as a consequence of
the soliton’s transit, drawn up to the same time 7. The parameter values are: h=0.01, tan f = 0.2,u=1,6=1,anda=3.

In figure 6 we show a contour-plot relative to ## (z¢ ) in the plane (tan 3, u), for § = 1 and different values of h. As
expected, for smaller tan /3 the qubit’s dynamics are less affected by the finite interaction range, as broad solitons
(43 > ad) arelittle modified by the ‘smearing’ entailed by equation (16). In particular, the plot for # = 0.01 shows that
the partial flip shown in figure 5 can be improved by taking smaller 3, i.e. longer solitons, or increasing 4, i.e. the qubit—
chain coupling. The flip quality decreases also when, due to the phase term &/cot f# appearing in equation (3), the x
and y components of §(¢) shrink under the smearing (16). This effect can be reduced, as suggested by equation (12), by
requiring that a/h cos f < 1,i.e., forsmall f, h < a~2.In fact, figure 6 shows that by taking a smaller , the flip
quality can be made to approach optimal values in an extended region of the f— plane. Referring to the definitions
(19), this optimization can be typically performed by driving the external field only.

4.2. Qubit flipped by a generated soliton

Let us now consider the case when the soliton running through the chain is notideal, but rather a generated one,
I 1) ~ Zl(ﬁ (z).In figure 7 we show the qubit’s state evolution when tan f = 2and A3 = 5 (a=0);in theleft
panels one can appreciate how the evolution of #n# () follows that of the generated soliton, both for zero (top)
and finite (bottom) temperature; the right panels display the overall trajectory of the qubit’s magnetization on
the Bloch sphere. The qubit’s behavior under the action of a generated soliton looks similar to that described in
the previous sections for ideal solitons: in particular, for 7= 0 an almost complete flipping is obtained. More
pronounced differences emerge for 7 # 0, where the asymptotic value n* (z¢) is no longer constant in time but
fluctuates, being subjected to the thermal fluctuations of the spin chain. However, we note that such fluctuations
are conceptually different from the decoherence phenomena commonly met when dealing with open quantum
systems, as the (however noisy) effective field acting on the qubit is still classical, keeping the qubit evolution on
the Bloch sphere.
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Figure 6. Contour plots of the asymptotic magnetization n* (z¢ ) as a function of the parameters tan  and y, fora=3and5=1.In
each panel a different value of 1 is considered.
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Figure 7. Left panels: time evolution of n* (z) (solid blue line) for the qubit interacting with the soliton (z-component, dashed red line)
generated by injecting a soliton (tan # = 2) with 7 = 0 (top) and 7 = 0.002 (bottom); # =1, 5= 1, and @ = 0. Right panels: parametric
plots of the qubit’s state evolution on the Bloch sphere, under the same conditions of the respective left panel.

5. Conclusions

Using dynamical solitons as magnetic signals running through spin-chains is quite a promising prospect, that,
however, needs in-depth analysis in order to become a more solid possibility. In fact, besides checking intuitions,
quantitative conditions must also emerge and be tested, with specific reference to the realization one has in
mind. In this respect, the scheme presented in this work might find several different applications, as spin chains
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are versatile models that can be used for describing the most diverse real situations. Let us therefore end this
work by briefly commenting upon the conditions identifiable as essential in our analysis, in the case of an
implementation based on solid-state systems [34—-38].

First of all, we have numerically demonstrated that systems of interacting magnetic moments in one-
dimensional lattices, possibly of finite length, support dynamical configurations which are the discrete
counterparts of f-solitons if 5 > d,i.e., \JyH/JS sin f < 1,tobe confronted with H # 0 for getting v > 0.
Given the values of S and ] typically observed in magnetic compounds, itis JS?> ~ 1 + 10° K meaning that, as
up = 0.67 K/Tesla, only very large fields could break the above inequality, and the continuum approximation is
therefore most often justified. Further notice that our scheme might also be considered in the case of dynamical
solitons that do notrequire H # 0 to be supported by the Heisenberg chain [25]. Moreover, we know that
solitons exist and run also in anisotropic spin chains [6, 9], which makes our scheme potentially efficient in the
case of anisotropic quasi one-dimensional real compounds. In fact, this is quite a relevant feature when thinking
of implementations based on one-dimensional monatomic metal chains deposited on surfaces [39] where the
system’s geometry inevitably makes the intra-chain exchange anisotropic [40].

As for the issue of how dynamical solitons can be generated, we have preliminary indications that our
proposal keeps being effective when the action of the field pulse b'”) (¢) is not punctual, as understood by
equation (13), but rather extends to a finite part of the chain end (shorter than the induced soliton), as required
in a realistic setup; hence, the effect of b'?) (¢) is amplified by the effective number of spins it affects and its
intensity can well be comparable with H.

Having shown that a controlled action on the qubit can actually be obtained by its interaction with the
nearby running magnetic soliton, we notice that the condition required by the continuum approximation is fully
consistent with the small values of \/yH/JS that are found to produce a permanent variation of the qubit state,
according to the analysis presented in section 4. Moreover, the energy exchanged between qubit and chain in the
case of complete flipping (obtained by, say, yH/JS = 0.05,@=0, tan = 0.2, 4 =5 =1) amounts to
8E = 71 (gS + y,H) =~ 1072JS% as the soliton energy is of the order of JS°, the chain dynamics are unaffected by
the evolution of the qubit, essentially validating the ‘no back-action’ approximation mentioned in section 4. As
for the limits dictated by the typical coherence times attainable in solid state qubit realizations, an additional
relevant quantity is the time t,,,, required by the soliton to reach the qubit after its injection; for a time scale of
(JS)™' ~ 107"* s, we can estimate t,,, ~ 1 ns, if the qubit lies around 10° lattice constants away from the
chain end.

Finally, it is worth noticing that the magnetic soliton propagation we have studied is an energy-conservative
phenomenon and has proved to be robust against thermal noise up to a reduced temperature 7 ~ 0.01; this
suggests that, besides the specific proposal presented in this work, using solitons for transferring either classical
or quantum information in solid-state devices might strongly alleviate the heat dissipation requirements that
seriously affect more conventional solutions, without requiring a highly demanding lowering of the operating
temperature.
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