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Abstract
The energetics and atomic structure associatedwith the localized hole formed near anAl-atomdopant
inα-quartz are calculated using a variational, self-consistent implementation of the Perdew–Zunger
self-interaction correctionwith complex optimal orbitals. This systemhas become an important test
problem for theoreticalmethodology since generalized gradient approximation energy functionals, as
well as commonly used hybrid functionals, fail to produce a sufficiently localized hole due to the self-
interaction error inherent in practical implementations of Kohn–Shamdensity functional theory. The
self-interaction corrected calculations are found to give accurate results for the energy of the defect
state with respect to both valence and conduction band edges as well as the experimentally determined
atomic structure where only a single Al–Obond is lengthened by 11%. TheHSEhybrid functional, as
well as the PW91 generalized gradient approximation functional, however, gives too small an energy
gap between the defect state and the valence band edge, overly delocalized spin density and
lengthening ofmore than oneAl–Obond.

1. Introduction

While Kohn–Shamdensity functional theory (KS-DFT) has been extremely successful and is nowwidely used in
studies ofmolecules and condensedmatter [1, 2], there are several shortcomings of this approach of which the
description of localized electronic states in semiconductors and insulators is particularly problematic [3]. An
important issue is the energy of the defect statewith respect to the valence and conduction band edges as well
as structural changes due to the introduction of the defect. Awidely studied andwell documented case is the
Al-atom substitutional defect inα-quartz. Since the Al-atomhas three valence electronswhile the Si-atom it
replaces has four, an electron hole is introduced in the electronic structure.

Extensive electron paramagnetic resonance (EPR) experiments have been interpreted in terms of a localized
hole on one of theO-atoms neighboring the Al-atom and a 12% lengthening of the corresponding Al–Obond
[4, 5]. An experimental estimate of the defect energy level has been obtained fromoptical absorption
measurements where an electron is excited froma lone pair of anO-atom adjacent to theAl-atom into the
localized defect state, a light-induced transfer of the hole between oxygen atoms of the AlO4 tetrahedron. The
estimate obtained for the energy difference between the defect level and valence band edge is 1.96 eV [16]. The
band gap ofα-quartz is estimated experimentally to be 9 eV so the defect level ismuch closer to the valence band
edge than the conduction band edge. Both the energetics as well as atomic structure related to theAl
substitutional defect inα-quartz are, therefore, well established from experimentalmeasurements.

Theoretical calculations of clusters using theHartree–Fock (HF) approximation have supported the
interpretation of the EPRdatawhileDFT calculations have predicted amore delocalized hole. Pacchioni et al [5]
have presented a review of calculations of the atomic structure using various theoreticalmethods aswell as
systematic computational studies offinite clusters of varying size. Comparison of the calculated hyperfine
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splittingwith the EPRdata has shown conclusively that the original interpretation of the EPRmeasurements was
correct while theDFT calculations were in error. HF calculations andDFT calculations based on the generalized
gradient approximation (GGA) such as the PBE and PW91 functionals [7] tend to have errors of opposite sign.
For example, HF calculations predict the band gap ofα-quartz to be 17 eV [8], while the energy difference
between conduction and valence band edges is 5.9 eV in results obtained using the PBE functional [9]. Bymixing
different theoretical approaches that have errors of opposite sign to form a hybrid functional, the errors can be
made to cancel to some extent and a number of suchmixtures have been proposed for various different
purposes. Calculations of small clusters using the B3LYP functional which includes 20% exact exchange have
given a delocalized hole spread over twoO-atoms, while calculations using the BB1K functional which includes
42% exact exchange have given localization on a singleO-atom [6]. The construction of hybrid functionals,
however, does not address the root of the problem inherent inKS-DFT functionals.

The basic reason for the instability of the localized hole is the self-interaction error in commonly used
KS-DFT functionals. Lægsgaard and Stokbro illustrated how the self-interaction destabilizes the localized hole
using amodel calculation [10]. Even though Perdew andZunger proposed amethod for self-interaction
correction (SIC)more than 30 years ago [11], there have been few attempts tomake use of this approach in
calculations of defect states in solids. Several perfect crystals have been studiedwith a linear-muffin-tin-orbital
implementation of SIC and the local density approximation (LDA) functional, were the correctionwas applied
selectively to d- or f-electrons, and good results in terms of band gaps, f- and d-state occupation andmagnetic
properties obtained [12–14]. The full implementation of SIC, including structural optimization, is challenging
inmany respects, as described in the following section. A limited SIC procedure has been applied toAl-doped α-
quartzwhere the correctionwas only applied to the spin density, i.e. a single unpaired electron, while the rest of
the electronswere describedwith the PBE functional in a spin restricted formulation [15]. Such a limited version
of the Perdew–Zunger correctionwas shown to help stabilize the localized hole to some extent, butmade it only
metastable. The valence band energy is still too high in such calculations because of the remaining self-
interaction error in the rest of the occupied orbitals. Themethod cannot give an accurate estimate of the energy
of the defect state with respect to the valence band edge since the two are treated at a different level of theory.

A semi-empirical DFT+U approach has been used to estimate the energy of the defect state. There, a penalty
is added to inhibit fractional occupation of atomic orbitals and, thereby, stabilizing localized states on atoms
[17]. By tuning theU parameter to 7.0 eV, a localized holewas produced 1.1 eV above the valence band. A larger
value of theU parameter would presumably shift the defect state even higher in energy. But, a significant
correction is notmade to the energy of the valence band and the band gap obtained fromDFT+U calculations
using aU value of 7.0 eV is only 6.5 eV [9].

We present here results of variational, self-consistent calculation using the Perdew–Zunger SIC applied
equally to all the valence electrons in the system. The electronic structure aswell as the atomic structure is
analyzed and found to be in close agreementwith the experimental estimates, while calculationswith commonly
usedGGA (PBE, PW91) and hybrid (HSE) functionals are found to give results that are not consistent with the
experimental results. In the following section, section 2, the SIC and its implementation are discussed. Section 3
describes the simulated system and in section 4 the results are presented. The article concludes with a discussion
and summary in section 5.

2. Self-interaction correction

InKS-DFT [1], the energy of the ground state of an electronic system is estimated as a functional of the total
electron density for each spin, r( )ρ↑ and r( )ρ↓ , as

E T V E E[ , ] [ , ] [ ] [ ] [ , ], (1)s
KS

ext C
KS

xcρ ρ ρ ρ ρ ρ ρ ρ= + + +↑ ↓ ↑ ↓ ↑ ↓

where ρ ρ ρ= +↑ ↓. Here,Ts is the kinetic energy of an independent electron reference systemhaving the same
electron density as the real system,Vext is the external potential representing the interaction of the electronswith
the nuclei, EC

KS is an estimate of theCoulomb repulsion between the electrons, and Exc is the exchange and
correlation energy.While a set of orthonormal orbitals is introduced in order to obtain a better estimate of the
kinetic energy, the rest of the terms in the functional involve just the total electron density of each spin
component. The total energy only depends on the space spanned by the orbitals i.e. the energy is invariant to
unitary transformations of the orbitals. Amathematically convenient choice of orbitals can bemade so as to
diagonalize the orthonormalization constraintmatrix and this set of orbitals is referred to as theKohn–Sham
orbitals.
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The electron–electronCoulomb repulsion is estimated inKS-DFT from the total electron density as

( )
E r r

r r

r r
[ ]

1

2
d d

( )
. (2)C

KS 3 3∬ρ
ρ ρ

= ′
′

∣ − ′∣

Written in terms of orbital densities, the total electron density is r r( ) ( )m
m

∑ρ ρ= σσ
, where r r( ) ( )m m

2ρ φ= ∣ ∣σ σ

is the density associatedwith orbitalmwith spin σ, and EC
KS can be expressed as

( )
E r r

r r

r r

1

2
d d

( )
, (3)

m m

m m
C
KS 3 3∬ ∑∑

ρ ρ
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where the double sum includes the diagonal, self-interaction terms

( )
E r r

r r

r r

1

2
d d

( )
. (4)

m

m m
C
SI 3 3∬ ∑

ρ ρ
= ′

′

∣ − ′∣σ

σ σ

These diagonal terms represent Coulomb interaction of the orbital densities with themselves. This is the
Coulombpart of the so-called self-interaction error inKS-DFT. The term EC

KS is often referred to as the ‘Hartree
energy’, even thoughHartree in his early calculations of electronic structure of atoms did not include the
diagonal, self-interaction terms [18].

One of the tasks of the E [ , ]xc ρ ρ↑ ↓ term in theKS-DFT functional is to cancel out these unphysical self-

interaction terms in the estimate of the electron–electronCoulomb energy. Such a cancellation does occur inHF
theorywhere exchange is calculated exactly. However, functionals developed for KS-DFT typically only give
partial cancellation and, therefore, include a self-interaction errorwhich is the source of several inaccuracies in
results obtained from such calculations, in particular the destabilization of localized electronic states. Themore
localized an orbital is, the larger the repulsive self-interaction Coulomb energy is and, thereby, an artificial
tendency towards delocalization.

Perdew andZunger proposed a procedure where aKS-DFT functional (originally the LDA) is corrected by
explicitly subtracting an orbital based estimate of the self-interaction [11]. The corrected energy functional,
ESIC, is

( )E E E E{ } [ , ] [ ] , 0 , (5)m
m

m m
SIC KS

C
KS

xc
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑ρ ρ ρ ρ ρ= − +σ

σ
σ σ↑ ↓

where the spin density for spin component σ is m mρ ρ= ∑σ σ . This correction procedure cancels out the diagonal

terms in EC
KS and gives a self-interaction free functional for one-electron systemswhere Exc vanishes, but for

many-electron systems this orbital based estimate of the self-interaction in E [ , ]xc ρ ρ↑ ↓ is only approximate.
Unlike aKS-DFT functional, the total energy given by ESIC depends on the orbital densities, mρ σ . Because of this,
the total energy is not unitary invariant and the variationalminimization of the energy ismathematicallymore
challenging than for KS-DFT.No longer can a convenient linear combination be chosen for the orbitals and a
new inner loop needs to be added to the self-consistency procedure tofind the set of optimal orbitals. The
variationalminimization is, therefore,more challenging. As a result,most calculations involving some formof
SIC have not been variational and inmany cases not even self-consistent. Rather, the PZ-SIChasmostly been
applied only to selected electrons (d- and f-electrons, or only unpaired electron), and inmany cases assuming
a priori some form for the optimal orbitals (Foster-Boys orWannier localized orbitals), applied perturbatively
without correcting the electron density, etc For a recent review of PZ-SIC calculations, see [19].

The present calculationsmake use of a variational, self-consistent implementation of PZ-SIC applied equally
to all occupied orbitals. Themethod has been described elsewhere [21, 22] andwill only be reviewed here briefly.
Two orthonormal basis sets are used in the variationalminimization of the energy. Thefirst set consists of the
optimal orbitals { }mφ σ thatminimize the self-interaction corrected energy functional, equation (5), and define
the SIC potential

v v vr( ) [ ] [ ] (6)m m m
SIC

C xcρ ρ= − −σ σ σ

which enters theHamiltonian as shownbelow. The second set consists of canonical orbitals r( )nψ that are
eigenfunctions of theHamiltonian operator

H H Vˆ ˆ ˆ (7)n n
0= +σ σ

which is now comprised of a part Ĥ
0
that is unitary invariant and an orbital density dependent term V̂nσ . The Ĥ

0

Hamiltonian is of KS-DFT form
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H v v vˆ 1

2
[ ] [ , ], (8)

0 2
ext C xc ρ ρ ρ= − + + + ↑ ↓

and depends only on the total electron density for each spin component [ , ]ρ ρ↑ ↓ , while the orbital density

dependent part V̂nσ is defined by the SIC potential v r( )m
SIC

σ of the optimal orbitals as

V W vr r rˆ ( ) ( ) ( ). (9)n n
m

nm m m
SIC∑ψ φ=σ σ σ σ σ

Thematrix, W , gives the unitary transformation relating the two basis sets

W . (10)m
n

nm n∑φ ψ=

In order tominimize ESIC, an iterative procedure is followedwhere the eigenvalue problem

Ĥ (11)n n n nψ ϵ ψ=σ σ σ σ

is solved and a unitary optimization [21] carried out tofind the W thatminimizes the energy. It has recently
been realized that it is important to allow the orbitals be complex valued functions [23, 24].

Previous calculations ofmolecules and solids have shown that the accuracy ofESIC depends strongly on the
KS-DFT functional it is applied to.While the correction is too small when applied to LDA, it is too largewhen
applied to the PBE [7] and PW91 [25] functionals, as judged from atomization energy ofmolecules and band
gaps [24, 26]. Ideally, a new exchange enhancement factor in the generalized gradient functional form should be
developed for usewith PS-SIC, that has aweaker enhancement factor than PBE or PW91 [27]. Here, a scaling
with a factor of 1/2will be used as has been justified based on the adiabatic connection formula and has been
shown toworkwell for a wide range of properties and various different types of systems [24, 26]

( )E E E E{ } [ , ]
1

2
[ ] , 0 . (12)s m

m
m m

SIC PW91
C
KS

xc
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑ρ ρ ρ ρ ρ= − +σ

σ
σ σ↑ ↓

Wechoose to use the PW91 functional rather than the PBE functional because the exchange enhancement factor
goes to zero for large values of the reduced gradient. Since the corrected energy functional depends on orbital
densities which have nodal planes, the reduced gradient of the orbital densities can become large even if the total
electron density only has a small reduced gradient.

While variational, self-consistent calculations of Es
SIC using complex optimal orbitals have been used to

studymolecules and even clusters ofmolecules [24, 28, 29], the present work represents the first application of
this implementation to a defect in an extended solid.

3.Methodology

The calculationswere performed using a 72 atom cell subject to periodic boundary conditions. Only the gamma
point for this extended cell was included in the k-point sampling. For the perfect α-SiO2 crystal, optimization of
the lattice constants using the SIC-PW91 functional gave a= b=4.972 Å and c=5.473 Å which is in good
agreementwithmeasurements, the former being 1.19% and the latter 1.08% larger than experimental values
[30].Without the SIC, the PW91 functional gives lattice constants that are 1.43% and 2.36% larger than the
experiment. The calculations were performedwith a real space gridwith a spacing of 0.2 Å, and an orthogonal
cell of size 9.94 Å × 8.61 Å × 10.93 Å using theGPAWsoftware [31]. The cell sizewas not changed after
substituting one of the Si-atomswith anAl-atom.

The PAWmethodwas used to represent the ion core [32]. The optimal orbitals are thenwritten as

( ) pr r r r( ) ˜ ( ) ( ) ˜ ( ) ˜ ˜ , (13)m m
a i

i
a

i
a

i
a

m∑∑φ φ ϕ ϕ φ= + − 〈 ∣ 〉

where the smooth projector function p̃i
a∣ 〉determines the expansion coefficients for the orbitals inside an

augmentation sphere around each atom a. The smooth optimal orbital r˜ ( )mφ is given by a rotation of the smooth
canonical orbitals through the transformation W , and the same goes for the projections p̃ ˜

i
a

mφ〈 ∣ 〉. Amore
detailed description of the PAW implementation for SIC calculations is given elsewhere [33].

The PZ-SIC calculations were started by constructingfirst highly localized orbitals. This is accomplished by
including initially only theCoulomb term in the SIC. Then, the contribution ofExc is gradually increased. The
reason is that highly delocalized orbitals can also represent a localminimum for the ESIC functional when applied
to periodic systems. In order to converge on the globalminimumcorresponding to localized orbitals, the
iterative self-consistency calculation needs to be startedwith sufficiently localized orbitals [33].

For comparisonwith the PW91 and SIC-PW91 results, calculations using theHSEhybrid functional [34]
were carried out using theVASP software [35].
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4. Results

The band gap estimated from the calculated eigenvalues of the perfect α-SiO2 crystal is 8.87 eV, in good
agreementwith the experimentalmeasurements [36]. The gap increases when the SIC is appliedmainly because
of a lowering of the valence band edge. The energy of valence band orbitals is too high inKS-DFT because of the
repulsive self-interaction error. Similar accuracy of band gap estimates has been obtained in SIC calculations for
several semiconductors and insulators [26].

The properties of anAl-doped crystal were calculated by replacing one of the Si-atomswith anAl-atom and
minimizing the energy given by the Es

SIC functional with respect to both orbitals and atomic structure. The
resulting atomic structure and spin density are shown infigure 1. The spin density, ρ ρ−↑ ↓, is highly localized

on a singleO-atom and the distance between that atom and theAl-atombecomes 11% longer than the short
Al–Odistances, as listed in table 1. This is in good agreement with the EPR experiments fromwhich the
lengthening has been estimated to be 12% [4, 5]. EmbeddedHF calculations using large clusters have given
slightly larger value, 14% [5]. Bader analysis of the spin density [37, 38] gives integrated spin of 0.77 unpaired
electrons on theO-atom, showing that the hole ismainly localized on this single atom. The shape of the spin
density shows that the hole largely corresponds to a p-orbital. As has been discussed in detail previously, GGA
functionals give a delocalized hole spread over all fourO-atoms neighboring the Al-atom, the PW91 functional
being no exception, as shown infigure 1 and listed in table 1.

The calculatedDOS is shown infigure 2. After applying some broadening, the results of the PW91
calculation do not show a distinct peak corresponding to the defect state in the band gap. Furthermore, the
energy difference between the valence and conduction band edges is only 5.7 eV,much smaller than the
experimentally estimated band gap.When PZ-SIC is applied, however, a band gap of 8.87 eV is obtained, in

Figure 1. (a) The simulation cell used in the calculations, subject to periodic boundary conditions, and the spin density obtained in a
PZ-SIC calculationwith the PW91 functional rendered at a value that is 10%of themaximumvalue. A close-up of the Al-atom and its
neighbours comparing KS-DFT calculationswith the PW91 functional in (b)where the hole is delocalized over all four neighbouring
oxygen atoms, and (c) the results of PZ-SIC calculationswith the PW91 functional, showing the hole sitting on a singleO-atom.
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good agreement withmeasured value of 9 eV [36]. TheDOS is quite similar in shape to that obtainedwithGW
calculations [39], where the band gapwas estimated to be 9.4 eV. In the SIC calculation, a peak corresponding to
the defect state appears 2.2 eV above the valence band edge. This is in good correspondencewith the optical
absorption experiments which gave an estimate of 1.96 eV [16].Without the SIC, the valence band is too high in
energy and the defect state calculatedwith the PW91 functional is only 0.17 eV above the valence band edge, as
shown infigure 3.

Figure 3 shows the calculated electronic energy levels using theHSEhybrid functional, which contains 20%
exact exchange, as well as the PW91 and PZ-SIC results. The inclusion of exact exchange both lowers the valence
band edge and raises the conduction band edge as comparedwith the PW91 results, but the band gap obtained,
7.61 eV, is still significantly smaller than the experimental value. Furthermore, the defect state is only 0.93 eV
over the valence band edge, significantly lower than the experimental estimate. The spin density obtained from
theHSE functional is delocalized over two of theO-atoms neighboring the Al-atom. The corresponding Al–O

Table 1.Distance (in Å) from theAl-atom to its
fourO-atomneighbors calculatedwith the
PW91 functional, theHSE functional and the
PZ-SIC applied to the PW91 functional. The
PW91 calculations distribute the hole nearly
evenly over the fourO-atomneighbors and all
four Al–Obonds are lengthened. The PZ-SIC
calculation localizes the hole on one of the
O-atoms and lengthens that Al–Obond by
11%, in good agreement with experimental
EPR estimates [4, 5]. TheHSE functional gives
intermediate results, with twoAl–Obonds
lengthened.

Bond PW91 HSE PW91-SIC

Al–Oa 1.73 1.80 1.88

Al–Ob 1.73 1.72 1.71

Al–Oc 1.73 1.69 1.70

Al–Od 1.73 1.69 1.70

Figure 2.Calculated density of states for clean andAl-atomdoped α-SiO2. (a)Using PW91 functional. (b)Using PZ-SIC applied to
PW91. The valence band is too high in the PW91 calculation because of the repulsive self-interaction and a distinct defect state
corresponding to the electron hole is not seen.When the self-interaction correction is included, a large band gap is obtained,mainly
because of a lowering of the valence band. A distinct peak due to the localized hole associatedwith theAl-atomdefect appears.
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bonds are 1.72 and 1.80 Å while the remaining two are 1.69 Å (see table 1). This is quite consistent with results of
previously reported calculations of small clusters using the B3LYP hybrid functional [10]. In order to increase
the band gap sufficiently andmove the defect energy level high enough above the valence band edge, a larger
fraction of exact exchangewould need to be included in order to get agreement with the experimental results on
this system. For other systems, 20%exact exchange canworkwell. Thismixing factor is increasingly being
treated as a free parameter in hybrid calculations,making the approach semi-empirical.

5.Discussion

The calculations presented here, as well as other calculations using the same approach [24, 26], illustrate that an
orbital density dependent formof the energy functional, of which the PZ-SIC is an example, can significantly
improve the accuracy of density functional calculations. The electron hole introduced by theAl-dopant atom is
properly localized, the band gap is estimated accurately from the orbital energies and the energy of the defect
state above the valence band edge is consistent with optical absorption experiments. Elimination of the self-
interaction terms in the electron–electronCoulomb interaction is clearly an important improvement over the
KS-DFT functional form. Interestingly, the early calculations ofHartree [18] also excluded these self-interaction
terms, but the interactionwas calculated using canonical orbitals. In the variational, self-consistent
implementation of PZ-SIC used here, the Coulomb interaction between the electrons is estimated using optimal
orbitals, which in the present case resemble sp3 hybrid orbitals rather than themore delocalized canonical
orbitals. The optimization of the orbital densities introduces additional computational effort, but has the
advantage thatmeaningful, energy optimal orbitals are obtained from the calculation. The scaling of the
computational effort of PZ-SIC calculations is the same as forGGA functional calculations, i.e. it scales as the
system size cubed, but there is a large prefactor due to the fact that an effective potential needs to be evaluated for
each orbital. These calculations can, however, readily be carried out in parallel and thewall clock time can,
thereby, be reduced quite easily by using a larger number of processors.

The exchange and correlation termof the PW91 functional is, however, not optimal for PZ-SIC. A smaller
exchange enhancement factor can be used [27], bringing the exchange estimate closer to LDA, as illustrated by
the fact that PZ-SIC gives an overcorrectionwhen applied to PBEwhile it is an undercorrectionwhen applied to
LDA [24]. By developing an optimal exchange enhancement factor tailored to PZ-SIC, the scaling factor of 1/2
used here as well as in previous calculations based on the PBE functional [24, 26] could be dropped. The
promising results that have been obtained herewith the variational, self-consistent implementation of PZ-SIC

8.85 eV

1.90 eV

CIS

5.66 eV

0.17 eV

19WP

1.90 eV

Figure 3.Orbital energy values of canonical orbitals calculatedwith the PW91 functional, theHSE hybrid functional and PZ-SIC
applied to PW91. The valence band is too high in the PW91 calculation because of repulsive self-interaction. The defect state
corresponding to the electron hole is only slightly above the valence band edge and the spin density is delocalized over all fourO atoms
neighboring the Al atom (as shown infigure 1(b)).When the self-interaction correction is included, the energy of the valence band is
lowered and a band gap of 8.87 eV is obtained in good agreement withmeasurements [36]. A defect state 2.2 eV above the valence
band edge is obtained, which corresponds well with an estimate of 1.96 eV fromopticalmeasurements [16]. TheHSE hybrid
functional both lowers the valence band edge and raises the conduction band edge as comparedwith the PW91 results, but the band
gap is still significantly smaller than the experimental value. Furthermore, the defect state is only 0.93 eV over the valence band edge.
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show that this orbital density dependent functional form can give highly accurate results for both energetics as
well as structure, the first time this is achieved for theAl–SiO2 system.
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