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Abstract

We present new results obtained from the Carnot-like low-dissipation model of heat devices when
size- and time-constraints are taken into account, in particular those obtained from the total cycle
time and the contact times of the working system with the external heat reservoirs. The influence of
these constraints and of the characteristic time scale of the model on the entropy generation allows for
aclear and unified interpretation of different energetic properties for both heat engines and
refrigerators (REs). Some conceptual subtleties with regard to different optimization criteria,
especially for REs, are discussed. So, the different status of power input, cooling power, and the unified
figure of merit y are analyzed on the basis of their absolute or local role as optimization criteria.

1. Introduction

Carnot in his famous work ‘Réflexions Sur la Puissance Motrice du Feu’ (‘Reflections on the motive power of
fire’) [1], presented the results for the first systematic study of the physical processes governing steam engines.
Carnot showed that the efficiency of a cyclic heat engine (HE), working between two heat reservoirs at
temperatures T, and T. (T, > T¢), which transforms an amount of heat | Q}, | extracted from a heat reservoir at Tj,
into an amount of work | W, isatmost n = |W|/|Qy| < 1 — T¢/T;, = 5 (Carnot efficiency). This result can be
extended to any heat device, such as refrigerators (REs), operating between two heat reservoirs at temperatures
T, and T¢, so that they must have an efficiency lower than that known as the Carnot coefficient of performance
(COP) ec = T/(Th — Te).

The theoretical implications of this Carnot’s result are crucial in the development of equilibrium
thermodynamics, which provides a complete description of reversible processes, i.e., quasi-static processes that
have an infinite duration. But, on the other hand, its practical implications are more limited, since the upper
limit, 7, or ec, is only reached by heat devices that operate reversibly, which implies that the processes should
have an infinite duration, and therefore their output power is zero. In order to obtain realistic bounds for the
performance of real heat devices, two ingredients have been revealed to be fundamental: (1) the use of suitable
models accounting for the intrinsic irreversibilities of different finite-rate processes; (2) the choice of a suitable
functional to be optimized with respect to the characteristic parameters of the model. These two ingredients
constitute the very core of finite time thermodynamics, whose seed is the famous efficiency at maximum power
1 — 7 (z = T./T,), attained in different contexts by Curzon—Ahlborn [2], Novikov [3], Chambadal [4], Yvon
[5] and Reitlinger [6] (an update on the historical roots of this equation can be found in a recent publication
[7]1). Besides these, a great variety of different criteria based on thermo-economic, compromise, and
sustainability considerations have been reported [8—18].

In the present work we deal with Carnot-like heat devices working between two heat reservoirs at constant
temperatures T, and T¢. For these devices we shall address the issue of the choice of the above-mentioned
ingredients from the same starting point: the cornerstone Clausius theorem of thermodynamics [ 19, 20] and the
introduction of entropy as a state function. The Clausius theorem establishes that for irreversible Carnot-like
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Figure 1. Carnot heat devices.

heat devices (Q, /Ty) + (Q./T:) < 0, and then from thermodynamics, there is no mathematical relationship that
links directly the heat exchanges Qy, /T, and Q. /T¢, as occurs in the reversible case, for which this inequality
becomes an equality. The unavoidable irreversibilities are the reason why in a real device the above inequality takes
place. Or seen from another point of view, the deviation of the performance of the device with respect to the
corresponding Carnot limit is the cause of the inequality, provided that T /Ty, is directly related with the Carnot
value and, taking into account the first law of thermodynamics, Q. /Qy, is directly related with the real performance.

For the concrete low-dissipation Carnot model proposed by Esposito etal [21], and considered throughout
this work, the deviations from reversibility yield an entropy generation in each heat exchange process. This
entropy generation is assumed as inversely proportional to the time duration of the process, so that the reversible
regime is recovered in the limit of infinite times.

On the other hand, the time- and size-constraints must be included in any realistic model of heat devices in
order to further optimize their design and performance. As noted by Uzdin and Kosloff [22], optimization
should be done after the heat device becomes capable of performing the task it is designed for. In this line, we
paid special emphasis on the irreversibilities associated not only to the total cycle time but also to the contact
times of the working system with the external heat reservoirs. The influence of these constraints and of the
characteristic time scale of the model on the entropy generation allows for a clear and unified interpretation of
some known bounds, together with new time-dependent results for different energetic properties and
optimization criteria.

The main particular objectives of the present work are the following: (1) to introduce a characteristic time scale
for the low-dissipation model, defined by the ratio between the change of entropy of the heat exchanges in the
reversible limit and the dissipation constants; (2) to study the behavior of the energetic properties in this
characteristic time scale; and (3) to analyze the suitability of different optimization criteria, whether they are
considered for engines or REs. The paper is structured as follows: in section 2 we introduce the influence of the
constraints on the original low-dissipation model and the relevant energetic magnitudes for both HEs and REs; in
section 3 numerical results for HEs and REs are presented with special emphasis on the different optimization criteria
and their role as absolute or local figure of merit; finally, in section 4 we summarize some results and conclusions.

2. Theoretical model

We deal with Carnot-like heat devices for which a cyclic working system exchanges heat with two heat reservoirs
(see figure 1). For these devices Clausius’ theorem states that:

%, Q

<0 &  ASe=ASy + A4Sy >0, (1)
Th 1c

where AS,,, is the total entropy change, and ASy, and ASr, are the entropy changes of the hot and cold reservoirs,
respectively. In equation (1) equality holds if and only if all the processes are reversible.

For Carnot heat devices all processes are reversible and therefore have an infinite time duration. Thus the
equality in equation (1) must hold:
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0=AS{0 + AS{Y = AS = [AS{ | = |AS{7], 2)

with AS}hC) and AS}CC) being the entropy changes of the hot and cold reservoirs, respectively, for this
reversible case.

Moving away from reversibility, for Carnot-like heat devices the times #, and ¢, associated to the heat
exchanges between the working system and the hot and cold reservoirs, respectively, will be finite. Thus, in order
to establish a relationship between this finite time of the processes and the entropy generation (the cause of
inequality in equation (1)) we assume the low-dissipation model [21]. This model considers that the entropy
generation in the processes of heat exchanges between working system and the hot and cold reservoirs are
inversely proportional to the time of the process. Then, we get:

b

ASy, = FAS + =2, (3)
133
X,

ASy. = +AS + =<, (4)
te

where the parameters X}, and X, contain the information about how dissipation increases as one moves from
the reversibility limit. Then, the reversible regime is approached in the limits t;, = oo and t. — oo. The signs F
(£) in equations (3) and (4) account for the opposite sense of the heat fluxes exchanged with the hot (cold)
reservoir for HEs and REs, respectively; in equations (3) and (4) we have assumed the criterion that the energies
absorbed by the working fluid are positive while the energies released by the working fluid are negative.

Two comments are in order here. First, the low dissipation model does not assume that the temperature
dependence between Tj, and T; is small, i.e., equations (3) and (4) are not limited to the linear response regime.
Second, additional contributions to the entropy production in equations (3) and (4) with complicated time-
dependence could arise due to non-equilibrium external couplings but, in agreement with [21], we consider
Carnot-like cycles with a reversible limit where these additional contributions are negligible or absent.

Due to the fact that the working system suffers a cyclic process, the total entropy AS;, will be determined by
the sum of ASy, and ASy; given from equations (3) and (4):

S =2 4 =< (5)
h tc
Assuming that the rest of the processes which take place in the low dissipation heat devices are instantaneous, the
total time of the cycle must be given by t = #, + t.. We define a fractional contact time with the cold reservoir
a = t./t,the total dissipation parameter X = Xy, + X, and the relative dissipation parameters X}, = X,/
and 2. = X./Xr. Then, provided that =, = 1 — X, equation (5) can be expressed in terms of t, @, 1 and X, in
the following form:

(6)

1-2. >,
Astot = 2T|: + :|.

(1-a)t at

Itis interesting to express the relation between the total entropy AS,, and the entropy associated to the heat
exchanges with the reservoirs in the baseline reversible machine AS. Then we obtain

_ ASie  2Zr|1-2. 2.
AS, = 2ot — =T +
AS  ASt

l-—a a @
The quantity Z1/AS has time units and it defines a characteristic time scale as the ratio between the dissipation
parameter, X1, and the entropy exchange, AS, associated to the heat fluxes. The magnitude of the heat
exchangers is unavoidably related with the size of the working system and the surface through which heat fluxes
take place. Provided that for a reversible (Carnot) heat device the heat exchanges are given by Q,, = T;, (AS) and
Q. = T (AS), AS is somewhat a measure of the size of the system and its contact surface with the external
reservoirs.

The above fact suggests that to define a dimensionless time f = (¢ AS)/Z. On the basis of the value of 7, one
can expect that cycle total times 7 < 1should correspond to working regimes for which dissipations are very
important and, even, could determine that the device does not work more as an energy converter (see later for
particular examples). Conversely, for devices working in regimes with # > 1 the role of dissipations should not
be not so drastic and the model makes sense in its purpose to describe a real energy converter.

The total entropy generated per unit time AS,,, = AS/t can be expressed in a dimensionless way as

AS _ ASwe 21 _ 1 1- % +§ (8)
T A i —a)i  af |
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so that AS, accounts for a balance between entropy generation due to time irreversibilities and entropy changes
associated to the external heat fluxes (size irreversibilities): AS,.-values close or greater than one mean that
entropy generation due to time irreversibilities is of the same order or greater than the entropy changes
associated to device size. Just the opposite occurs for working regimes where AS,,; < 1.

From equilibrium thermodynamics, the relationships between the entropy changes of the hot AS; and cold
AS7, reservoirs and the amounts of heat Qy, and Q. exchanged with working system are given by

Qn
ASTh = _Th) (9)
Q.
ASp = ——. 10
T. T (10)
Thus, from equations (3), (4), (9) and (10), we obtain for Qy, and Q. in the finite-time case:
2
Qn= Th(iAS— —h), (1)
th
2
Q.= TC(TLAS - t_) (12)
C

Using the first law of thermodynamics the amount of work W produced by the HE or needed by the RE in every
cycleis given by

W:_Qh_QC’ (13)

which can be evaluated from the low dissipation model by simply substituting equations (11) and (12) into
equation (13).

Thus, equations (3)—(13) provide a unified theoretical framework for low dissipation HEs and REs. Now,
and because of the different purpose of HE and RE, we continue to develop the low dissipation model separately
for each type of device, in order to assess the most relevant specific magnitudes in terms of the characteristic
parameters of the model.

2.1. Low dissipation HEs
Just taking the correct signs in equations (11) and (12), one obtains the heat exchanges between the heat
reservoirs and the working system for HE:

Qn= Th(AS - &), (14)
th
Q.= Tc[—AS - %\J (15)

Following the procedure to obtain equations (6)—(8), from equations (14) and (15), we obtain the dimensionless
heat exchanges per unit time:

2 Qn 2r 1 1-2. )1
= =2 ==1-—=15 16
= Tas r( (1—a)£)f (1
A c z Ec
=& T (L I o)
t T.AS? atf )t

Substituting equations (14) and (15) in equation (13) one obtains the (dimensionless) generated power output,

P,as:
_ z 1 1({1-2 Z |1
e (18)
t T.AS? T T\ (1 - a)f atf |7

and from equations (16) and (18) the efficiency 7 of the HE can be obtained easily considering that

(19)

n=
Qn

Ed
Qn
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2.2.Low dissipation REs
Considering the appropriate signs for REs in equations (11) and (12) one obtains:

)
Qn= Th(—As - —h), (20)
h
X
Q.= TC(AS — —) (21)
te
Then, using equations (20) and (21) the dimensionless heating rate, éh,and cooling rate, R = éc,are given by
< z 1-2 )1
G (22)
t T,AS 1-a)i)t
. > 5
REQC—Q— L —Tl——~i, (23)
t T,AS? af )t
and the dimensionless power input, W, needed by the low dissipation RE as
~ L 2 1 - ZN‘c ZN"C
o gL A Y U D) N 1 (24)
t T,AS? (1-a)f tat |t
and from equations (23) and (24) the efficiency € of the RE can be expressed as
€= % = i (25)
w B,

2.3. The unified figure of merity

In [23], some of the authors of the present work addressed the problem of finding a unified optimization
criterion for both HE and RE focused on the common characteristics of every energy converter (the working
cyclic system) instead of any specific coupling to external heat reservoirs which can vary according to a particular
arrangement. Then, we introduced a figure of merit, y, defined in terms of the working system and avoiding
external coupling characteristics. Physically, this unified figure of merit is based on the heat rate input in the
cyclic working system, Qj,,, and on the efficiency of the energy converter, z. For HE, Qi, = Qy, z = #7and for RE,
Qin = Q, z = €. Mathematically it reads as

Z Qin
t

x= (26)

From the low dissipation model we can obtain some physical insights of this criterion in regards with the
optimization of the total entropy generation. Coming back to Clausius theorem in equation (1) and to the
evaluation of the total entropy of the heat devices from equations (9) and (10), we obtain that

A5 = -2 _ Q5 (27)

Th Tc
Using equations (13) and (19), from equation (27) the total entropy per unit time AS,,, fora HE can be

expressed as:

; ASe  Q
ASior = tt f = Th(r]c - ’7)) (28)

where 7, is the Carnot efficiency and Qi = Qy/t is the amount of heat per unit time absorbed by the working
systemin a HE.
In the same way, using equations (13) and (25), from equation (27) the total entropy per unit time AS,,, for

aREis
. AS, B 1
ASior = o Q (_ - _)) (29)
t Th € €c

where e is the Carnot COPand Q. = Q./t is the amount of heat per unit time absorbed by the cyclic working
system. Up to first order in €., this equation can be re-written as:
Astot _ Qc

Teg(ec - 6'). (30)

Astot =

Below, in section 3.3 we numerically justify this approximation. The formal symmetry of equations (28) and
(30) in regard to the differences with the Carnot values 7. and €. supports the definition of the unified

5
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Figure 2. Dimensionless functions ASier (5o, a, i), P(z, ;c, a, i) = ;Z(HEE, and 5 (z, =, a, f) in terms of the fractional contact time
a = t/t for r = 0.2, = 10, and the labeled X-values: 2. = 0 (black); X. = 0.2 (purple); 2. = 0.5 (blue); 2. = 0.8 (green); and
3. = 1(red).

optimization criterion y for both HE and RE, based on the heat rate absorbed by the working system, Qin, and
the efficiency of the device, z, in order to minimize the total entropy generation under some constraints.
From equations (19) and (26) it is straightforward to obtain that the figure merit y for HE is given by

1 Qn w
yom =T W (31)
tcycle tcycle
which exactly coincides with the power output. In the dimensionless form it reads as
-
B = y(HE) _—_ — p, (32)
X LAY
From equations (25) and (26) it is obtained that y for RE is given by
){(RE) — E_QC , (33)
t
and finally, the dimensionless expression for yRF)is
by _
y RO = ®E) =T _ op (34)
“ “ ThAS?

In section 3.1 we will present numerical results in order to check the suitability of y, whether it is considered for
engines or REs.

3. Results

3.1. Heat Engines

We start showing in figure 2 the behavior of the dimensionless functions /A‘.Etot Z., a, ), P, 2, a, ) = )Z(HE),

and 5 (7, X, a, f) in terms of the fractional contact time & = t./t for some representative values of 7, X.,and .
When the dissipation is fully due to the hot thermal bath X}, = 1 (X. = 0), the entropy generation rate

presents, see figure 2(a), an intrinsic value for any fixed total time, 1/(1 — a)#2, according to equation (8). From

this baseline value, ZEM (X, a, f) monotonically increases as a does, i.e., irreversibilities increase as heat

dissipated in the cold reservoir is long lasting for a fixed total cycle time. On the contrary, for X}, = 0 (X, = 1)

ASioi (2., a, 1) monotonically increases from the baseline value 1/af? as a decreases, i.e., irreversibilities
increase as heat dissipated in the hot reservoir is long lasting for a total fixed cycle time. In between these two
extreme cases we observe in figure 2(a) how AS shows a well defined minimum value on a for each value of the
dissipation parameters. For X smaller than 0.5 these minima values increase with a while the opposite happens
for X higher than 0.5. The fully symmetric case @ = 0.5and %, = 0.5 defines a peculiar state which highlights
the change of trend of the minima values of the entropy generation rate.

The behaviors of P(z, 2., a, f)and 5 (7, =, a, f) are, obviously, conditioned by the one of the entropy
generation, as it can be checked in figures 2(b) and (c), respectively. So, high values of £}, (X, — 0) give high
values of power and efficiency for longer contact times with the hot reservoir (¢ — 0), while longer contact
times with the cold reservoir (@ — 1) favor the existence of states with high efficiency and power for high values
of X.. We stress the existence of a-values for which the heat device gives power output (and then it behaves as a
true HE) as well as of a-values not allowed for a low dissipation HE depending of the particular values of the
dissipation parameters X and Xy, for a fixed total cycle time.

From the results in figure 2 it is evident that 7 (z, X, a, ), P(z, 2, a, f),and thot (2., a, f)present well-
defined optimal values (maxima for power and efficiency and minima for entropy generation) in terms of the

6
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Entropy generation Power output Efficiency

(a) o 0..8 2 (b)

Figure 3. 3D-plots of the dimensionless functions Tsmt (Ze a, ©), P(r, B, a, T) = 7™ and 5 (z, 2, @, T)intermsof a = t./t
and 7 forz = 0.2, Z. = 0.5.

fractional contact times a. However, in general this is not true in terms of the reduced total cycle time 7 orin
terms of the other variables involved in the model. Only the power output (i.e., the figure of merit yH®)) shows
an absolute maximum in terms of both 7 and a. This is best viewed in figure 3, where we show the 3D-plots of
these functions in terms of @ and 7 : the local maxima (minima) of 5 (z, 2, a, t)and AS, (7, =, a, )in
function of a for an fixed total time are clearly visible for the three functions, besides of the commented absolute
f-maximum of power output. The influence of 7 is, as expected, to increase (decrease) the efficiency (entropy
generation) value. Indeed in the long time limit f — oo the reversible Carnot value of the efficiency and the zero
value of the entropy generation are eventually obtained. Accordingly, P(z, 2., a, t) shows a continuous decay
with f towards a zero-value in the reversible limit after its absolute maximum value. On the other hand, as f
decreases and becomes close to one, thot (7, =, a, f)increases abruptly, taking values greater than one, and
power output P(z, X, a, t) becomes negative. Thus, as expected, for these operating regimes the role of
irreversibilities is so important as to determine that the device can not work more as a HE.

Itis easy to show from equation (18) by setting the derivatives of P with respect to @and 7 that the absolute
maximum power holds at values of @,y p(7, 2. ) and fi.y 5(7, 2. ) given, respectively, by

amax}_’( T, Z~'c) = > (35)

-z
1+ =

Fmax B( T Sc)=£(\/754‘c+\/1 —fc)z- (36)

From these values, the efficiency at maximum power is

(37)

which is exactly the result reported by Esposito et al (see equation (8) in [21]). Indeed, the well-known upper,
lower, and symmetric bounds in equation (11) of [21] follow straightforwardly under the conditions 2. — 0,

Y.=1/2,and . - L, 5z, X — 0) = %,nmaxp(f, .= %) =1-Jr=1-J1—-n (ie,the

Curzon-Ahlborn efficiency), and ., 5(7, . — 1) = % Also, from equation (35) we obtain that

Amax (T> 2c) fe_ | (38)
1 — Qmax 5( 7> 2¢) th 1 -2

which is the contact time ratio at maximum power reported in equation (12) of [21].

In order to clarify the different role played by the considered figures of merit and the optimization space
allowed by the constraints, it is also interesting to pay attention to the behavior of the optimized contact times
under minimum entropy generation and maximum efficiency conditions, a point rarely treated in the literature.
From figures 3(a) and (c) we note that, opposite to power output in figure 3(b), these functions do not show any
absolute maximum value in terms on both a and #. However they show alocal optimization on a.

7



10P Publishing

NewJ. Phys. 17 (2015) 075011 A CHernéndez et al

Figure 4. Behavior of the fractional contact times at minimun entropy generation, @, § (. ), maximum power output,
Qmax p(7 = 0.2, X ), and maximum efficiency, dmax , (Zc, £ = 4).

Power input Ccop

@ o 08 ./ ) g ©

Figure 5. Dimensionless power input B, (z, £, a, ), 7® (7, 2., a, f),and COP € (7, 2, a, f)intermsof @ = t./t and 7 for

7=08,% = 05.

By setting the derivatives of 7 and AS,,; with respect to a we obtain the following expressions:

SE- 0 -2)QE +F- 15T
(2. - i

amaxn(fc) f) = > (39)

—_

Xmin § (Ec) = (40)

_5
1+ =

Due to the different dependence of these local fractional optimal times, a comparison between them and with
Amaxp(7, 2. ) should be done carefully, and must take into account at fixed cycle time for particular values of 7
and X.. Asanillustration we show in figure 4 the behavior of these three functions in terms on 2. Itis easy to
show from equations (35) and (39) that ay,y, (Z, = ) = ayné (Z.) and that ap(t — 1, 2) =

A ming (¢ ). In words, optimized contact times become equivalent to the one predicted by the minimum entropy
generation in long time cycles and also when the temperatures of the external heat baths become equals (i.e.
when the cycle is performed between very closer temperatures). The implication of this fact on the unified figure
of merit y will be analyzed below in section 3.3.

3.2. Refrigerators

For low dissipation RE some of the thermodynamic functions behave as expected for the counterpart ones of a
HE, but other specific functions show important subtleties in regards to its optimization. To begin with, in
figure 5 we show 3D-plots of the power input, the figure of merit y, and the COP in terms of ¢ and 7 fora
characteristic 7 = 0.8 and 2. = 0.5. The election of these particular values does not change the main results.
Note that the entropy generation in RE is exactly the same as for HE. From these figures three relevant points can
be raised out:
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Figure 6. Dimensionless cooling power R(z = 0.8, X, a, f) for aRE and dimensionless heat absorbed by a HE On(z=02, %, a i)
intermsof @ = t./t and f for 2. = 0.5.

e TheCOP, e(z, X, a, ), asthe efficiency for HE, shows (see figure 5(c)) well defined local maxima on the
fractional contact times @ and a monotonic increase with 7 up to get the corresponding Carnot COP under
quasi static conditions (f — o).

o 7®B(z, 3 a, f),asthe power output in HE, shows (figure 5(b) ) an absolute maxima on both @ and 7 witha
progressive decay as # increases after its maximum value. Indeed, this behavior can be considered a first conse-
quence of the unified definition of the figure of merit y in terms of the heat input in the heat device, section 2.3. The
results of this optimization criterion have been analyzed by de Tomds et al [23] under symmetric conditions, by
Wang et al [24] under asymmetric conditions, and the extension to a low-dissipation model with finite time effects
for the adiabatic steps was reported by Hu et al [25]. The minimally nonlinear model by Izumida et al [26] handled
the same issue under the perspective of the nonlinear effects in the framework of fluxes and thermodynamic forces
and Long and Liu [27] analyzed the influence of the non isothermal processes in the heat exchanges.

e The power input B, (z, 2, a, f)in RE, equation (24), shows (figure 5(a)) well defined minima values on
but a monotonic decaying on 7, in opposition with the power output behavior in a HE. Thus, (minimum)
power input in RE could be considered as a # -dependent figure of merit in this kind of models. Its optimized
contact times are the same that the obtained under minimum entropy generation
(Omin B, (Xc) = Qmin § (2)). In this regard, we see that minimum entropy generation and minimum power
input are equivalent figures of merit in RE. Although the resulting COP at minimum power €y, 5, (7, >, 1)
is t-dependent, we give here some limit results under high asymmetric and symmetric conditions:

ft

min P; ,O,E T — b 41

€mink, (7,0, 1) = 17— (41)
- T(1-1)

minpp (% L f) = ————, 42

€minta (7 1, 1) = 77— (42)

and

1. (- 1)

minPu| T | = ————. 43

€ P‘"(T 2 ) 2+ (1 —1) (43)

Another peculiarity in RE stems from the behavior of the dimensionless cooling power R(z, 2, a, ) given
by equation (23) and shown in figure 6(a). The distinctive feature is, besides the absence of local maxima on a,
the existence of a well defined local maxima on 7. In other words, the cooling power is a figure of merit in regards
to the total cycle time, independently of the contact times with the external reservoirs. It can be found by setting
the derivative of R with respect to  that
tmax R(EC) a) = 256 > (44)

and that the optima COP-value is given by:

T

2(2 + L_i‘i) — T).
2 2(1-a)Z.

emaxR(Ta Z~:cw a) = (45)
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Figure 7. (a) 3D-plot of the COP at maximum cooling power €may z(z = 0.8, Z., @); (b) comparison between
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The equation above is plotted in figure 7(a) versus a and 2. for an usual value of 7 = 0.8. We also plot in
figure 7(b) its behavior on @ in order to compare with those obtained from figure 5(c) at different times. We
stress the monotonic decay of €4 2(7, ¢, a) versus the parabolic behavior showed by € (z, 2, a, f),in
agreement with the 1/a decay of f,, 3(Z, @) in equation (44): greater a-values imply shorter cycle times with

greater dissipations.
The dissipative high asymmetric limits are a-independent and they are given by:
€mak(7; 0, @) = 0, (46)
T €c
Ema(7, 1, @) = = N 47
maxR( ) 3_ 27 3+ € ( )
while the symmetric limit is @-dependent
= 1
€maxf2( 7T, 2=, (Z) = 4 > (48)
2 3 @ _
2 2(1-a)
with a particular value at o = 1/2 given by:
1 1 T €c
€matl T, — — | = = . 49
ma"R( 2 2) 20-1) 202+e) 4

The above particular values of the COP at maximum cooling power are easily amenable to compare with
similar results obtained under tight-coupling condition in minimally nonlinear models by Izumida et al [28],
and for an autonomous thermoelectric device modeled assuming the exoreversible hypothesis by Apertet et al
[29]. The slight differences could be explained as a consequence of the different assumptions taken into account
in each kind of model.

3.3. Physical meaning of y as unified figure of merit

In section 2.3 we stressed the formal symmetry of the entropy generation in order to introduce the figure of merit
 asan appropriate tool in the optimization of both HE and RE. The results above show that y has an absolute
maximum value (see figures 3(b) and 5(b)), while other thermodynamic magnitudes (as efficieny, COP, power
input, cooling power) only show local optimal values. Here we try to go further by analyzing why y behaves so
well as a unified criterion for both HE and RE and its connection with the entropy generation, which is
ultimately the consequence of the overall dissipations.

For RE devices 7®®) = Re. We saw in figure 6(a) that the cooling power, R, shows a local maximum on 7,

while the COP, ¢, shows local maxima on the fractional contact times @, see figure 5(c). For a HE device

)Z(HE

figure 6(b) we show now a view of the dimensionless heat input rate, Qy,, for a HE. It shows a clear  -maximum

valueat f x5, = % Then, we could conclude that for a generic low dissipation heat device y, defined as

) = éhq = P and we saw in figures 2(c) and 3(c) that the local mz.alxima on a of the efficiency . In

the product of the converter efficiency z times the heat absorbed Qj,, by the working system, means a
compromise between two functions each one with a different optimization space (zin the space of fractional
contact times a and Qj, in the time domain #) which together allow for an absolute maximum value of .

In figure 8(a) we depicted the times 7,y , at maxi~mum 7 for HEs and REs and in figure 8(b) the
corresponding optimized entropies, as functions of X.. It shows that both times present a non monotonic
behavior on X, being .« , for REs greater than for HEs, except for small values of 2. (£0.15), with a maximum

10
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Figure 8. (a) Optimized total times at maximum y for refrigerators ., yxe) (7 = 0.8, %) and heat engines 7, Jun(r =02, )

(b) behavior of the corresponding optimized entropies ngt’maxi(kl%) (r =10.8, 2.)and thot,maxi(HF‘) (=02, 2)).

value that is more than two times greater than for HEs. Provided that the total entropy generation is a
monotonous decreasing function on time, this yields the optimized entropy generation for REs to be much
lower than for HEs, except for small values of .. This result can also be understood on the basis of

equation (29). For usual real REs, the difference of temperatures between the hot and cold external reservoirs is
much less than for common HEs (in our choice 7 = 0.8 for REs, while 7 = 0.2 for HEs). This fact implies that
real REs work under a situation of non-thermal equilibrium which is not so drastic as for HEs. Then, one can
expect that the COP, ¢, of alow dissipation RE should be closer to Carnot COP, ec. This is the reason why the

approximation AS, ~ ?—} (e — €) we made in section 2.3 is justified, and ultimatelywhy y = Q. e works as
€c 1n

atrue optimization criteria for REs, not only from a practical point of view (as a compromise between the two
functions Q. and ¢), but also, and much more important, from the perspective of the second law of
thermodynamics.

4. Summary and conclusions

Unified results for both Carnot-like low-dissipation models of HE and RE have been reported by analyzing the
influence of the time- and size-constraints on the main energetic properties of each heat device. The dependence
on both the total cycle time and on the contact times with the external heat reservoirs have been analyzed for the
main thermodynamic magnitudes of each device, in terms of the entropy generation and the characteristic time
scale provided by the model. The role played by different optimization criteria has been clarified and some
previous bounds for efficiency and COP have been also recovered. In particular, the suitability of the figure of
merit y as a unified optimization criterion for HE and RE has been analyzed and its relation with the entropy
generation stated out.

As amain conclusion we note the importance of the time-constraints on the performance and optimization
of heat devices owing their interplay with the entropy generation, which ultimately is the fundamental
thermodynamic magnitude accounting for the unavoidable irreversibilities of real heat devices. The different
nature of these irreversibilities, their treatment under the possible constraints, and the connection with entropy
generation are some elements which deserve future studies in order to account for more complete, realistic, and
unified heat devices models [30, 31].
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