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Abstract

The multichannel quantum defect theory (MQDT) in combination with the frame transformation
(FT) approach is applied to model the Fano—Feshbach resonances measured for “Li®”Rb and °Li*’Rb
Marzok et al (2009 Phys. Rev. A79 012717). The MQDT results show a level of accuracy comparable to
that of previous models based on direct, fully numerical solutions of the the coupled channel
Schrodinger equations. Here, energy levels deduced from 2-photon photoassociation (PA) spectra for
’Li*Rb are assigned by applying the MQDT approach, obtaining the bound state energies for the
coupled channel problem. Our results confirm that MQDT yields a compact description of PA
observables as well as the Fano—Feshbach resonance positions and widths.

1. Introduction

Ultracold molecules are currently generating tremendous interest in the atomic, molecular, and optical physics
community due to their potential applications as valuable tests and extensions of our understanding of processes
in chemical physics, few-body physics and fundamental physics. In particular, ultracold molecules are expected
to enable precise control of chemical reactions [ 1-3], studies of novel quantum phase transitions [4—6],
realizations of novel dynamics in low-energy collisions [7], and tests of the possible time variation of the
fundamental constants of nature [8, 9]. Moreover, ultracold molecules could shed light on the fundamental laws
and symmetries of nature, through measurements of the electric dipole moment of the electron [10-12]. These
measurements have already been able to rule out some theories that were proposed as alternatives to the
standard model.

Molecules can be brought down to the ultracold regime by either direct or indirect methods. Direct schemes
employ external fields (electric fields for polar molecules, and magnetic fields for paramagnetic molecules), or
sympathetic cooling via collisions with colder atoms that act as a dissipative medium for the molecules to move
through. On the contrary, indirect methods start with an ensemble of ultracold atoms, and then external fields
are used to glue the atoms together to form ultracold molecules. External magnetic field ramps have been used to
create ultracold molecules by making use of Fano—Feshbach resonances associated with the atom—atom
interaction [9], in the so-called magnetoassociation technique [13]. Laser fields can also provide useful
interactions with ultracold molecules. A photon resonant with an excited atomic state can be absorbed while an
ultracold atom collides with a ground state atom, in a photoassociation (PA) process [14]. After the absorption,
the ultracold molecule in an excited state can decay to the ground state by spontaneous emission.

The effectiveness of indirect cooling techniques depends on details of the atom—atom interaction. For this
reason, indirect cooling methods can be a useful probe of the atom—atom interaction potential. Indeed, the
results coming from MA or PA can be used to calculate an accurate atom—atom interaction through quantum
scattering theory. This theory is based on the numerical solution of the radial coupled Schrédinger equations out
to alarge distance where the asymptotic conditions are applied [15]. While accurate, this method can be
computationally demanding due to the large number of channels that are frequently involved, and because the
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scattering wave function requires propagation out to such long distances. In this respect, multichannel quantum
defect theory (MQDT) can be an efficient alternative.

MQDT was born in atomic physics long ago, as a highly successful theory to explain the spectra of
autoionizing states in complex atoms and the link between bound and continuum states of an outermost atomic
electron [16—18]. Since those early developments, MQDT has been extended beyond the long-range Coulomb
interaction to other long range potentials [19, 20]. In particular, it has been applied to conventional atomic
collisions [21, 22], and ultracold atomic collision [23-28]. MQDT exploits the fact that at long-range the
coupling between the channels is negligible, and this permits a systematic separation of short-range and long-
range influences on the two-body physics. Specifically, for some long range potentials, an analytic solution of the
scattering wave function can be found in terms of quantum defects that are almost energy independent. For
other potentials it is advantageous to implement a numerical version of the long range QDT solutions,
appropriately characterized in a way that makes the energy- and field-dependences of scattering observables as
explicit as possible.

In some applications, MQDT is employed in an essentially exact manner, in that accurate solutions of the
close-coupling equations are obtained out to a distance around 1 = 30-50 a.u., and then matched to linear
combinations of single channel solutions (f;, g;) in the appropriate long range potential for each channel i. In the
present context, of course, those are van der Waals long range potentials in every channel. For other applications,
asimpler ‘frame transformation (FT) approximation’ that we abbreviate as MQDT-FT is utilized, as an
alternative to explicitly solving the coupled differential equations in the inner region r < 7.

The approximate MQDT-FT treatment is the version utilized for the present study. A similar MQDT-FT
approach was developed by Hanna ef al [29]. The concept of the FT formulation is to start from single-channel
values of the singlet and triplet s-wave scattering lengths, which include no Zeeman or hyperfine couplings.
These give the phases of the wavefunction in those short-range scattering eigenchannels, and they can then be
rotated through a unitary transformation matrix into the asymptotic representation in which the atomic energy
levels have been diagonalized (with the internal and external magnetic couplings included). In some systems,
accurate or approximate scattering lengths ag, arare already known for the singlet and triplet symmetries of an
alkali metal dimer, respectively. The phase information contained in those scattering lengths can be recast as two
short-range eigen-quantum-defects, g, y; which represent energy-analytic phaseshifts relative to the van der
Waals (f, ), and which vary far more slowly with energy than the scattering lengths themselves.

After frame-transforming these short range eigen-quantum-defects into the hyperfine plus Zeeman
representation, a full N X N smooth reaction matrix is obtained for the system, and after closed channel
elimination, Fano—Feshbach resonances emerge at various energies and magnetic field strengths B. (The closed-
channel elimination step simply imposes correct exponentially decaying boundary conditions in the
energetically closed channels.) The present study adopts the conventions for single-channel long-range field
solutions are chosen to be those introduced by Ruzic et al [27, 30]. They represent a particular standardization of
the long-range (f, g), and there are four ‘long-range QDT parameters’ which are standard and reasonably simple
in their energy dependence, and which embody the crucial energy-dependences and magnetic field dependences
that are controlled by the van der Waals physics and the hyperfine plus Zeeman Hamiltonian. (There are minor
differences between the standardizations introduced by [27] and those used in alternative variants of QDT (e.g.
different from those of Burke et al [23] of Gao [31] or of Mies and Raoult [24]). The version used here for the
simplified FT procedure is taken from Pires et al [28]. Our study here determines the short-range singlet and
triplet quantum defects for two isotopologues °Li*’Rb and “Li*Rb. The optimum values of the short-range
quantum defects are chosen to be those that describe most accurately the position of the observed Fano—
Feshbach resonances. In another application developed in the following, MQDT is applied to assign the lines
observed in two-color PA spectra for "Li*’Rb. Finally, some concluding remarks will address the applicability of
MQDT to spectroscopic processes in ultracold physics.

2. MQDT: bound state calculations

Details about MQDT can be found elsewhere [23, 27, 28, 30, 32]. Here only a brief description of the main
features of the MQDT approach and its application to the calculation of bound states with coupled channels is
presented.

For two-body collisions in the presence of an external magnetic field, the wave function can be expanded in
the basis of N hyperfine plus Zeeman states (channels) that include the centrifugal angular momentum /;

1

N
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where Q2 represents all angular coordinates and spin degrees of freedom. Equation (1) must be a solution of the
Schrédinger equation, leading to a set of coupled radial equations

>|| - ZAULE) ) NS . @
~S v D s+ Vi(R) |(R) = B (R). 2
=S R?

The matrix V;;(R) accounts for the coupling between different channels due to the interaction potential between
the colliding particles. E; denotes the available kinetic energy for the ith channel and it is given by
E; = E — E{", where Eis the collision energy and E{"™* stands for the Zeeman energy of the i channel.
Alllengths are expressed in units of the characteristic length scale S associated to the potential V, and all
energies are in units of the corresponding characteristic length scale E4 = %, where ¢ is the reduced mass. The
long-range behavior of V'specifies #and hence Ej. In particular, the long-range interaction between two S-state
atoms (such as two alkali atoms) leads to an isotropic van der Waals interaction V = —Cg /R®, and the
characteristic length is given by 8 = (2uCs/%%)"/4, denoted the van der Waals length and the corresponding
energy scale is called van der Waals energy. In some references the van der Waals length is defined as /2 [33].
For most two-body collisions involving neutral species the long-range tail of the potential is dominated by
the van der Waals interaction. In such systems, the channels become approximately uncoupled beyond a radius
Ry In general, equation (2) has N independent solutions that satisfy the physical boundary conditions ¥ = 0 at
R =0. The N solutions of equation (2) can be regarded as the column vectors of the N X N solution matrix M.
Thus, matching M to single-channel reference wave function (uncoupled) f and ¢ in each channel beyond Ry,
defines the short-range reaction matrix K [32]

M;; (R) :ﬁ(R)5ij - & (RK. 3)

In particular, f; (R)and g; (R) are the regular and irregular solutions of the uncoupled Schrédinger equations in
the long-range potential V'*

d2 li(li+ 1)

T )

+ VI(R) — E; [f"(R)] =0

& (R)

The matrix K™ encapsulates all the information about the short-range physics and channel coupling,
whereas the standardized (smooth, analytic in energy) reference wave functions f; (R)and ¢; (R) describe the
long-range physics. K* and the linearly independent reference wave functions contain all the information
necessary to calculate the scattering observables, through the scattering matrix, S. The calculation of the S matrix
requires two linearly independent, energy-normalized wave functions for open channels, and the bound-state
wave function in each closed channel. As is standard in QDT, four long-range quantum defect parameters suffice
to convert the smooth, short range reaction matrix K™ into the physical S-matrix which depends strongly on
energy and magnetic field strength. The present calculations are based on the standardization of the long-range
QDT parameters defined in [27]. Two of the long range QDT parameters, namely A and G, are used to generate a
Wronskian-preserving transformation between the reference wave functions and two energy-normalized wave
functions f;(R) and g;(R) in the open channels

F®) (a2 o (@ (5)
g (R) - Ai—1/2gi Ai—1/2 gei(R)'

The other long range QDT parameter at positive channel energy, #;, represents for the asymptotic phase-shift of
the energy-normalized f; and g; relative to the spherical Bessel functions. Finally, y;is the long range QDT
parameter at negative energy that describes the phase-shift of the reference wave functions fl and ¢, relative to
the exponentially growing and decay solutions asymptotically which characterize bound-state solutions. The
formulas to calculate those long range QDT parameters are given elsewhere [27].

The MQDT parameters translate K** into observables. For a given collision energy E, some channels will be
open whereas the remain will be closed. Both kind of channels are included in the K™ matrix, which can be
partitioned in terms of the open channel (P) and close channels (Q) contributions as

Kih Kif
K = sr st |° (6)
Kaor Koq

However, the presence of closed-channel components in the K* will lead to unphysical solutions at large
distances, due to the presence of exponentially growing terms. This problem is removed by means of the MQDT
step referred to as the ‘elimination of closed channels’ [23], after which the physical K-matrix is obtained from
the formula:
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K = K5 — K3y (K& + cot7)” K& (7)

This expression shows explicitly the potentially resonant influence of closed-channel pathways. The resulting K
matrix has dimensions Np X Np, with Npthe number of open channels at the given collision energy E. In
particular, from equation (7) discrete bound states can be obtained as the roots of the following equation:

det(KgQ + cot y) =0, (8)

where cot y represents a diagonal matrix in channel space whose elements are equal to the closed channel QDT
parameter cot y.

2.1. FT machinery

MQDT assumes that the short-range reaction matrix K* depends very weakly on energy. Therefore, it can be
calculated at just a few energies and then be interpolated between these values. In some cases, a single evaluated
K*" matrix for a single chosen energy (usually close to the threshold) at zero magnetic field can be utilized to
describe the scattering observables over a wide range of energies and magnetic fields.

Generally, in scattering problems there is a representation where the Hamiltonian is diagonal at short-range
and another one where the same Hamiltonian is diagonal at long-range. This difference in representations
because the terms in the Hamiltonian that dominate at small distance often fail to commute with the terms
dominant at large distance. The FT technique relies on an energy independent unitary transformation between
the two representations. The MQDT-FT technique has been successfully applied to ultracold atomic collisions
in the presence of an external magnetic field [23, 34, 35]. We follow here the method employed in a very recent
study of the Li-Cs heteronuclear system [28].

Atshort-range, due to the dominant role of the exchange energy, the collisional eigenstates are represented
as|a) = |(sasp)S ( isip ) I FME), s; denotes the electronic spin of the ith atom, 7; stands for the nuclear spin of
the ith atom, Fis the total angular momentum of the molecule and Mis its projection on the quantization axes.
In this basis the K* matrix is diagonal and reads as:

Koo = tan (ap,) Saas )

where , denotes the short-range single-channel quantum defects for the singlet 41 and triplet y- states, which
are approximated throughout this study as being energy independent and magnetic field independent.

For the long-range part of the Hamiltonian, the hyperfine plus Zeeman energy is the dominant term of the
Hamiltonian, and hence the collisional channels will be represented in the basis of the hyperfine+Zeeman
eigenstates |i) = |m4z4, mpzp), which arealinear combination of the basis set |f, 14, f;m5), whose
superposition coefficients are functions of the magnetic field. The MQDT-FT method utilizes the energy
independent unitary transformation between the short-range basis set | ) and the long-range basis set | i), which
is given by standard angular momentum coefficients (Clebsch—-Gordan and Wigner 9-j coefficients) and the
Breit—Rabi eigenvectors, and we denote these transformation matrix elements as (z4 z; |f, f; )(’”A””B), etc, and
they are computed as

(ma,mp) <

Ui,a: z <ZA, Zp |fA’fB> fAmA,meB |FMF>

Tafsf
X<(SAiA)fA(SBiB)fB‘(SASB)S(iAI.B)I>(F)‘ (10)

The short-range reaction matrix is approximated here as being exactly diagonal in the short-range basis set,
whereas the scattering observables are defined in the long-range basis set (hyperfine + Zeeman). Angular
momentum coupling theory ensures the existence of the unitary transformation matrix connecting these two
representations via equation (10), and therefore the smooth, short-range reaction matrix is given to an excellent
approximation by:

K= ZU,-,O,KD,“ Udjs (11)
a

where T denotes the matrix transpose. Note that /, the quantum number associated with the centrifugal angular
momentum does not appear in equation (10), therefore the FT does not involve couplings between the atomic
degrees of freedom (spin, nuclear spin, angular momentum) and the collisional degree of freedom. In systems
where magnetic dipole—dipole or quadrupole interactions are important, it could be desirable to include off-
diagonal coupling terms in /, but those are often sufficiently weak that they can be treated perturbatively. The
short-range quantum defects x*" do depend on [, but most of that I-dependence is known analytically; a small /-
dependent correction can be applied as in [28].

4
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Table 1. Comparison of the resulting °Li*’ Rb and "Li* Rb Fano—Feshbach resonance positions from MQDT and CC methods to the
observed resonances. A van der Waals Cs = 2550 a.u. has been employed for the MQDT calculations (see text for details). The experimentally
observed positions B ;*? and widths AB® are taken from [37]. The resonance positions and widths calculated by the MQDT approach are
denoted by B YT and ABMPT, respectively. The resonances positions based on the CC approach B §© and widths AB““ are taken from the
model I of [37]. The positions and widths of the resonances are given in Gauss. The nature of the resonances is shown in the last column of
the table, /=0and = 1 represent s-wave and p-wave respectively. The weighted rms deviation 5B™™ (see text for details) is also shown.

Open channel B&®(G)  AB™®(G) BYPT(G) A MQdT(G) BSY(G)  ABC(G) 1
°Lil3, 3)+Rb]1, 1) 882.02 127 882.75 882.42 1
1066.92 10.62 1067.05 6.26 1066.92 7.4 0
Li|1, 1) +¥Rb]|1, 1) 389.5 0.9 390.69 390.2 1
447.4 1.1 446.83 445.6 1
565 6 563.19 7.8 568.8 7.9 0
649 70 653.09 204 650.6 175 0

5B™ (G) 0.67 1.02

3. Analyzing Feshbach resonances for LiRb

The MQDT-FT approach as presented in the previous section is applied here to describe Fano—Feshbach
resonances in LiRb. In particular, we will focus on °Li* Rb and "Li®'Rb, two isotopic mixtures for which
Feshbach resonances have been experimentally observed [36, 37]. Feshbach resonances have been observed and
characterized in other isotopic mixtures [38, 39], as well as detailed studies of the PA prospects for LiRb have
been carried out recently [40].

The MQDT-FT has been implemented by using the long-range potentials reported in [37], most
importantly the long-range Cy coefficient is 2550 a.u. This value corresponds to the model I of [37]. The short-
range physics is fully characterized by means of the field independent and energy independent quantum defects
ugand i, through the short-range reaction matrix. These short-range quantum defects are adjusted to find an
optimal agreement between the predicted position and width of the Fano—Feshbach resonances. The FT
technique is used to transform the short-range reaction matrix (see equation (11)) into the long-range basis
(hyperfine + Zeeman states). Finally, four long range QDT parameters in each channel that depend on the
channel energy are needed for establishing a relationship between the short-range and long-range physics, where
the asymptotic conditions are applied. The present study uses these parameters, denoted as G, A, # and y, which
have been determined once and for all for a pure van der Waals potential at long range —C¢/R® [27, 28, 30]. The
long-range quantum defects are standard and can be used for any alkali—alkali collision. They have been
tabulated as functions of a single dimensionless variable which is the product of the van der Waals length and the
wave number k [27, 28]. Finally, by means of equation (8), the magnetic field locations of the low energy Fano—
Feshbach resonances are calculated. This procedure yields the resonance as positions, as functions of the short-
range quantum defects. The short-range quantum defects, 4, and y; may be regarded as fitting parameters to
predict the positions of all resonances observed experimentally. In addition, the MQDT-FT approach also
enables the computation of scattering total and partial cross sections, through the very well-known relation
between the K-matrix (equation (6)) and the S-matrix (seee.g. [15]).

The MQDT-FT results for ’Li* Rb and °Li®’Rb, using the hyperfine constants reported in [41], in
comparison with the CC calculations from [37] are shown in table 1. Parenthetically, the MQDT-FT calculation
reported here neglects entirely the spin—spin and second-order spin—orbit interactions. The fitting of the short-
range quantum defects (g and py) is performed by taking into account the s-wave as well as the p-wave Fano—
Feshbach resonances. In addition, the fitting is performed separately for each different isotopic mixture under
study, without making use of any mass-scaling argument. For the fitting, three independent fitting parameters
are employed [28], these are small deviation from the initial short-range quantum defects coming from the long-
range potential of the model I of Marzok et al [37]. For the MQDT calculation a collision energy of 8 4K has been
assumed. The quality of the results are measured by means of the weighted root mean square (rms) deviation
S6B™™ on the resonance position, which is defined as

SB™™S = (12)

The summation is performed over N Fano—Feshbach resonances for a given isotopic mixture, §B; denotes the
experimental uncertainty of the resonance positions and §; = B4 — B&¥, where model stands for MQDT-
FT and CC, whereas the superscript exp denotes the experimental resonance positions. Table 1 shows that the
MQDT-FT approach gives agreement with the position of measured resonances comparable to that achieved in
previous CC calculations [37], which are far more computationally demanding. Indeed the weighted rms
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Table 2. Calculated s-wave and p-wave short-range quantum defects and scattering lengths (only for the s-wave)
for the uncoupled singlet (S) and triplet (T) states of different isotopic mixtures of LiRb molecule. The scattering
length is given in units of the Bohr radius (ay).

S-wave p—wave
Molecule Hg Wy as (ao) ar(ap) Hs Hr
°Li*Rb 0.2572 0.3184 -1.87 -22.70 0.0045 0.0648
“Li¥Rb —0.0817 0.3845 53.20 —68.85 —0.3282 0.1380
“Li**Rb -0.1259 0.3707 59.73 —55.49 —-0.3724 0.1242

deviation is smaller for the MQDT-FT results than for CC ones. Positions of the Fano—Feshbach resonances can
be inferred from the divergences of the computed scattering length versus the magnetic field.

The widths of the s-wave Feshbach resonances shown in table 1 for the MQDT approach have been obtained
by first calculating the scattering length as a function of the external magnetic field. Next, the scattering length is
fitted by means of the function a (B) = apg ( 1+ Z,N=1 AB;/(B - Bl-)). Here B; denotes the position of the
Feshbach resonance, AB,; represents the width of the resonance, and the background scattering length ay,gis a
global parameter for the fitting. The MQDT results for the width of the s-wave resonance of °Li*’Rb is in good
agreement with the experimental reported data [37]. On the contrary, the width of the Feshbach resonances
associated with “Li|1, 1)+ 8Rb |1, 1 ) are larger than the reported experimental values. A similar trend is
observed for the CC calculations, even for other isotopic mixtures of LiRb [38, 39]. It seems that all the
theoretical predictions overestimate the width of the Feshbach resonances for LiRb.

The optimal short-range quantum defects, as well as the scattering lengths extracted from them, are shown
in table 2. In addition, the p-wave short-range quantum defects are also shown in the same table for all the
isotopologues for LiRb studied in this work. The scattering length calculated by the MQDT-FT compares well
with the previously reported CC calculation [37], showing that MQDT can accurately predict such Fano—
Feshbach resonance positions.

4. Two-photon PA: analysis of the least bound states of Li *>Rb

Feshbach resonances have not been observed to date for the “Li - **Rb system. However, we have recently
measured the least bound states of "Li ®*Rb using Raman-type two-photon PA, the experimental details of which
will be described elsewhere [42].

For shallow bound states, the associated wave functions mainly sample the long-range tail of the potential. In
such a system, the MQDT approach becomes a valuable tool for the calculation of such bound states. For Li—Rb,
ground state collisions can occur in any of the two distinct potentials, X 'X* and a’~*. Both potentials will be
coupled due to the presence of hyperfine interaction in both atoms. The MQDT approach naturally includes
such coupling between the singlet and triplet potentials through their respective quantum defects u and - (see
equation (9)) and of course the hyperfine plus Zeeman terms in the Hamiltonian which do not commute with
the total spin operators. For these calculations the hyperfine constants of [41] have been used, and for the
calculation of the quantum defects, the singlet and triplet scattering lengths reported in [37] have been utilized.
The long-range coefficients of the previous section have been employed here as well. The B = 0 binding energies
for the s and p-wave bound states calculated using the MQDT-FT approach are listed in table 3. Those bound
states have been obtained through the short-range quantum defects listed in table 2. The quantum defects have
been obtained from the calculated scattering length reported by Marzok et al [37], and fitted a posteriori, as it is
explained in the previous section. In particular, we have employed the same fitting parameters that were
obtained for the fitting of “Li*’Rb, since the isotopic effect of Rb should be very small in comparison with the case
athand. In table 3 it is shown the total F, the total molecular angular momentum (including the hyperfine
structure), associated to each state. The F quantum number has been calculated by means a block diagonal
procedure, i.e., by varying the number of channels taken into account for the calculations of bound states. In
each step, a new block of channels associated to a given F were included, and hence revealing the nature of each
bound state.

The scheme for Raman-type two-photon PA is shown in figure 1. The ultracold Li and Rb atoms in a dual
species magneto-optical trap (MOT) collide predominantly in the Li (2s, f; = 2) + Rb (5s, fr, = 2) channel [43—
45]. They are photoassociated, using a PA laser at frequency vp,, to form weakly bound electronically excited
LiRb* molecules in a rovibrational level denoted by v’ from which they spontaneously decay to the electronic
ground state or to free atoms leading to loss of atoms from the MOT [44, 45]. This loss of atoms is detected as a
decrease in the fluorescence of the Li MOT. A second laser, called the Raman laser with frequency vy, is scanned
across abound-bound v’ <> v” transition between the electronically excited and ground states. The polarization
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Table 3. s-wave and p-wave bound states binding energies (in GHz) calculated using the MQDT-FT approach. In the first column the total F
for each bound state is shown (ignoring orbital angular momentum). The binding energies are referred to the threshold shown in the first
row of the table.

(i fro) (1,2) (2,2) (1,3) (2,3) (1,2) (2,2) (1,3) (2,3)
S-wave p—wave
F
1 -1.67  -0.86 1.37 2.17 337 257  —0.34 0.46
2 158  -0.77 1.45 2.26 325  —245  —021 0.59
3 144  —0.64 1.59 2.40 —300  -2.20 0.03 0.83
4 —0.43 1.80 2.61 -2.02 0.21 1.01
5 4.03 3.38
4 1.22 3.46 4.26 0.66 2.89 3.70
3 0.63 1.43 3.67 4.47 0.08 0.89 3.12 3.92
2 0.77 1.58 3.81 461 0.24 1.05 3.28 4.08
4 5.08 7.31 8.11 4.61 6.84 7.64
3 4.40 5.21 7.45 8.25 3.94 4.75 6.98 7.78
2 453 5.34 7.57 8.37 4.08 4.88 7.11 7.92
1 4.64 5.44 7.68 8.48 4.18 4.98 7.22 8.02
0 6.12 6.93 9.16 9.96 5.61 6.42 8.65 9.45
1 6.22 7.03 9.26 10.06 571 6.52 8.75 9.55
2 6.40 7.21 9.44 10.24 5.89 6.70 8.93 9.73
3 6.64 7.45 9.68 10.48 6.13 6.93 9.17 9.97
3
24x10 T T T T T T
\ ar Li (2s) + Rb (5p)

_ 18

£

(3] p—

> 1= 2+ f=3

= f + f=

s 1 3

3.036 GHz
w 6 f=2+f=2

f=1+ f=2 |} 803 MH:
Li (25) + RDb (55)

6 8 10 12 14 16 18 20
Internuclear separation

Figure 1. Scheme used for Raman type 2-photon spectroscopy for ’Li*’Rb. The inset to the right shows the different hyperfine
channels along which the ground electronic state dissociates asymptotically. See text for details.

of the Raman laser is perpendicular to the polarization of the PA laser. When the Raman laser is resonant with
the v/ « " transition it causes an Autler—Townes splitting in the 2’ level leading to the PA laser going out of
resonance [46], hence suppressing the PA induced atom loss. This suppression of atom loss is a signature of a
Raman resonance and the binding energy of the v” level is given by Av = v — vp,. The uncertain in the
experimental energies of the bound states is 60 MHz in relation with the accuracy of the wavelength-meter
employed in the measurements.

In our experimental set up the linear polarizations of the lasers are perpendicular to each other, leading to a
new set of selection rules. In particular, since Li and Rb are colliding predominantly through the s-wave initially,
this implies that only s- and d-wave bound states will be allowed following the Raman process. For this reason,
only the s-wave bound states have been considered for the assignment of the observed 2-photon PA lines, as are
shown in table 4. In the same table are shown the experimentally observed 2-photon PA lines up to 3 GHz of
binding energy.

There are two distinct potentials, X'+ and a*> +, at small internuclear separations but at large internuclear
separations both potentials approach the Li (2s) + Rb (5s) asymptote with the same Cg coefficient. The bound
states measured in our experiments are very close to the dissociation limit where the two potentials can be
described with a single Cs coefficient, and it is also the region for which the MQDT approach is expected to give
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Table 4. Experimentally measured binding energies for s-wave bound states. The binding energies (in GHz)
are represented in each column for each possible channel: Li (2s, fj;=2) + Rb (5s, frp =2), Li (2s, f1;=1) + Rb
(58, fro=2), Li(2s, fr;=1) + Rb (5s, fr, = 3) and Li (2s, f; = 2) + Rb (5s, fr, = 3), from left to right, respectively.
The experimental uncertain for the bound states energies is 0.06 GHz (see text for details), not shown in the
table for clarity. By comparing these energies with the MQDT values shown in table 3, tentative assignments
are made and shown in the last column. The theoretical prediction for the bound states energies based on the
MQDT approach are shown in parenthesis.

(> Jrv) (fui> fro) (fii> fro) (fii> fro)
Name (2,2) (1,2) (1,3) 2,3) Assignment
a —0.63 (—0.64) -1.43 1.61 2.41 (fi=2, fap=2), F=3
B -0.31 -1.11 1.93 2.73(2.61) (fi=2, fap=3), F=4
Y 0.98 0.18 3.22 4.02 (4.03) (fi=2, fp=3), F=5
5 1.26(1.22) 0.46 3.5 43 (fi=2, fan=2), F=4
€ 1.55(1.58) 0.75 3.79 4.59 (fLi=2, fap=2),F=2

reliable results. Since Li (2s) and Rb (5s) atoms have hyperfine structure, for B = 0 the electronic potentials at
very large internuclear separation must dissociate along one of the four hyperfine channels: Li (2s, f;; = 1) + Rb
(58, fro =2), Li (2s, f1i=2) + Rb (5s, frp = 2), Li (25, f1; = 1) + Rb (5s, fr, = 3) or Li (2s, f; =2) + Rb (5s, frp = 3).
Since we start with atoms colliding along the Li (2s, fi; = 2) + Rb (5s, fr, = 2) channel all bound levels
corresponding to this channel will have positive values for Av. The same is true for the potential dissociation
alongthe Li (2s, fr;=1) + Rb (5s, frp = 2) hyperfine channel. Negative values Av necessarily have to be bound
levels of the potentials dissociating along the Li (2s, f;;= 1) + Rb (5s, fr, = 3) or the Li (2s, f;; =2) + Rb (5s,
fro = 3) hyperfine channels. In our case the binding energies are measured with respect to the Li (2s, f;; =2) + Rb
(58, frp = 2) channel, so the relevant atomic hyperfine energy needs to be added or subtracted in order to
calculate the binding energy measured with respect to different channels. To calculate the binding energy with
respectto Li (2s, fi;=1) + Rb (5s, frp, = 2) channel we subtract 0.803 GHz (the Li hyperfine splitting), to calculate
the binding energy with respect to the Li (2s, fi; = 1) + Rb (5s, frp = 3) channel we add 2.237 GHz (the difference
between Rb and Li hyperfine splitting) and to calculate the binding energy with respect to the channel Li (2s,
fLi=2) +Rb (5s, frp, = 3), we add 3.04 GHz (the Rb hyperfine splitting) to the observed values of Av (see table 4).
Finally, some discussion in relation with the assignments of the observed levels is pertinent. The presented
assignment shown in table 4 have been done by comparing the observed position of the peaks and the predicted
bound state energies (table 3). Deeper bound states have been observed in the current experiment, however they
are not correctly described by the present approach, and their assignment cannot be performed. Since these
states are deeper that the previous one, they could be explore part of the interaction potential that needs to be
described beyond the C4 coefficient, and therefore the approach presented will not be accurate enough. Another
reason would be that those states are associated to d-wave bound states, and these are beyond the approach
presented.

5. Summary and conclusions

The MQDT approach has been employed in two very different scenarios: Fano—Feshbach resonance description,
and assignment of the 2-photon PA spectra. MQDT in addition with the FT has been employed to fit the
observed experimental positions of the Fano—Feshbach resonances for ’Li®’Rb and °Li*’Rb. The s-wave
quantum defects associated with the triplet and singlet potentials are used as the fitting parameters. Then the
scattering lengths for triplet and singlet potentials have been obtained through the obtained quantum defects.
The resulting fit using MQDT turns out to be as accurate as one obtains by solving the coupled-channel
Schrodinger equation, but with much less numerical effort.

For 2-photon PA spectroscopy, MQDT is an excellent tool for the assignments of the observed spectra. The
capability of MQDT for calculating shallow bound states (dominant by the long-range tail of the interaction)
between coupled electronic states has been exploited. An outcome of this work is the assignments of our
experimentally observed 2-photon PA lines. MQDT may also used for calculating the scattering length
associated with the triplet and singlet electronic potentials, similar to our analysis of the Fano—Feshbach
resonances. This is something that will be addressed in a subsequent publication.
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