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Abstract
The linear and non-linear thermoelectric properties ofmolecular junctions are theoretically studied
close to room temperature within amodel including electron–electron and electron–vibration
interactions on themolecule. A non-equilibrium adiabatic approach is devised to include a strong
Coulomb repulsion and applied to the self-consistent calculation of electron and phonon transport
properties ofmassivemolecules, such as fullerenes, within theCoulombblockade regime.We show
that the phonon thermal conductance is quite sensitive to strong electron–electron interactions within
the intermediate electron–vibration coupling regime. Furthermore, the electron–vibration interac-
tion enhances both phonon and electron thermal conductance, and it reduces not only the charge
conductance, but also the thermopower. The effect of the strong electron–electron interactions
provides a peculiar double-peak structure to the thermopower versus charge conductance curve.
Finally, within the regime ofweak to intermediate electron–vibration and vibration–lead phonon
coupling, the peak values of the thermoelectric figure ofmerit are slightly less than unity, and the
maximal efficiency of the junction can reach values slightly less than half of theCarnot limit for large
temperature differences between the leads.

1. Introduction

Direct conversion of temperature differences to electric voltage and vice versa can take place in solid state
systems. These thermoelectric effects can be strong enough in some semiconductingmaterials to allow either the
fabrication of devices convertingwasted heat into electrical energy or the realization of solid-state coolers [1, 2].
A fundamental parameter to quantify the energy conversion efficiency is the dimensionless figure ofmerit
ZT GS T GK

2= , whereG is the electrical conductance, S the thermopower,T the absolute temperature, and

G G GK K
el

K
ph= + is the total thermal conductance, with GK

el and GK
ph as electron and phonon thermal

conductance, respectively. Indeed, in order to improve the efficiency,mutually contrasting transport properties
of the samematerial have to be optimized. For instance, inmetals,ZT is typically limited by theWiedemann–
Franz law [3], which constrains the ratio between thermal and electric conductivities. A Large effort is currently
beingmade inmaterial science to get compoundswith values ofZT larger than 1 and to use solid state systems
for actual thermoelectric devices [1, 4, 5].

Recently, the possibility of controllingmaterials at the nanoscale has been exploited to optimize the
thermoelectric efficiency [4, 6, 7]. For example, amaximum ZT 2.4≃ has been observed at room temperature
in Bi Te Sb Te2 3 2 3 superlattice thermoelectric devices [8].High values ofZT have been reported in quantumdot
superlattices [9] and in semiconductor nanowires [10], where phonon confinement can lead to a lower phonon
thermal conductance [11, 12]. Actually, a significant reduction in lattice thermal conductivity is considered as
themain route for having highZT in low-dimensionalmaterials [13]. The improvement of thermoelectric
efficiency can also derive from the discreteness of energy levels in nanostructures resulting into a violation of the

OPEN ACCESS

RECEIVED

19April 2015

REVISED

30 June 2015

ACCEPTED FOR PUBLICATION

14 July 2015

PUBLISHED

24August 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/8/083050
mailto:perroni@na.infn.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/8/083050&domain=pdf&date_stamp=2015-08-24
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/8/083050&domain=pdf&date_stamp=2015-08-24
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Wiedemann–Franz law [14]. Finally, in nanoscopic Coulomb-coupled systems, the thermoelectric properties
can be optimized by exploiting theCoulombblockade regime and changing the gate voltage [7].

Molecular devices can be efficient converters of heat into electric energy since both phonon and electron
properties can contribute to an increase in the thermoelectric figure ofmeritZT [15, 16]. Indeed, the emerging
field ofmolecular thermoelectrics has attracted a lot of attention in recent years [17–23]. The thermoelectric
properties ofmolecular junctions are also interesting in that they can provide useful information on charge and
energy transport which is otherwise difficult to obtain, such as the type of carriers (electrons/holes) dominating
the transport [17, 18, 24–26].Measurements of thermoelectric properties have been performed in junctions
with fullerene (C60) [18]finding a high value of themolecular thermopower (S of the order of -30 Vμ /K). In
these experiments, three differentmetallic electrodes (platinum, gold, and silver) have been considered
achieving amore controllable alignment between the Fermi level andmolecular orbitals (whose energy
separation is still of the order of 0.5 eV).However, the application of a gate voltage remains elusive in these kinds
ofmeasurements.Moreover, heat transport inmolecular devices remains poorly characterized due to
experimental challenges [16, 27–29] or limited to a rangewhere transport is elastic [30].

Inmolecular junctions, intramolecular electron–electron and electron–vibration interactions typically
constitute the largest energy scales affecting the thermoelectric properties [25, 31, 32].Moreover, the center of
mass oscillation of themolecule [33], or thermally induced acoustic phonons [34] can be an additional source of
coupling between electronic and vibrational degrees of freedom. The effects of intramolecular interactions on
the transport properties have been studied in the regime of linear response and fully out-of-equilibriumby
different theoretical tools [25, 32]. The thermopower S and the thermoelectric figure ofmeritZThave been
found to be sensitive to the strength of intramolecular interactions [21–23, 35–41].However, the phonon
thermal contribution GK

ph to thefigure ofmeritZT has been calculated only at a perturbative level of the
electron–vibration coupling [42].

In devices with largemolecules or carbon nanotube quantumdots [43], a nonequilibrium adiabatic
approach has been introduced for spinless electrons exploiting the low energy of the relevant vibrational degrees
of freedom [44–48]. Thismethod is semiclassical for the vibrational dynamics, but it is valid for arbitrary
strength of electron–vibration coupling.Within this approach, we have recently implemented a self-consistent
calculation for electron and phonon thermal conductance focusing only on the effects of the electron–vibration
coupling for the linear response regime [49].

In this paper, we have studied the linear and non-linear thermoelectric properties of amolecular junction
with electron–electron and electron–vibration interactions devising a self-consistent calculation of the electron
and phonon transport properties close to room temperature. The non-equilibrium adiabatic approach has been
correctly generalized to treatfinite strongCoulomb interactions within a junctionmodel which takes into
account the interplay between the low frequency center ofmass oscillation of themolecule and the electronic
degrees of freedomwithin theCoulombblockade regime. Parameters appropriate for junctions with C60

molecules are considered.We have found that, within the intermediate electron–vibration coupling regime, the
effects of electron–electron interactions can enhance GK

ph, which acquires an order ofmagnitude and a behavior
similar to that of electron thermal conductance as a function of the gate voltage. The electron–vibration
interaction induces an increase of the phonon and electron thermal conductance, and a decrease of not only the
charge conductance, but also of the thermopower. The effect of the strong electron–electron interactions
provides a peculiar double–peak structure to the S versus charge conductanceG curve. The overall effect of the
electron–electron and electron–vibration interactions induces a reduction of the thermoelectric figure ofmerit
ZT, which, however, within the regime ofweak to intermediate electron–vibration and vibration-lead phonon
coupling, can have peak values slightly less than unity. Finally, within the non-linear response regime, the
efficiency can be correlated to the behavior ofZT as a function of the gate voltage, and it is found to be slightly
less than half of the Carnot limit within the regime ofweak to intermediate electron–vibration and lead phonon–
vibration coupling.

The paper is organized as follows. In section 2, themodel ofmolecular junction is proposed. In section 3, the
adiabatic approach generalized for strong local Coulomb interactions is explained. In sections 4 and 5, the
results within the linear and nonlinear regime, respectively, are discussed. The paper is closed by appendix A,
where the comparison between different treatments of the large Coulomb repulsion ismadewithin the
Coulombblockade regime, and by appendix B, where the transport properties are analyzed for different values
of the electron–electron interaction.

2.Molecular junctionmodel

In this paper, we describe themolecular junctionwithin the Anderson–Holsteinmodel, which is a reference for
these devices although it has no exact solution [25, 50]. Themolecule ismodeled as a single electronic level
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locally interacting with a single vibrationalmode. In addition to the electron–vibration coupling, electronswith
opposite spins can locally interact through aCoulombHubbard term (see figure 1 for a sketch of themolecular
junctionmodel).

TheHamiltonian Ĥ is given by

H H H Hˆ ˆ ˆ ˆ , (1)el ph int= + +

where theHamiltonian Ĥel takes into account the electronic degrees of freedomof the leads and themolecule,
Ĥph the vibrational degrees of freedomof the leads and themolecule, and Ĥint the coupling between electronic
and vibrational degrees of freedom.

The electronicHamiltonian Ĥel of equation (1) is

( )

H n Un n n

V c d h c

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ . . , (2)

el

q

q q

q

q q

, ,

, , ,

, ,

, , ,
†

∑ ∑

∑

ϵ ε= + +

+ +

σ
σ

α σ
α α σ

α σ
α α σ σ

↑ ↓

where themolecular electronic level has energy ϵ, the σ spin electron density operator is n d dˆ ˆ ˆ†
=σ σ σ , with d dˆ ( ˆ )

†
σ σ

creation (annihilation) σ spin electron operator on themolecule. The presence of a gate in the junction can be
simply simulated by changing the value of the local energy ϵ [25]. TheCoulomb repulsion on themolecule is
simulatedwith aHubbard termU, which gives an energy penalty for electron occupationswith spin ↑ and ↓
[25]. The lead density operator is n c cˆ ˆ ˆq q q, , , ,

†
, ,=α σ α σ α σ , where the operators c cˆ (ˆ )q q, ,

†
, ,α σ α σ create (annihilate)

electronswithmomentum q, spin σ, and energy q q, ,ε ξ μ= −α α α in the left ( Lα = ) or right ( Rα = ) free
metallic leads, with μα chemical potential of the lead α in equilibrium at the temperatureTα.We consider the
temperaturesT T T 2L = + Δ andT T T 2R = − Δ , withT average temperature.Moreover, we fix the chemical
potentials eV 2Lμ = and eV 2Rμ = − , with emodulus of the electron charge,V bias potential, and average
chemical potential 0μ = . The electronic tunneling between themolecular dot and a state q in the lead αhas the
amplitudeVq,α. As usual formetallic leads, the density of states q,ρ α is assumedflat around the small energy range
relevant for themolecular orbital, making valid thewide-band limit q,ρ ρ↦α α,V Vq, ↦α α. Therefore, the full

hybridizationwidth of themolecular orbital is ∑ℏΓ = ℏΓ
α α, with ℏ the Planck constant and the tunneling rate

V2 2πρΓ = ∣ ∣ ℏα α α . In the following, we consider the symmetric configuration: 2L RΓ = Γ = Γ .

In equation (1), theHamiltonian Ĥph describes the vibrations of the slowmode (focuswill be on the center
ofmassmode), the free phononmodes of the leads, and the coupling between them:

( )H H a a C a h c xˆ ˆ ˆ ˆ ˆ . . ˆ. (3)ph cm

q

q q q

q

q q

,

, ,
†

,

,

, ,∑ ∑ω= + ℏ + +
α

α α α
α

α α

The center ofmassHamiltonian Ĥcm is

H
p

M

kxˆ
ˆ

2

ˆ

2
, (4)cm

2 2

= +

where p̂ and x̂ are the center ofmassmomentum and position operators, respectively,M is the total largemass,
k is the effective spring constant, with frequency k M0ω = . In equation (3), the operators a aˆ ( ˆ )q q,

†
,α α create

(annihilate) phononswithmomentum q and frequency q,ω α in the lead α. The left and right phonon leadswill be

Figure 1. Sketch of themolecular junction studied in this work. The straight lines between dots (lead atoms) depict charge electron
hoppings in the lead bulks (t′) and between lead andmolecule (t). The broken lines between dots (lead atoms) depict springs in the
lead bulks (with elastic constant k′) and between lead andmolecule (with elastic constant k). The hot left lead and the cold right lead
are kept at chemical potential eV 2Lμ = , temperature T T T 2L = + Δ and chemical potential eV 2Rμ = − , temperature
T T T 2R = − Δ , respectively, with emodulus of the electron charge,V bias potential, 0μ = average chemical potential,T average
temperature. The termU indicates the presence of electron–electron interactions, while the termEP indicates electron–vibration
interactions on themolecule.
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considered as thermostats in equilibrium at the same temperaturesTL andTR, respectively, of the electron leads.
Finally, in equation (3), the coupling between the center ofmass position and a phonon q in the leadα is given by
the elastic constant Cq,α. For largemolecules, the center ofmassmode has a low frequency 0ω which is typically
smaller than theDebye frequency Dω of themetallic leads ( 15 20Dωℏ ≃ − meV formetals like silver, gold, and
platinum [3]). Therefore, for largemolecules, the adiabatic regime is valid for the center ofmass oscillator

0ω ≪ Γ and D0ω ω≪ .Within this regime, the effect of the α phonon lead on the center ofmassmode provides
a constant damping rate γα [51]. In analogywith the electronic dynamics, we consider the symmetric
configuration: 2L Rγ γ γ= = .

Finally, the interaction term Ĥint in the Anderson–Holsteinmodel of equation(1) is provided by a linear
coupling between the total electron density on themolecule, n nˆ ˆ∑=

σ σ , and the x̂ operator of the center of

mass:

H xnˆ ˆ ˆ, (5)int λ=

where λ is the electron–vibration coupling constant. In the following, the electron–vibration interactionwill be
described in terms of the coupling energy E k(2 )P

2λ= .
In this work, we analyze a simplemodel for the vibrational degrees of freedom.Wedonot consider

molecular internalmodes sincewe expect that, in comparisonwith the center ofmassmode, they aremuch less
coupled to the phonon leads (the strength of the interaction betweenmolecular vibrations and lead phononswill
be a relevant quantity in our analysis). In any case, the overall effects of amore realistic vibrational system are
consistent with our results confirming that the phonon contribution to the total thermal conductance can be
relevant [52].Moreover, the focus of this paper is on the regime close to room temperature; therefore we neglect
possible but negligible phonon interference effects [53].

Wewill considermodel parameters appropriate to junctions with C60 molecules following the analysis
reported in a previous paper [49]. In thesemolecular junctions, attention can be focused on amolecular
electronic orbital which is sufficiently separated in energy fromother orbitals [49, 54–56]. The hybridization
width ℏΓ of the orbital has been estimated to be of the order of 20meV [55, 56]. Even if the local Coulomb
repulsion is reduced by the screening of the electrodes, the energyU is expected to be at least one order of
magnitude larger than ℏΓ [55, 56]. The center ofmassmode can be considered as the relevant vibrationalmode
of the C60 molecular junction [49]. Indeed, experiments have evidenced a coupling between the center ofmass
mode and the electron dynamics in these junctions [33]. In these experiments, 0ωℏ has been estimated to be of
the order of 5meV [33], hence 0.250ω ≃ Γ. Finally, for junctions with C60 molecules and leads of Ag, Au, and
Pt, 3 8γℏ ≃ − meV, therefore γ is of the same order of 0ω ( 0.15 0.40γ ≃ − Γ) [49].

In this paper, 20ℏΓ ≃ meVwill be the energy unit (Γ the frequency unit, 1 Γ the time unit).Wewill
measure lengths in units of k2λ , and temperatures in units of kBℏΓ , with kB as the Boltzmann constant (the
room temperature is of the order of 1.25 in these units).

3. Adiabatic approachwithin theCoulombblockade regime

The focus of this paper is on charge and heat transport properties close to room temperature, therefore for
parameters appropriate to theCoulomb blockade regime: k T UD B0ω ωℏ ≪ ℏ ≃ ℏΓ ⩽ ≪ , withU 10> ℏΓ.
Besides, the electron–vibration coupling is not weak, but it is estimated to be in the intermediate regime, i.e.

EP0ωℏ ⩽ ≃ ℏΓ. Since 0ωℏ is the lowest energy scale, the dynamics of the slow center ofmass can be treated as
classical. In the following, the position and themomentumof the oscillator will be indicated by the c-numbers x
and p, respectively. The parameter regime appropriate to these junctions requires a generalization of the
adiabatic approach to the physical situationwhere theCoulomb interaction isfinite and large. Recently, the
adiabatic approach has been combinedwith a treatment of electron–electron interactions within a slave–boson
approach [57]which is valid only in the limit of infinite local Coulomb repulsion for energies close to the
chemical potential and low temperatures [58].

3.1. Electron dynamics at afixed value of the oscillator displacement
The electronic dynamics turns out to be equivalent to that of an adiabatically slow level with energy
E t x t( ) ( )0 ϵ λ= + within theCoulombblockade regime [59, 60].

At the zero order of the adiabatic expansion, the electronic quantities can be calculated considering an
energy level with afixed oscillator position x. The effects of the strongCoulomb repulsion are treated by
inserting the first self-energy correction upon the atomic limit [50]. Therefore, for the paramagnetic solution,
the level spectral function A x( , )0 ω at zero order of the adiabatic expansion becomes
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A x x
x

x
x U

( , ) [1 ( )]
( ) ( ) 4

( )
( ) ( ) 4

, (6)

0 2 2

2 2

ω ρ
ω ϵ λ

ρ
ω ϵ λ

= − ℏΓ
ℏ − − + ℏΓ

+ ℏΓ
ℏ − − − + ℏΓ

where x( )ρ is the level density per spin self-consistently calculated atfixed position x through the following
integral

x
i

G x( )
d( )

2
( , ), (7)0∫ρ

ω
π

ω= ℏ
−∞

+∞
<

with the lesser Green function G x( , )0 ω<

G x
i

f f A x( , )
2

( ) ( ) ( , ), (8)L R0 0
⎡⎣ ⎤⎦ω ω ω ω= +<

and f ( ) 1 (exp[ ( )] 1)ω β ω μℏ = ℏ − +α α α Fermi distribution of the leadα ( k T1 Bβ =α α). Actually, the spectral
function is characterized by a double-peak structure that, for largeU, is robust against the effects of electron–
vibration couplingwhich tend to shift and enlarge the single peaks (the single-peakwidth increases by a factor of
the order ofEP).

In appendix A, we compare the spectral function of this treatment for strongCoulomb repulsionwith that of
another approachwhich retains additional self-energy corrections upon the atomic limit in the absence of
electron–vibration coupling [50]. For largeU and room temperature, the approach considered here is very
accurate, therefore, it represents an optimal starting point for the adiabatic expansion. In this paper, wewill
study different properties varying the electronic level occupation. In ourmodel, these variations can be
controlled by changing themolecule level energy ϵwith respect to the lead’s chemical potential (average
chemical potential 0μ = in this work). In appendix A, we report themolecular electron occupationN as a
function of level energy ϵ showing the typical profiles of theCoulomb blockade. In particular, the following
energies are relevant: U 2ϵ = − (close to half-fillingN=1), Uϵ = − (transition from level occupationN=1 to
N=2), 0ϵ = (from level occupationN=1 toN=0).

Within the adiabatic approach, one can determine the electronicGreen functions and other electronic
quantitiesmaking an expansion on the small oscillator velocity v p m= . In the absence of electron–electron
interactions, the adiabatic expansion can be determined for any strength of electron–vibration coupling
[47, 48, 61–63]. In this paper, an approach is devised for the case of strongCoulomb repulsion in order to
include the effects of electron–vibration interactionwithin the realistic intermediate coupling regime. Actually,
the approach used in this paper is valid as long as the two peaks characteristic of Coulombblockade can be
resolved, therefore for the physical regime E UP ≪ . In the next subsection, wewill use the adiabatic expansion
of the level occupation to derive themotion equation of the slow center ofmass oscillator in a self-
consistent way.

3.2.Dynamics of the center ofmass oscillator
The effect of themolecule electron degrees of freedom and of the phonon baths in the leads gives rise to the
following generalized Langevin equation for the slow center ofmass variable

m
v

t
F x v x t

d

d
( , ) ( , ), (9)det ξ= +

which contains the deterministic force F x v( , )det and the position dependent fluctuating force x t( , )ξ . The
deterministic force

F x v F x A x v( , ) ( ) ( ) , (10)det gen eff= −

can be decomposed into a generalized force F x( )gen

F x kx F x( ) ( ), (11)gen = − + λ

with F x x( ) 2 ( )λρ= −λ induced by the electron–vibration coupling, and, as a result of the adiabatic expansion, a
dissipative forcewith an effective position dependent positive definite term A x( )eff

A x A x m( ) ( ) , (12)eff γ= +λ

with A x( )λ

A x
i

G x
A x

( ) 2
d( )

2
( , )

( , )

( )
(13)2

0
0

⎡
⎣⎢

⎤
⎦⎥∫λ

ω
π

ω
ω
ω

= ℏ ℏ ∂
∂ ℏλ

−∞

+∞
<
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due to the electron–vibration interaction. Thefluctuating force x t( , )ξ in equation (9) is such that

x t x t x t D x t t( , ) 0, ( , ) ( , ) ( ) ( ), (14)effξ ξ ξ δ〈 〉 = 〈 ′ 〉 = − ′

where the effective position dependent noise term D x( )eff is

( )D x D x k T T m( ) ( ) , (15)B L Reff γ= + +λ

with D x( )λ

D x
i

G x G x( ) 2
d( )

2
( , ) ( , ) (16)2

0 0∫λ
ω

π
ω ω= ℏ ℏ

λ
−∞

+∞
< >

determined by the electron–vibration coupling and the greaterGreen function G x( , )0 ω>

G x
i

f f A x( , )
2

2 ( ) ( ) ( , ). (17)L R0 0
⎡⎣ ⎤⎦ω ω ω ω= − − −>

It is worthwhile pointing out that, in equilibrium conditions at temperature T T= α and chemical potential
0μ μ= =α , the adiabatic procedure gives rise to a generalized fluctuation–dissipation relation

D x k TA x( ) 2 ( )Beff eff= valid for eachfixed position x.
The solution of the Langevin equation (9) represents a central step for this work. This equation has been

numerically solved under generic non-equilibrium conditions using a generalized Runge–Kutta algorithm
[47, 64, 65]. As a result of the numerical calculations, the oscillator distribution function Q x v( , ) and the
reduced position distribution function P x( ) are determined allowing us to evaluate static quantities relative to
the center ofmass oscillator.Moreover, averaging over P x( )or Q x v( , )will allow us to extract themean value of
any electronic observable O x v( , )dependent on the oscillator parameters.

Before discussing the results (section 4), we devote the last part of this section to describing the features of the
electron–vibration induced damping rate x A x m( ) ( )γ =λ λ , with A x( )λ given in equation (13).We observe that
themagnitude of x( )γλ always gets enhancedwith increasing the electron–vibration coupling EP. However, as
reported in the upper panel offigure 2, even for the intermediate coupling E 1P = , the peak values of x( )γλ are
always smaller than the realistic values of the lead-induced damping rate γ ( 0.15γ = will be considered in this
paper). This implies that the effects due to the electron–vibration coupling on the oscillator dynamics do not
typically represent a large perturbationwith respect to those induced by the coupling to phonon leads.
Obviously, as reported in the figure, the behavior of x( )γλ strongly depends on the occupation of the electronic
level.We point out that, in contrast to the spinless case analyzed in a recent paper, [49] x( )γλ shows a double-
peak behavior due to the effect of the strongHubbard interaction.Moreover, as reported in the upper panel of
figure 2, the peaks of x( )γλ largely shift passing from the quasi half-filling case (close to U10 2ϵ = − = − , state
withflat occupation) to conditions out of half-filling (close to U20ϵ = − = − and 0ϵ μ= = , statewith strong
density fluctuations). The self-consistent calculation of x( )γλ provides a direct signature of the strong local
interaction since it is determined by the adiabatic expansion of the electron occupation.

Figure 2.Electron–vibration induced damping rate γλ in units ofΓ (upper panel) and reduced position distribution function P in
units of k 2λ (lower panel) as a function of oscillator position x (in units of k2λ ) for different values of level energy ϵ (in units of ℏΓ).
In all the plots,U 20= ℏΓ, EP = ℏΓ, and temperature T k1.25 B= ℏΓ (close to room temperature).

6

New J. Phys. 17 (2015) 083050 CAPerroni et al



A comparison of the x dependence between x( )γλ and the calculated oscillator position distribution P x( )
will clarify the conditions underwhich the electron–vibration interaction can affect the dynamics of the center of
mass oscillator. In the lower panel offigure 2, we report the distribution P x( )with varying the level energy ϵ.We
notice that, apart from the shift of the peaks, close to room temperature, the distribution P x( ) is practically the
Gaussian of the free harmonic oscillator at temperatureT for any value of the level energy ϵ. In the quasi half-
filled case ( 10ϵ = − ), the peak positions of x( )γλ and P x( ) are well separated. Therefore, one expects that, in
this regime, the effects of the electron–vibration coupling on the oscillator dynamics areweak.We stress that,
within the self-consistent procedure used in this work, the peak of the P x( )directly signals that the level
occupation is close to N 2− within the units used in this paper. Actually, for 10ϵ = − , the value close to 0.5− of
the peak of P x( ) is fully compatible with the half-filled caseN= 1.On the other hand, for 20ϵ = − , the peak
position of P x( ) shifts towards lower values close to 0.75− (N 1.5≃ ), and, for 0ϵ = , to 0.25 (N 0.5≃ ).We
point out that, for 20ϵ = − , the first peak of x( )γλ is close to x= 0,while, for 0ϵ = , the second peak of x( )γλ
strongly overlapswith the position distribution P x( ). Therefore, out of half-filling, the effects of the electron–
vibration coupling can affect the oscillator dynamics. In contrast with the spinless case [49], these effects are
present not only close to 0ϵ μ= = , but also to U 20ϵ = − = − , as a result of the strongCoulomb interaction.
Therefore, as discussed in detail in the next section, the complex interplay between electron–electron and
electron–vibration interactions opens an entire energy regionwhere the phonon heat transport can be
enhanced.

4. Results within the linear response regime

In this section, wewill discuss linear response transport properties in an attempt to clarify the role of the
electron–electron and electron–vibration interactions. In the next subsections, wewill analyze the phononheat
transport, the electronic spectral function, the charge and electronic heat transport, and thermoelectric figure of
merit. In the following, wewill assume 0.250ω = Γ, and 0.15γ = Γ (larger values of γwere discussed in a
previous paper [49] for spinless electrons and theywill be considered in the next section about non-equilibrium
properties).

4.1. Phonon heat transport
In this subsection, wewill focus on the phonon thermal conductance GK

ph calculatedwithin the linear response
regime around temperatureT as

( )
G

J J

T
lim

2
, (18)K

ph

T

L
ph

R
ph

0
=

−

ΔΔ → +

with J ph
α current from the α phonon lead [49, 66]. This quantity is directly calculated by the stochastic dynamics.

In the limit where the electron–vibration couplingEP is weak, the resulting Langevin equation (9) is linear
(all the coefficient dependencies on the position x can be disregarded) [49]. In this limit, the J ph

α current can be
obtained starting from the Landauer–Caroli formula

J D g D g N
1

( ) ( ) ( ) ( ) ( ), (19)ph R
L

A
R

0

⎡⎣ ⎤⎦∫π
ω ω ω ω ω ω= ℏα α

∞

where D ( )R ω (D ( )A ω ) is the retarded (advanced) phononic Green function, g ( ) 2ω ωγ=α α, and
N ( ) 1 (exp( ) 1)ω β ω= ℏ −α α is the Bose distribution relative to the lead α (in this paper wewill consider the
appropriate high temperature limit of this distribution) [66].

The conductance GK
ph is expected to bemostly sensitive to the coupling of the center ofmassmode to the

phonons ofmetallic leads through the damping rate γ ( 0.15γ = Γ in this work)which is typically larger than the
peak values of electron–vibration induced damping rate x( )γλ . As shown infigure 3, in the regime ofweak

electron–vibration coupling EP, low level occupation ( 0ϵ ≫ ), and double level occupation ( Uϵ ≪ − ), GK
ph is

close to 0.04 kB Γ (kB Γ is about 419.8 pW/K for 20ℏΓ ≃ meV), a numerical value coincident with an analytical
estimate of GK

ph given in a recent paper [49]. This asymptotic value corresponds to the contribution given by the
only phonon leads neglecting the effects of electron–electron and electron–vibration interactions on the
molecule.

Infigure 3, we show that GK
ph always gets larger with increasing the electron–vibration couplingEP.

Moreover, this increase of GK
ph strongly depends on the value of level energy ϵ. In contrast with the spinless case

(reported for comparison infigure 3 at E 1P = ), we stress that the enhancement of GK
ph takes place not only close

to 0ϵ ≃ , but also to Uϵ ≃ − . Therefore, the distance between the peaks of the phonon thermal conductance is
controlled by the energy scaleU. The peak values are almost coincident (although slightly smaller than the peak
value of the spinless case), and, at E 1P = , they are of the order of k0.05 20B Γ ≃ pW/K. Therefore, the calculated
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GK
ph is in very good agreement with the thermal conductance of the order of a few 10 pW/Kmeasured for

molecules anchored to gold [28, 29]. In any case, due to the strong electron–electron interactions, GK
ph can be

enhanced in a new large-energy region.On the other hand, for U 2ϵ ≃ − , GK
ph is poorly influenced by the

electron–vibration effects even if EP is not small, resulting in a value close to the asymptotic one. From this
analysis emerges that the complex enhancement of the phonon thermal conductance GK

ph as a function of the
electron–electron and electron–vibration interactions can bemostly ascribed to the properties of additional
electron–vibration induced damping rate x( )γλ discussed in the previous section.

4.2. Electronic spectral function
From the solution of the Langevin equation, one can obtain themean values of the relevant electronic
observables, O x v( , ), taking the average over the oscillator distribution function. First, we discuss the features of
the electronic spectral functionwhich is at the basis of the thermoelectric properties analyzed in the next
subsection.

The electronic spectral function A ( )ω is evaluatedmaking the average of the function A x( , )0 ω in
equation (6) over P x( ):

A P x A x( ) dx ( ) ( , ). (20)0∫ω ω=
−∞

+∞

In this section, the spectral functionwill be discussed in equilibrium conditions at temperatureT (V=0 and
T 0Δ = ).We recall that, in appendix A, the features of the spectral function are discussed in the absence of

electron–vibration coupling. Actually, the spectral function is characterized by a structure with two peaks
separated by an energy of the order ofU, and it is strongly dependent on the value of the level energy ϵ.

In this subsection, we analyze the behavior of the spectral functionwith varying the electron–vibration
couplingEP at afixed value ofHubbard energyU. In the upper panel offigure 4, we show the spectral function
for different values of the electron–vibration coupling in the half-filled case U8 2ϵ = − = − (level occupation
N=1). For comparison, we report the spectral function relative to the casewhere electron–electron and
electron–vibration interactions are neglected (indicated as ‘Free’ in thefigure).We point out that there is a
strong transfer of spectral weight for the double-peak structure toward low frequencies with increasing EP. In
addition to the shifts of the peaks, the electron–vibration coupling tends to reduce the height of the peaks and to
enlarge them. Actually, the single peaks increase their width by a factor of the order ofEP.We stress that, for
realistic values of the couplingEP, the twoHubbard peaks do not overlap, therefore the double-peak structure
due to the largeU is quite robust to the effects of electron–vibration coupling. Finally, we notice that, in the
spinless case (reported for comparison infigure 4 at E 0.5P = ), the spectral function has a single peak, and it is
quite sensitive to the effects of the electron–vibration coupling.

As shown in the lower panel offigure 4, a different behavior takes place in the regime of low-level occupation
( 8ϵ = in the figure). For the considered values ofEP, the spectral function gets enlarged, but its peak position is
quite rigid.Moreover, the differences with the spinless case are completely negligible. Even in the presence of
electron–vibration coupling EP, the behavior of the spectral function is different in the regime of half-filling and
of low- or high-level occupation.

Figure 3.Phonon thermal conductance GK
ph (in units of kB Γ) as a function of the level energy ϵ (in units of ℏΓ) for different values of

electron–vibration coupling EP (in units of ℏΓ). In the plot,U 20= ℏΓ, T k1.25 B= ℏΓ (close to room temperature), 0.250ω = Γ,
and oscillator damping rate 0.15γ = Γ.
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4.3. Charge and electronic heat transport, and thermoelectricfigure ofmerit
In this subsection, the focuswill be on the regime of the linear response around the average chemical potential

0μ = and temperatureT ( T 0Δ → +,V 0→ +).Wewill evaluate the electronic conductanceG

G
e

A
f2

4

d( )

2
( )

( )

( )
, (21)

2
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥∫ ω

π
ω

ω
ω

=
ℏ

ℏΓ ℏ −
∂ ℏ
∂ ℏ−∞

+∞

where f ( ) 1 (exp[ ( )] 1)ω β ω μℏ = ℏ − + is the free Fermi distribution corresponding to the average chemical
potential 0μ = . Then, wewill calculate the Seebeck coefficient S G GS= − , with

G
e

T
A

f2

4

d( )

2
( ) ( )

( )

( )
. (22)S ⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥∫ ω

π
ω ω

ω
ω

=
ℏ

ℏΓ ℏ ℏ −
∂ ℏ
∂ ℏ−∞

+∞

Finally, wewill determine the electron thermal conductance G G TG SK
el

Q S= + , with

G
T

A
f2

4

d( )

2
( ) ( )

( )

( )
. (23)Q

2⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥∫ ω

π
ω ω

ω
ω

=
ℏ

ℏΓ ℏ ℏ −
∂ ℏ
∂ ℏ−∞

+∞

The total thermal conductance G G GK K
el

K
ph= + makes feasible the evaluation of the figure ofmerit

ZT GS T GK
2= .When the coupling of the center ofmassmode to themetallic leads is absent ( 0γ = ),

G GK K
el= , so that ZT ZTel= , which can be used to characterize the electronic thermoelectric efficiency.

As reported infigure 5, we analyze the effects of the electron–vibration coupling on the electronic response
functions as a function of the level energy ϵ at afixed value ofHubbard interactionU (U= 20) in the absence of
coupling to phonon leads ( 0γ = ) close to room temperature (T 1.25= ). For comparison, we report the
transport properties relative to the case when electron–electron and electron–vibration interactions are
neglected (indicated as ‘Free’ in thefigure).

Figure 4. Spectral function (in units of 1 ℏΓ) as a function of frequencyω (in units ofΓ) at level energy 8ϵ = − ℏΓ (upper panel) and
8ϵ = ℏΓ (lower panel) for different values ofEP (in units of ℏΓ). In all the plots,U 16= ℏΓ, T k1.25 B= ℏΓ (close to room

temperature).
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The charge conductanceG is expected to be smaller than the free one due to the effects of interactions. As
shown in the upper left panel offigure 5, close to room temperature,G has peak values of the order of 10 1− e h2

(e h2 is about 3.87 10 5× − S). In particular, for 20ϵ ≃ , we have checked thatG is of the order of10 3− e h2 in
agreementwith the order ofmagnitude of experimental data in C60 [18]. As expected, the conductance as a
function of the level energy ϵ follows a behavior similar to the double-peak structure of the spectral function as a
function of the frequency. Therefore,G hasmaxima for 0ϵ μ≃ = and Uϵ ≃ − , and aminimumat U 2ϵ ≃ − .

As shown in the upper right panel offigure 5, the Seebeck coefficient S shows large variations with changing
ϵ. Indeed, S shows twomaxima and twominimawhosemagnitude is very large at room temperature being of the
order of 2 k eB (k eB is about 86 μeV/K). This complex behavior is due to the role played by the strong electron
correlations [38]. Actually, the structure close to 0ϵ = (where S vanishes) is nearly translated by U− (for

20ϵ ≃ − , S goes again to zero). Therefore, even at U 2ϵ ≃ − , S gets very small values. Obviously, for large
positive values of ϵ, S is small and negative (n-type behavior). In particular, for 20ϵ = , S is about

k e0.45 38.5B μ− ≃ − V/K in agreement with themagnitude of experimental data in C60 [18].
As shown in the upper panels offigure 5, themost relevant effect of the coupling EP on the conductanceG

and the Seebeck coefficient S is to shift the curves and reduce themagnitude of the response function. The shift
of the conductance peaks and of the zeroes of the Seebeck coefficient is of the order ofEP. Atfixed level energy,
unlike the conductanceG, the Seebeck coefficient ismore sensitive to the changes of the coupling EP. For
example, this occurs for energies close to theminima and themaxima. By changing the values of ϵ, there is an
inversion in the behavior of Swith increasing the electron–vibration couplingEP.

As shown in the lower left panel offigure 5, with varying the level energy ϵ, the electron thermal conductance
GK

el shows the characteristic double-peak structure due to correlation effects [38]. The peaks values of GK
el are of

the order of a few 0.01 kB Γ (kB Γ is about 4.198 10 10× − W/K for 20ℏΓ ≃ meV). Therefore, the peak values are
smaller than the thermal conductance quantum g T k T h( ) (3 )B0

2 2π= at the room temperature
T 1.25 300 K= ℏΓ ≃ (g T W K T( ) 9.456 10 ( ) )0

13 2≃ × − [67].We point out that electron–vibration

interactions affect the thermal conductance GK
el in a way completely different from the charge conductanceG

(compare left upper and left lower panels offigure 5). Indeed, GK
el gets enhancedwith increasing the electron–

oscillator couplingEP. As discussed in the previous section, within the adiabatic approach, themolecular

Figure 5.Electron conductanceG in units of e h2 2 (upper left panel), Seebeck coefficient S in units of k eB (upper right panel),
electron thermal conductance GK

el in units of k2 B Γ (lower left panel), and figure ofmerit ZTel (lower right panel) as a function of the
level energy ϵ (in units of ℏΓ) for different values of electron–vibration EP (in units of ℏΓ). In all the plots,U 20= ℏΓ, 0γ = , and
T k1.25 B= ℏΓ (close to room temperature).
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effective level is renormalized by the position variable xwhich has a larger spreading upon increasing the
electron–vibration coupling.

We stress that the behavior of the electron thermal conductance GK
el shown in the lower left panel offigure 5

bears a strong resemblance with that of the phonon thermal conductance GK
ph reported infigure 3. Both have a

double-peak structure, and both are enhanced by the electron–vibration coupling.Moreover, GK
el acquires

values larger than those of GK
ph in the energy region U 0ϵ− ⩽ ⩽ . Obviously, the values of these quantities are

comparable for the chosen value of phonon-induced damping rate 0.15γ = Γ. If one consider larger values of γ
(for example 0.4γ ≃ Γ), then GK

ph would play amajor role in the total thermal conductanceGK. In any case, the

values of GK
ph and GK

el differ for 0ϵ ≫ and Uϵ ≪ − since GK
ph acquires afinite asymptotic value (obtained even

in the absence of interactions on themolecule), while GK
el goes rapidly to zero.

As shown in the lower right panel offigure 5, we analyze the behavior of the electronic thermoelectric figure
ofmerit ZTel neglecting the contribution from GK

ph. The quantity ZTel shows four peakswhose values are larger
than 1, but smaller than the peak value around 3 obtained in the absence of interactions.We stress that the peak
values of ZTel at room temperature are almost coincident with themaxima andminima of the Seebeck
coefficient S. Actually, close to room temperature, the small values of the conductanceG are fully compensated
by the large values of the Seebeck coefficient S.With increasing the electron–vibration couplingEP, the
reduction ofG and S combines with the enhancement of GK

el leading to a sensible reduction of the figure ofmerit
ZTel. Therefore, even if one neglects the role of phonon thermal conductance, the effect of electron–electron and
electron–vibration interactions is able to induce a reduction of the figure ofmerit.

Before discussing the behavior of the totalfigure ofmeritZT, we analyze the interplay between the Seebeck
coefficient S and the charge conductanceG. As shown in the upper panel offigure 6, in the spinless case, S is a
decreasing function ofG in the p-typewindow (S positive) apart from a small region close to zero conductance.
On the other hand, S is an increasing function ofG in the n-typewindow (S negative) excluding again a small
rangewith vanishing conductance. In any case, themagnitude of the Seebeck coefficient S decreases with
increasing the conductanceG excluding a very small region.Wenote that this behavior is very similar to the
results discussed in a recent work [68]. The electron–vibration couplingEP does not change this behavior
qualitatively. Indeed, not only the peak value ofG is reduced, but also themaximumvalue of S gets decreased
with increasing EP. Only in the regionwith very low charge conductance do the curves for different values ofEP
overlap.

As shown in the lower panel offigure 6, there is a splitting of the S versusG curve due to the double-peak
structure observed in both conductance and Seebeck coefficient (see upper panel offigure 5). The large value of
U affectsmore the conductance peak than themaxima of the Seebeck coefficient.Moreover, in analogywith the
spinless case, the electron–vibration couplingEP reduces each of the curves S versusG. As discussed in
appendix B, with increasingU, the firstminimumof S as a function of the energy ϵ becomesmore negative,
tending to get the same value inmodulus (of the order of 3 K eB ) of the firstmaximum. In a specular way, with
increasingU, the secondmaximumof S as a function of the energy ϵ becomesmore positive tending to a value
close inmodulus to the secondminimum (essentially the value relative to the free case). Therefore, at a large
fixed value ofU, the two positive peak values of S shown in the lower panel of figure 6 for smallG correspond to
the twomaxima of S, which have un equal heights. An analogous behavior is shownby the two negative peak
values of S for smallG. Therefore, the splitting of the S versusG curve is afingerprint offinite strong electron–
electron correlations. Clearly, in the limitU → ∞ (in appendix B,U=40 is close to this limit), the splitting
would be absent, in analogywith the spinless case.

Finally, infigure 7, we focus on the totalfigure ofmeritZT as a function of the level energy ϵ for different
values of electron–vibration coupling EP atU 20= ℏΓ including the effects of the phonon thermal conductance
( 0.15γ = Γ). From the comparisonwith the results discussed in the previous paragraph, it emerges that the

phonon thermal conductance GK
ph induces an additional suppression ofZT. For the realistic value of E 0.5P =

(intermediate coupling regime), the peak values ofZT are decreased by a factor of 2 in comparisonwith ZTel,
therefore the reduction ofZT is not strong.Only for unrealistically large electron–vibration couplings (EP larger
than 1), doesZT acquire peak values less than unity. Summarizing, the cooperative effects of phonon leads,
electron–electron and electron–vibration interactions on themolecule are able toweaken the thermoelectric
performance of this kind of device. However, within a realistic regime of parameters, the thermoelectric figure of
meritZT is still of the order of unity,making these devices a valid choice for thermoelectric applications.

5. Results within the non-linear response regime

In this section, wewill discuss non-linear properties in analogywith the devicemodel proposed in a recent paper
[23]. Actually, the bias voltageVwill be a free parameter, whichwill be adjusted together with other parameters
in order to obtain amaximal efficiency of the device. In analogywith the cited paper [23], in this section, wewill
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Figure 6. Seebeck coefficient S (in units of k eB ) relative to the spinless case (upper panel) and toU 20= ℏΓ (lower panel) as a
function of the electron conductanceG (in units of e h2 2 ) for different values of electron–vibration couplingEP (in units of ℏΓ). In all
the plots, T k1.25 B= ℏΓ (close to room temperature).

Figure 7.Dimensionless thermoelectricfigure ofmeritZT as a function of level energy ϵ (in units of ℏΓ) for different values of
electron–vibration coupling EP (in units of ℏΓ). In the plot,U 20= ℏΓ, T k1.25 B= ℏΓ , 0.15γ = Γ and 0.250ω = Γ.
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consider as parameters of the leads 0Lμ = ,T T TL = + Δ (hot left lead), and VRμ = , TRμ = (cold right lead).
In any case, wewill analyze the effects of afinite temperature difference TΔ and voltageV.

The problemof the stability ofmolecular junctions under large voltage bias and temperature difference is of
particular relevance. Under voltage bias V, the effective vibrational temperature can be even 200K larger than
that atV=0 [69].Moreover, when current passes through fullerene junctions, the temperature before the
decomposition of the C60 cage can be larger than K1000 [70]. Therefore, experimental results suggest that large
difference temperatures could be sustained bymolecular junctions. In any case, in this paper, wewill considerV
up to e3ℏΓ and TΔ up to k3 BℏΓ (of the order of 700K).

We point out that, within the adiabatic approach, for stationary non-equilibrium states, electronic charge
and energy currents are conservedwithin the numerical accuracy: J J Je

L
e

R
e= = − , with J e

α charge current from
theα electron lead, and J J Jel

L
el

R
el= = − , with J el

α energy current from theα electron lead. Putting together
charge and energy currents, one can define the electron heat current J J e J( )eh el eμ= −α α α α.Moreover, the
phonon energy currents are conserved for generic nonequilibrium states within our accuracy:
J J Jph

L
ph

R
ph= = − , with J ph

α energy (or heat) current from theα phonon lead. Therefore, within the adiabatic
approach used in this paper, the conservation laws are satisfiedwithin numerical accuracy since the charge
current is conserved, and the energy currents are separately conserved for the electron and vibrational channels.

One can define the total heat current J J Jth eh ph= +α α α from theα lead.We have checked that, within our
numerical accuracy, the electric outer power P J Ve= is equal to the total heat current J J Jth

L
th

R
th= + (a result

imposed by thefirst law of thermodynamics). For the device considered in this paper, the efficiency η is defined
in terms of the heat current JL

th
flowing out of the hot left lead:

J V

J
. (24)

e

L
th

η =

The efficiency can never exceed theCarnot value Carnotη
T

T T
1 , (25)Carnotη = −

+ Δ

therefore Carnotη η⩽ . In the following, wewill carefully analyze the behavior of the efficiency η by varying the
parameters of the devicemodel close to room temperature, focusing on the effects ofmany-body interactions
and lead phonon–molecule coupling.

Infigure 8, we show contour plots of the efficiency η as a function of the bias voltageV and of the electron
level energy ϵ for different strengths of electron–vibration interaction: E 0.05P = (weak coupling, upper panel),
E 0.25P 0ω= = ℏ (weak to intermediate coupling, lower panel). These plots are compatible with those
appearing in the literature [23].We point out that themaximal efficiency occurs for values of ϵ close to 5, a value
where, as shown infigure 7, the thermoelectric figure ofmeritZT shows amaximum. Therefore, there is a strong
correlation between the behavior ofZT and η as a function of the level energy ϵ. On the other hand, themaxima
of η take place at values of biasVwhich are not small (of the order of 1.5), in contrast with the behavior ofZT
obtained in the linear response regime. Finally, the electron–vibration couplingEP induces an overall sensitive
reduction of the efficiency η. This trend is similar to the global decrease ofZTwith increasing EP shown in our
recent paper [49].

Infigure 9, we show contour plots of the efficiency η as a function of the bias voltageV and of the electron
level energy ϵ for different strengths of lead phonon-molecule coupling: 0.01γ = (veryweak coupling, upper
panel), 0.15γ = (realistic coupling,middle panel), 0.4γ = (very large coupling, lower panel). The position of
maximal η does not changewith increasing γ. However, the value ofmaximal η strongly decreases with
increasing γ. Therefore, the efficiency η is strongly sensitive to the lead phonon-molecule coupling. Again the
behaviors of the efficiency η andZT can be joined.

The results discussed infigures 8 and 9 are relative to the temperature difference T 1Δ = . Infigure 10, we
report themaximumof the efficiency, MAXη , as a function of TΔ for different values of lead phonon–molecule
coupling: 0γ = (black solid line with circles) and 0.15γ = Γ (red solid linewith squares). As expected, both
efficiencies go to zero for small TΔ (behavior shared by the ideal Carnot efficiency Carnotη shown infigure 10 as a
dashed line). For 0γ = , η is smaller than Carnotη . Actually, η is about half of theCarnot limit (a reasonable value
if 0γ = ) in the regime of large TΔ . For 0.15γ = , η becomes slightly smaller than the efficiency for 0γ = ,
therefore, η is not negligible in comparisonwith the ideal Carnot limit for reasonable values of parameters
within the regime of weak to intermediate electron–vibration and lead phonon–vibration coupling. Infigure 10,
we have added dotted lines on the curves for different values of vibration–lead phonon coupling. In particular we
have considered lines passing through points between T 0Δ = and T 0.1Δ = (which in our units is about 25K).
We point out the decrease of the slopes with increasing γ. For comparison, in the figure, we have also included
the tangent at the origin to the curve representing theCarnot efficiency Carnotη . Finally, we have considered the
behavior of the ratioR between themaximal efficiency and theCarnot one. In the inset offigure 10, we reportR
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as a function of the temperature difference TΔ for different values of γ. In particular, in the range of small T R,Δ
is about 0.35 for for 0γ = and about 0.15 for for 0.15γ = Γ. Therefore, even in the regime of small efficiency, the
ratioR is not negligible.

6. Conclusions

In this paper, the thermoelectric properties of amolecular junction have been studiedwithin the linear and non-
linear response regime at room temperature. The interplay between the low-frequency center ofmass oscillation
of themolecule and the electronic degrees of freedomhas been investigated using a non-equilibrium adiabatic
approach devised for including the large electron–electronCoulomb repulsion.Within the intermediate

electron–vibration coupling regime, the phonon thermal conductance GK
ph is quite sensitive to the changes in

the occupation of electron level.Moreover, apart from an important asymptotic value (for 1ϵ ≫ ), we have

stressed that GK
ph resembles the electron thermal conductance GK

el .With increasing the electron–vibration
coupling, the phonon and the electron thermal conductance get larger, while both the charge conductanceG and
the thermopower S get smaller.We have found that the figure ofmeritZT depends appreciably on the behavior

of GK
ph and intramolecular interactions. Indeed,ZT can be substantially reduced, but its peak values can be still of

the order of unity within the regime ofweak to intermediate electron–vibration and lead phonon–vibration
coupling. Finally, the efficiency η (evaluatedwithin the non-linear response regime) can be correlated to the
behavior ofZT (calculatedwithin the linear response regime) as a function of the gate voltage, and, within the
regime of weak to intermediate electron–vibration and lead phonon–vibration coupling, η is found to be slightly
less than half of the Carnot limit for large temperature differences.We point out that, if at least one of the
electron–vibration and phonon–vibration couplings becomes strong, the efficiency gets substantially reduced in
comparisonwith theCarnot one.

Figure 8.Upper panel: Contour plot of the efficiency η as a function of the bias voltageV (in units of eℏΓ ) and of the electron level
energy ϵ (in units of ℏΓ) for electron–vibration coupling E 0.05P = (in units of ℏΓ). Lower panel: contour plot of the efficiency η as a
function of the bias voltageV and of the electron level energy ϵ for electron–vibration coupling E 0.25P = (in units of ℏΓ). In the
plots,U 25= ℏΓ, T k1.25 B= ℏΓ (close to room temperature), T kBΔ = ℏΓ , 0.15γ = Γ, and 0.250ω = Γ.
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The parameters of the junction are determined by the coupling betweenmolecule andmetallic leads in the
electronic and vibrational channels. For instance, the strength of the intramolecular couplings depends on the
choice of the leadswhich screen the electron–electron and electron–vibration interactions. In order to improve
the thermoelectric efficiency,molecules andmetallic leads forming the junction have to ensure aweak phonon-
center ofmass coupling (small γ) and a small strength of the electron-center ofmass interaction (small EP). For
realistic values of these couplings, the values of the phonon thermal conductanceGK are small compared to bulk
conductances. Therefore, the values ofZT of the order of unity can be found inmolecular junctions since these
systems provide amechanism to keep the phonon thermal conduction lower than that of bulks and other low-
dimensional structures. Finally, in this paper, we have shown that, for realistic values of junction parameters, the
phonon thermal conductance can be even smaller than the electron counterpart in a large range of gate voltages.

The electron–vibration interaction of the Anderson–Holsteinmodel analyzed in this paper is related to the
charge density injected by the external leads onto themolecule. The renormalization of the lead-molecule
hopping integral induced by the center ofmassmovement could represent another possible source of electron–
vibration coupling [22] and it can be studiedwithin the adiabatic approach.However, we expect that the
coupling through electron level density plays amajor role due to the largemass of themolecules considered in
this work. Finally, we stress that the approach proposed in this paper can be generalized to the study ofmore
realisticmulti-levelmolecularmodels and to cases where the number of atomic units within themolecule can be
varied.

We emphasize that the focus of the paper has been on the steady-state dynamics of the system in the realistic
regime of weak to intermediate electron–vibration coupling. The issue of the transient dynamics, which has

Figure 9.Upper panel: contour plot of the efficiency η as a function of the bias voltageV (in units of eℏΓ ) and of the electron level
energy ϵ (in units of ℏΓ) for lead phonon–molecule coupling 0.01γ = Γ.Middle panel: contour plot of the efficiency η as a function of
the bias voltageV and of the electron level energy ϵ for lead phonon–molecule coupling 0.15γ = Γ. Lower panel: contour plot of the
efficiency η as a function of the bias voltageV and of the electron level energy ϵ for lead phonon–molecule coupling 0.40γ = Γ. In the
plots,U 25= ℏΓ, T k1.25 B= ℏΓ (close to room temperature), T kBΔ = ℏΓ , E 0.25P = ℏΓ, and 0.250ω = Γ.
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recently attracted the interest ofmany researchers [71–75], has not been addressed. Somework on the transient
regime in the presence of a temperature difference between the leads is in progress. In any case, within theweak
to intermediate electron–vibration coupling regime analyzed in this paper, the oscillator dynamics does not
involve very long transients, which, however, are typically present in the strong electron–vibration regime.
Actually, in this last regime, the oscillator potential can be characterized by a double well with high barriers
between theminima. The oscillator potentials analyzed in this paper do not show such features.
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AppendixA. Comparison between different approacheswithin theCoulombblockade
regime

In this appendix, we compare the approach used in themain text for strongCoulomb repulsionwith that of
Lacroix [76]which retains additional self-energy corrections upon the atomic limit [50].Wewill consider the
electronic properties in the absence of electron–vibration coupling sincewe are interested only on the effects
induced by the electron–electron interaction in equilibrium conditions at temperatureT T= α and chemical
potential 0μ μ= = α. In this appendix, wewill use the same units of themain text.

In contrast with themain text, in this appendix, wewill use a slightly different kind of wide-band
approximation for the electron leads. Actually, wewill consider an energy-dependent tunneling rate E( )0Γ = Γ,
for E E Ec C− ⩽ ⩽ , and zero elsewhere, withEC cutoff energymuch larger thanU. Therefore, the retarded self-
energy of the electron level E( )0Σ due to the effects of the electron leads is

E E
i

E( ) ( )
2

( ), (A.1)0 0 0Σ = Λ − Γ

where E( )0Λ is the real part of the retarded self-energy

E
E E

E E

E E

E E
( )

d

2

( )

2
ln . (A.2)C

C
0

0∫ π μ π
μ
μ

Λ = ′ Γ ′
− ′ +

= Γ − +
+ +−∞

+∞

In the limit where EC → ∞, one recovers thewide band approximation used in themain text corresponding to a
zero real part E( )0Λ .

We focus on the retardedGreen function G ( )L
R ω relative to the paramagnetic solution in order to calculate

the spectral function A G( ) 2 ( )L L
Rω ω= − I . The retardedGreen functionwithin the Lacroix approximation for

largeU [50, 76] is

Figure 10.Maximal efficiency MAXη as a function of the temperature difference TΔ (in units of kBℏΓ ) for lead phonon-molecule
coupling 0γ = (black solid linewith circles), and 0.15γ = Γ (red solid linewith squares). In the plot,U 25= ℏΓ, T k1.25 B= ℏΓ
(close to room temperature), E 0.25P = Γ and 0.250ω = Γ. For comparison, theCarnot efficiency Carnotη is shown as dashed line. The
dotted lines highlight the slopes in the regime of small TΔ . In the inset, the ratioR between themaximal efficiency and the Carnot
efficiency for 0γ = (solid linewith black circles), and 0.15γ = Γ (solid linewith red squares).
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where ρ is the level density per spin self-consistently calculated through the following integral
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with the equilibrium lesser Green function G ( )L ω<

G if A( ) ( ) ( ), (A.5)L Lω ω ω= ℏ<

and f ( ) 1 (exp[ ( )] 1)ω β ω μℏ = ℏ − + is the free Fermi distribution corresponding to the average chemical
potential 0μ = . In equation (A.3), the self-energy ( )h ωΣ ℏ is
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while the self-energy ( )p ωΣ ℏ is
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where the self-energy ( )i ωΣ ℏ , with i 1, 2, 3= , is given by
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with E E f E( ) ( ) ( )1 0Γ = Γ , E E f E( ) ( )[1 ( )]2 0Γ = Γ − , E E( ) ( )3 0Γ = Γ , and 0η → +.We notice that, for largeU, the
weights of the poles of theGreen function in equation (A.3) are the same of theGreen function examined in the
main text. TheGreen functionwithin the Lacroix approach has the additional self-energy terms ( )i ωΣ ℏ , which
take into account tunneling processes back and forth to the leads.

As shown infigure A1 , we compare the spectral function obtainedwithin the approach used in themain text
andALwithin the Lacroix approximation [76] close to room temperature for two values ofU (U=40 upper
panel,U=16 lower panel). Both spectral functions exhibit a bimodal structure whose peaks are separated by the
energyU. The positions of the peakswithin the two approaches are very close, while the heights of the peaks are
slightly different. However, the ratio of the spectral weights of the two peaks does not significantly depend on the
approach.Obviously, themodification of the isolated resonances is slightlymore complicatedwithin the Lacroix
approach than that due to the self-energy ( )0 ωΣ ℏ alone. Actually, the peakswithin the Lacroix approach tend to
be a little bit asymmetric. Summarizing, the differences between the two approaches areminimal, supporting
the use of theGreen functionmethod adopted in the present work. Finally, the small differences between the two
approaches are quantitatively similar with decreasingU from40 to 16.

In this appendix, we also analyze the total level occupation N 2ρ= (within the paramagnetic solution). This
quantity has been calculated by the two approaches discussed in this appendix, findingminimal differences. In
figure A2 , we report the occupation determined by the approach used in themain text as a function of level
energy ϵ for different values ofU. It shows the typical profiles of the Coulombblockade. Actually, for level energy
ϵ around U 2− ,N is 1. The energy regionwith occupation close to 1 gets enhancedwith increasing the value of
U.Moreover, for ϵ around 0μ = ,N goes from1 to 0, while, for ϵ around U− , there is the transition fromN=2
toN=1. These particular values of ϵ are carefully analyzed in themain text when the effects of the electron–
vibration coupling are included.

Appendix B. Transport properties for different values of theHubbard interactionU

In this appendix, we analyze the transport properties for different values of theHubbard interactionU.
First, as reported infigure B1 , we analyze the effects of theHubbard interactionU on the electronic response

functions as a function of the level energy ϵ at afixed value of electron–vibration couplingEP (E 0.25P = ) in the
absence of coupling to phonon leads ( 0γ = ) close to room temperature (T 1.25= ). For comparison, we report
the transport properties relative to the case when electron–electron and electron–vibration interactions are
neglected (indicated as ‘Free’ in thefigure).

As shown in the upper left panel offigure B1, close to room temperature, the charge conductanceG is
smaller than the free one due to the effects of interactions.Moreover,G hasmaxima for 0ϵ μ≃ = and Uϵ ≃ − ,
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Figure A1. Spectral functionA (in units of 1 ℏΓ) as a function of frequencyω (in units ofΓ) forHubbard interactionU 40= ℏΓ
(upper panel) andU 16= ℏΓ (lower panel) at level energy 0ϵ = and T k1.25 B= ℏΓ (close to room temperature) in the absence of
electron–vibration coupling. Solid line:first correction upon the atomic limit (used in themain text); dashed line: additional
correction upon the atomic limit (Lacroix approach).

Figure A2. Level densityN as a function of level energy ϵ (in units of ℏΓ) for different values of theHubbard interactionU (in units of
ℏΓ) at T k1.25 B= ℏΓ (close to room temperature) in the absence of electron–vibration coupling.
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and aminimumat U 2ϵ ≃ − . Therefore, the position of the first peak shows a strong sensitivity to the changes
of the values ofU, while the heights of the two peaks are nearly constant.

As shown in the upper right panel offigure B1, thefirstmaximumandminimumof the Seebeck coefficient S
show large position variations with changingU. Actually, the structure close to 0ϵ = (where S vanishes) is
nearly translated by U− . Therefore, even at U 2ϵ ≃ − , S gets very small values. Indeed, strong electron
correlations induce a complex behavior in S. In particular, with increasingU, thefirstminimumbecomesmore
negative tending to get the same value in themodulus (of the order of 3 K eB ) of the firstmaximum. A similar
behavior is shownby the secondmaximumof S, whose height increases as a function ofU.

As shown in the lower left panel offigure B1, with varying the level energy ϵ, the electron thermal
conductance GK

el shows the characteristic correlation-induced double-peak structure similar to that of the
charge conductance. In contrast with the behavior of the conductance, the values between themaxima are
strongly decreasingwith increasingU giving rise to aminimumof GK

el .
Finally, as shown in the lower right panel offigure B1, we analyze the behavior of the electronic

thermoelectric figure ofmerit ZTel neglecting the contribution from GK
ph. As a result of the behavior of the

previous transport quantities, the first two peaks of ZTel showpositions dependent on theHubbard strengthU.
Since the peak values of ZTel at room temperature are almost coincident with themaxima andminima of the
Seebeck coefficient S, the second peak of ZTel (corresponding to the firstminimumof S) increases its valuewith
increasingU. Therefore, the effect of large electron–electron interactions is able to induce changes of the figure
ofmerit.

As reported in the upper panel offigure B2 , the behavior of the phonon thermal conductance GK
ph bears a a

strong resemblance with that of the electron thermal conductance GK
el shown in the lower left panel offigure B1.

Both have a double-peak structure, whose firstmaximumhas an energy position corresponding to about
Uϵ ≃ − .Moreover, the peak values of these two quantities are comparable for the chosen value of phonon-

induced damping rate 0.15γ = Γ. However, for large and small ϵ,GK
ph is characterized by an asymptotic value

which corresponds to the contribution given by the only phonon leads neglecting the effects of electron–electron
and electron–vibration interactions on themolecule. On the other hand, for U 2ϵ ≃ − ,GK

ph is poorly
influenced by the electron–electron effects, getting values close to the asymptotic one.

Finally, as reported in the lower panel offigure B2, we focus on the totalfigure ofmeritZT as a function of the
level energy ϵ for different values of electron–electronHubbard interactionU atfixed value of the electron–

Figure B1. Electron conductanceG in units of e h2 2 (upper left panel), Seebeck coefficient S in units of k eB (upper right panel),
electron thermal conductance GK

el in units of k2 B Γ (lower left panel), and electronic figure ofmerit ZTel (lower right panel) as a
function of the level energy ϵ (in units of ℏΓ) for different values ofHubbard interactionU (in units of ℏΓ). In all the plots,
E 0.25P = ℏΓ, 0γ = , and T k1.25 B= ℏΓ (close to room temperature).
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vibration couplingEP including the effects of the phonon thermal conductance ( 0.15γ = Γ). From the
comparisonwith the electronic figure ofmerit reported in the lower right panel offigure B1, the phonon thermal
conductance GK

ph induces an additional suppression ofZT, but it does not shift the peaks.
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