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Abstract
We investigate the behaviour of single-channel theoretical models of cold and ultracold collisions
that take account of inelastic and reactive processes using a single parameter to represent short-
range loss. We present plots of the resulting energy-dependence of elastic and inelastic or reactive
cross-sections over the full parameter space of loss parameters and short-range phase shifts. We
then test the single-channel model by comparing it with the results of coupled-channel calculations
of rotationally inelastic collisions between LiH molecules and Li atoms. We find that the range of
cross-sections predicted by the single-channel model becomes increasingly accurate as the initial
LiH rotational quantum number increases, with a corresponding increase in the number of open
loss channels. The results suggest that coupled-channel calculations at very low energy (in the
s-wave regime) could in some cases be used to estimate a loss parameter and then to predict the
range of possible loss rates at higher energy, without the need for explicit coupled-channel
calculations for higher partial waves.

1. Introduction

Elastic and inelastic or reactive collisions play a crucial role in cold atomic andmolecular gases [1, 2]. Elastic
collisions are used for cooling and coherent control of cold gases, whereas inelastic or reactive collisions remove
atoms ormolecules from traps and limit the lifetime of cold samples. Inelastic or reactive collisions have been
observed in thermal samples at temperatures as low as 200 nK [3], and cold collisions can also be studied using
merged [4] or decelerated [5] beams at collision energies E corresponding to tens ofmK to 1 K.

In relatively simple systems, such as pairs of alkali-metal atoms or light atom-molecule systems, it is feasible
to solve themany-dimensional Schrödinger equation directly using coupled-channelmethods.However, for
heavier andmore complex systems, the number of channels required for convergence is too large and coupled-
channelmethods become prohibitively expensive. In this regime, considerable success has been achievedwith
effective single-channelmethods that take account of short-range loss, whether inelastic or reactive, with a single
parameter. In particular, Idziaszek and Julienne [6], Kotochigova [7] andGao [8] have developed approaches
based on quantumdefect theory (QDT), which takes advantage of the fact that the short-rangewavefunction is
only weakly dependent on energy near threshold [9–11]. If the interaction potentialV(r) has an inverse power
dependence on the interspecies distance r at long range, = −V r C r( ) n

n
LR , the long-rangewavefunctionmay be

expressed in terms of the analytical solutions for the long-range potential [11, 12]. Themodel of Idziaszek and
Julienne [6] successfully explained the temperature dependence of reactive KRb+KRb collisions at temperatures
below 1 μK, andwas later extended [13] to handle the additional −r 3 dipole-dipole potential that exists when the
KRbmolecules are orientedwith an external electric field.More recently, Jachymski et al [14, 15] have extended
similarmodels up to the high-temperature limit, and used them to interpretmerged-beam experiments on
Penning ionization in collisions ofmetastableHewithAr [4].
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The single-channelmodels can be expressed in terms of two parameters. One of these describes the
probability that loss will occurwhen the particles reach short range, while the second describes a short-range
phase shift that characterizes a background scattering length for the interaction. In the limit of complete loss at
short range, the loss rate is independent of the background scattering length; this has been termed the ‘universal’
limit [6]. The purpose of the present paper is to undertake a systematic exploration of the behaviour of elastic
and loss cross-sections as a function of these two parameters and collision energy, and also to compare the
results of the single-channelmodel with full coupled-channel calculations on a prototype strongly coupled
system, based on rotationally inelastic collisions of LiHwith Li atoms.

2. Theory

The single-channelmodel used here assumes that loss occurs only at short range, and that flux that leaves the
incoming channel does not return. To calculate the probability of reaching short range, we use a single-channel
Schrödinger equation,

μ μ
ψ− + + + − = 
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V r

L L
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E r
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whereV(r) is the interaction potential, L is the partial-wave quantumnumber, and μ is the reducedmass of the
colliding pair.We approximate the potentialV(r) by its long-range form = −V r C r( )LR 6

6; this simplification
allows us to use the analyticQDT formalismofGao [11, 16], which accurately represents the behaviour of the
system across awide range of energy around threshold [17]. Equation (1) is conveniently rescaled by the van der
Waals energy and length scales μ= =r C r(2 ) 26 6
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where =r r rs 6, =U r V r E( ) ( )s 6 and ϵ = E E6. In the present case, = −U r r( ) 1s s
6.

We choose to use the travellingwave reference functions of section IIIC andDof [11]. These are solutions to
equation (2) that have incoming (−) or outgoing (+) character. Theymay be normalized in either the inner
region i ( →r 0s ) or the outer region o ( → ∞rs ),
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where ϵ=ks

1 2. Note that these differ fromGao’s definitions [11] by a constant factor of π π− e1 2 i 4. The
reference functions in the inner and outer regions are related by

+ =− + −f r f t f , (7)o (oi) o (oi) i

+ =+ − +f r f t f . (8)i (io) i (io) o

Equation (7) is interpreted as a wave −f o travelling from the outer region inwards, which is partially

reflected ( +r f(oi) o ) and partially transmitted ( −t f(oi) i ). Equation (8) is interpreted similarly for thewave +f i

travelling in the opposite direction. The complex coefficients t and r are functions of ϵ and L, which are readily
computed from expressions given in section IV of [11] andGao’sQDT functions ϵZ L( , )c [18, 19]. The
coefficients are related by

=r r , (9)(io) (oi)

=t t , (10)(io) (oi)

+ =r t 1. (11)(io) 2 (io) 2

The short-range physics ismodelled by the boundary condition

ψ ∼ +→ − +( )C f S f , (12)
r 0 i c is

2
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whereC is an arbitrary normalization constant and Sc is the short-range S-matrix. In a true single-channel
problem, Sc would be a complex number ofmagnitude 1, but to account for the loss offlux to other outgoing
channels we allow it to havemagnitude ∣ ∣ <S 1c .Wewrite

=
−
+

δS
y

y

1

1
e , (13)ic 2 s

⎛
⎝⎜

⎞
⎠⎟

where y is the loss parameter of Idziaszek and Julienne [6], so that y= 1 corresponds to complete loss at short
range and y=0 corresponds to no loss. The short-range phase shift δs may be related to the ‘background’3

scattering length a of [6],

δ π= + −a

ā
1 cot

8
, (14)s⎜ ⎟⎛

⎝
⎞
⎠

where = …a r¯ 0.477988 6 is themean scattering length ofGribakin and Flambaum [20]. This allows us tomap
the complete range of behaviours onto thefinite range δ π⩽ <0 s rather than the infinite range of =s a ā as
in [6].

The formulation in terms of ∣ ∣ = − +S y y(1 ) (1 )c and δs makes it obvious that the collisional properties
of the system are independent of δs (and hence of s) in the limit →y 1 (∣ ∣ →S 0c ).Wemake the usualQDT
approximation that Sc is independent of energy close to threshold, and also that it does not varywith partial
wave L [16].

We obtain the long-range S-matrix SL for partial wave L bymatching ψ r( )s , equation (12), to the usual
scattering boundary conditions,

ψ ∼ − −→∞ − +f S f( 1) . (15)
r L

L
o os

Again, SLwould be unitary in a true single-channel problembut here it can be sub-unitary. The relationship
between Sc and SL is given by sectionVIIB of [11] as
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whichmay be expanded as
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Equation (17) provides a clear physical understanding of the scattering process. It ismade up ofmultiple
pathways: reflection off the pure long-range potential; transmission inwards past the long-range potential,
followed by a single interactionwith the short-range and retransmission out past the long-range potential; then a
further series of termswhich involve repeated reflections off the long-range potential back towards short range.
This last group is responsible for shape resonances when r S(io) c is close to 1 and successive terms of the sum add
constructively. The resonances are damped if ∣ ∣ <S 1c ( >y 0). In the limit →S 0c the only elastic scattering is
reflection off the long-range potential, since allflux transmitted past the long-range potential is lost and not
reflected back out.

The total elastic and loss cross-sectionsmay both be expressed in terms of the elastic S-matrix elements,

∑σ
π

= + −
g

k
L S(2 1) 1 , (18)

L

Lel 2
2

∑σ
π

= + −( )g

k
L S(2 1) 1 . (19)

L

Lloss 2
2

For distinguishable particles, the symmetry factor g is 1 and the sum runs over all values of ⩾L 0; for identical
bosons or fermions, g is 2 and the sum runs over only even or only odd values of L, respectively.

3. Results of the single-channelmodel

Figures 1–3 show the elastic and loss cross-sections for selected values of the loss parameter y, as a function of the
short-range phase shift δs and the reduced energy E Ē, for distinguishable particles, identical bosons, and
identical fermions, respectively. Figures 4–6 show animations of the same quantities, with frames at every value
of y from0 (fully elastic) to 1 (the universal loss regime) in steps of 0.01. The energy scale μ= E a¯ (2 ¯ )2 2 is

stronglymass-dependent: for example, =E k¯ 61B mK forHe *+Ar [14] but only 97 μK forKRb+KRb [7].

3
The quantity awas termed a background scattering length in [6], but in the presence of closed channels itmay nevertheless contain

contributions fromFeshbach resonances.

3
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Weconsider first the case of distinguishable particles. At y=0 (figure 1(a)), low-energy scattering is dominated
by s-wave features. There is a large peak near δ π= 8s , which corresponds to infinite scattering length, and a
deep trough around δ π= 7 8s , which corresponds to zero scattering length. There is a set of sharp shape
resonances that curve towards their zero-energy positions: p-wave at δ π= 3 8s , d-wave at δ π= 5 8s , and
further partial waves at increments of π 4. Thus a shape resonance in partial wave +L 4 has the same zero-
energy position as that in partial wave L [21], e.g. an h-wave (L=5) shape resonance curves towards the same
zero-energy position as the p-wave (L=1) resonance. The plots are cyclic in δs with period π, so that the

Figure 1.Contour plots of the elastic (left) and loss (right) cross-sections for distinguishable particles as a function of reduced energy
E Ē and short-range phase shift δs for selected values of the loss parameter y.

4
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contours along the top edge of each plot are the same as those along the bottom edge. Itmay be noted that the
trough corresponding to zero scattering length curves upwards as a function of energy; this arises because of a
Ramsauer–Townsendminimum [22] that occurs in the s-wave cross-section for small negative values of the
scattering length.

There is by definition no loss cross-section for y=0; for y= 0.01 (figure 1(b)) there is very little loss except
close to the shape resonances: littleflux is lost in each interactionwith the short-range region, so it is only at a
shape resonance that there aremany interactions with the short-range region and loss becomes important.
Shape resonances cause visible features at least as high as L=11 in the plots for y=0 and 0.01.Note that there is a

Figure 2.Contour plots of the elastic (left) and loss (right) cross-sections for identical bosons as a function of reduced energy E Ē and
short-range phase shift δs for selected values of the loss parameter y.

5
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large peak in the s-wave loss near δ π= 8s , even though s-wave collisions cannot have shape resonances per se:
at low enough energies the long-range potential reflects outgoingflux evenwith no barrier, so that themultiple
interactionswith the short-range region that are characteristic of shape resonances can still occur.

As the loss parameter y increases from0, the features in the cross-sections broaden out and eventually
disappear, reaching the ‘universal loss’ regime described by Idziaszek and Julienne [6].Most of the features
described above are still visible at y=0.05, though the shape resonances are lower and do not persist to such low
energy.However, the features have largely washed out by y=0.25. The amplitude of variations in σloss as a
function of δs decreases steadily as y increases. It should be noted that, even though y=1 corresponds to

Figure 3.Contour plots of the elastic (left) and loss (right) cross-sections for identical fermions as a function of reduced energy E Ē
and short-range phase shift δs for selected values of the loss parameter y.

6
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complete loss at short range, it does not give themaximumpossible overall loss rate. Values of <y 1can
sometimes give even faster loss rates because of the possibility of resonant enhancement.

The results for identical bosons (figures 2 and 5) show similar features to those for distinguishable particles,
except that there are no odd-L shape resonances. However, the results for identical fermions (figures 3 and 6) are
visually very different, because of the lack of an s-wave background at low energy. The shape resonances (this
time for odd L only) are therefore evenmore prominent.

Many experiments use thermal samples. Figure 7 shows the rate constants for loss processes as a function of
temperature, for selected values of y, for distinguishable particles (left) and identical fermions (right). Themajor
features of the plots remain, but itmay be seen that some of the higher-energy structure is washed out by
averaging over kinetic energy. In particular, shape resonances due to partial waveswith >L 3 are barely visible.

4. Comparisonwith coupled-channel calculations

Most of the real collision systems of interest in ultracold physics aremultichannel in nature and have both shape
and Feshbach resonances. It is interesting to consider how far the single-channelmodel described here can
reproduce the results of full coupled-channel calculations in such systems. To explore this, we have carried out
full coupled-channel calculations onfield-free rotationally inelastic collisions in the systemLi+LiH. This is a
strongly coupled systemwith a highly anisotropic potential energy surface [23]. In previous work, we calculated
elastic and inelastic collision cross-sections of 7LiH+7Li with themolecules initially in the ground state and the
first rotationally excited state [24]. In the present work, we extend these calculations to consider LiHmolecules
initially in higher rotational states j, so that there aremany inelastic (loss) channels available. The calculations are
carried outwith theMOLSCATpackage [25], using the samemethods and basis sets for solving the coupled-
channels as described in [24]. Cross-sections are calculated by summing contributions frompartial waves
labelled by the total angularmomentum J; the sum converges by J=13 at collision energies up to 1 K for the
initial rotational states considered here.We use the potential energy surface from [23], except thatwe introduce
a scaling factor λ that allows us to sample different possible values of the short-range phase shift δs4.

Figure 8 shows the calculated elastic and total inelastic cross-sections for Li+LiH collisions for initial
rotational levels j=0, 3 and 6 at kinetic energies =E k 1B mKand 50 mKas the scaling factor λ is varied across
the range λ< <0.95 1.05. The length and energy scales for Li+LiH are =ā 16.2 Å and =E k¯ 24.5B mK, giving
a p-wave barrier height of 6.1 mK. Rotationally inelastic collisions are dominated by couplings at distancesmuch
smaller than ā. =E k 1B mK is in the s-wave regime, so the cross-sections for initial j=0 show very large peaks
and deep troughs. These correspond to poles and zeroes in the s-wave scattering length as successive atom-
diatombound states pass through threshold and cause Feshbach resonances. At =E k 50B mK, peaks and
troughs are still visible, but are less pronounced because of contributions fromhigher partial waves and the
overall −k 2 factor in the expressions for cross-sections [26].

Figure 4.Animations of contour plots of the elastic (left) and loss (right) cross-sections for distinguishable particles as a function of
reduced energy E Ē and short-range phase shift δs as the loss parameter y varies from0 to 1 (available in .mov and .pdf formats at
stacks.iop.org/njp/17/045019/mmedia).

4
In scaling the potential, we keep the long-range partfixed (equation (2) and table IV of [23]), and scale the remainder of the potential by a

factor λ. This ensures that the Van derWaals length and energy do not vary.

7

New J. Phys. 17 (2015) 045019 MDFrye et al

http://stacks.iop.org/njp/17/045019/mmedia


For successively higher initial j values, the number of inelastic channels increases and inelastic scattering
becomes progressively stronger. The poles in scattering length that occur for initial j=0 are replaced byfinite
oscillations that diminish in amplitude as the inelasticity increases [27]. The amplitude of the oscillations in the
cross-sections thus decreases as initial j increases, even in the s-wave regime.

The interaction potential of [23] has an estimated uncertainty of only 0.05%,which is unusually precise for
potentials from electronic structure calculations. In cases where the uncertainty is 1 to 5%,which ismore typical,
it is sufficient to spanmany oscillations in the cross-sections in a plot such as figure 8. Under these circumstances
it is notmeaningful to regard the results of scattering calculations on a single potential as predictions for the
physical system, and it is essential to understand the range of results thatmay be obtained across the
uncertainties in the potential [28, 29]. It is clear fromfigure 8 that the range of possible results is very large for
purely elastic collisions in the s-wave regime, but diminishes bothwhen loss is present (for initial >j 0) and
when there are significant contributions from several partial waves [26].

It is possible to extract values of the short-range phase shift δs and the loss parameter y from coupled-
channel results by inverting equation (16) for a particular channel. The lower (black) line infigure 9 shows the
short-range phase extracted from the coupled-channel results for initial j=0, L=0 across the range of scaling
factors λ considered. Feshbach resonances appear as an increase of π in δs over a small range of λ. There are 22
resonances of variouswidths across the range λ< <0.95 1.05, superimposed on a steadily increasing
background. Thewidths of the resonances are comparable to their spacings with respect to both energy and λ
scaling, so that even s-wave scattering is influenced by resonance effects formost values of λ. Itmay be noted that
the corresponding resonances in the long-range phase shift havewidths that are reduced near threshold [30] and

Figure 5.Animations of contour plots of the elastic (left) and loss (right) cross-sections for identical bosons as a function of reduced
energy E Ē and short-range phase shift δs as the loss parameter y varies from0 to 1 (available in .mov and .pdf formats at stacks.iop.
org/njp/17/045019/mmedia).

Figure 6.Animations of contour plots of the elastic (left) and loss (right) cross-sections for identical fermions as a function of reduced
energy E Ē and short-range phase shift δs as the loss parameter y varies from0 to 1 (available in .mov and .pdf formats at stacks.iop.
org/njp/17/045019/mmedia).
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are strongly energy-dependent. By contrast, the resonances in the short-range phase shift havewidths that are
only weakly energy-dependent and correspond to thewidths of the features in low-energy cross-sections.

In amultichannel system, the scattering for >L 0 is not fully determined by the value of δs obtained for
L=0. The upper (red) line infigure 9 shows the short-range phase shift obtained by inverting equation (16) for
initial j= 0, L=1. All the resonances that were present for L=0 appear again, shifted to slightly higher λ and
oftenwith somewhat different widths.However, there are 24 additional resonances. The variation of δs with L
prevents the single-channelmodel giving accurate energy-dependent cross-sections for a specific interaction

Figure 7.Contour plots of the thermally averaged loss rate for distinguishable particles (left) and identical fermions (right) as a
function of reduced temperature k T ĒB and short-range phase shift δs for selected values of the loss parameter y. The loss rate is
scaled by μ=K ah¯ ¯ .

9
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potential, even for initial j=0. In addition, for >j 0 the value of y obtained by inverting equation (16) is a fast
function of λ, even in the s-wave regime, and is also L-dependent. Nevertheless, it is useful to compare the
distribution of elastic and inelastic cross-sections obtained from coupled-channel calculations (as λ is varied
over the range shown in thefigures) with that obtained from the single-channelmodel (as δs is varied from0 to π
for a given value of y). Figure 10 shows this comparison for themean andmean ±1 standard deviation of σlog

10 el

as a function of collision energy for the case of initial j=0,where there are no inelastic channels, so y=0. Itmay
be seen that the single-channelmodel (with no adjustable parameters whatsoever) quite accurately reproduces
the energy-dependence of both themean and standard deviation, despite the fact thatmost of the structure in
figure 8 comes fromFeshbach resonances rather than shape resonances.

Figure 8.Elastic (left) and total inelastic (right) cross-sections for Li+LiH collisions for initial rotational levels j=0 (black), 3 (red) and
6 (blue) at kinetic energies corresponding to =E k 1B mK(top) and 50mK (bottom) as a function of the scaling factor λ. Note the
steadily decreasing amplitude of oscillations as initial j increases.

Figure 9. Short-range phase shift extracted from the coupled-channel results at =E k 1B mK, as a function of scaling factor λ, for
initial j=0, L=0 (black) and initial j=0, L=1 (red).

10
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For higher initial j, where inelastic scattering is possible, we need to choose a value of y before comparing the
coupled-channel and single-channel results. The upper panels offigure 11 show themean andmean ± 1
standard deviation for σlog el and σlog loss for initial j=6 at =E k 1B mK fromcoupled-channel calculations
(horizontal lines), comparedwith those calculated from the single-channelmodel as a function of y (converging
lines). Itmay be seen that ≈y 0.54 approximately reproduces the low-energy distributions. The lower panels of
figure 11 show the corresponding plots at 50 mK; the single-channelmodel with y=0.54 still reproduces the
distribution of σloss fairly well, and is also qualitatively correct for σel, though it somewhat overestimates the
standard deviation in this case. The full energy-dependence for y=0.54 is shown in the upper panels offigure 12;
there are quantitative differences, but the single-channelmodel is nevertheless remarkably accurate for the
distribution of both elastic and inelastic cross-sections over the range of energies shown. For comparison

Figure 10.Mean values andmean ±1 standard deviation of σlog (10 el/Å
2) from the single-channelmodel with y=0 (red), compared

with the corresponding quantities from coupled-channel calculations for Li+LiH collisions with initial j=0 (black).

Figure 11.Mean values and andmean ± 1 standard deviation of σlog (10 el/Å
2) (left) and σlog (10 loss/Å

2) (right) from the single-channel
model (red) for collision energies =E k 1B mK(top) and 50 mK (bottom) as a function of y comparedwith the corresponding
quantities from coupled-channel calculations for for Li+LiH collisions with initial j=6 (black horizontal lines). The vertical grey lines
indicate y=0.54, which gives the best agreement between the single-channelmodel and coupled-channel calculations for j=6 at low
energy.

11
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figure 12 also shows the classical Langevin cross-sectionmultiplied by the reaction probability
= +P y y4 (1 )re 2 [14].
The agreement between the coupled-channel calculations and the single-channelmodel does deteriorate

somewhat for lower values of initial j. This is to be expected, because these cases have fewer open loss channels
and it is thereforemore likely thatflux that is initially lost from the incoming channel will subsequently return to
it, violating one of the assumptions of the single-channelmodel. The lower panels offigure 12 show the case of
initial j= 3,where the low-energy distribution is reasonably well described by y=0.33. In this case, however, the
higher-energy cross-sections calculated from the single-channelmodel deviate somewhat from the coupled-
channel results, particularly for the elastic cross-sections. Nevertheless, qualitative agreement remains.

We have verified that the agreement between the coupled-channel calculations and the single-channel
model improves steadily from initial j=1 to 6, as the number of open loss channels increases. Initial j=1 is a
special case. In the presence of inelastic scattering, individual Feshbach resonances exhibit both a peak and a dip
in the real and imaginary parts of the complex scattering length, and hence in the loss cross-section [27].When
there is a single dominant loss channel, the dip in the s-wave cross-section can be very deep [31] (and reaches
σ = 0loss when there is only one loss channel). This behaviour skews the distribution of σlog10 loss at the low end,
particularly for initial j=1. For higher initial j, the effect is reduced by additional loss channels, and at higher
energies it is reduced by contributions fromhigher partial waves.

5. Conclusions

Single-channelmodels of inelastic and reactive scattering, based onQDT and a single parameter representing
short-range loss, provide a powerful approximate approach to understanding complicated collision processes at
low kinetic energy.We have investigated how thesemodels behave over the full parameter space of kinetic
energy, short-range phase shift (whichmaps to background scattering length) and short-range loss parameter y.
We have presented animated contour plots that help to understand how the sensitivity of cross-sections to the
background scattering length decreases both as the loss probability increases andwith increasing kinetic energy.

Figure 12.Mean values and andmean ± 1 standard deviation of σlog (10 el/Å
2) (left) and σlog (10 loss/Å

2) (right) from the single-channel
model (red) and coupled-channel calculations (black) for Li+LiH collisions with initial j=6 (top) and j=3 (bottom) as a function of
collision energy. The single-channel calculations use y=0.54 for j=6 and y=0.33 for j=3. The blue lines show the classical Langevin
cross-sectionmultiplied by the reaction probability = +P y y4 (1 )re 2.
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Wehave also carried out coupled-channel calculations on rotationally inelastic Li+LiH collisions, as a
prototype strongly coupled collision system, to test the results of the single-channelmodel. The low-energy
elastic and total inelastic (loss) cross-sections are very sensitive to the short-range potential, and oscillate very
fast as a function of a potential scaling factor λ. However, the amplitude of the oscillations decreases as the initial
rotational quantumnumber j increases, corresponding to an increasing number of loss channels (and increasing
y). The amplitude also decreases as the collision energy increases. The energy dependence of the distribution of
cross-sections σ, characterized by themean and standard deviation of σlog10 with respect to variations in the
potential, is well reproduced by the single-channelmodel for larger values of initial j. For small j the single-
channelmodel is less accurate but still qualitatively correct.

The present results elucidate the range of behaviour that can be expected for cold elastic and inelastic (or
reactive) collisions in complex systems. They also demonstrate that single-channelmodels with a single short-
range loss parameter can correctly reproduce the qualitative features of full-coupled channel calculations in
systemswithmany open channels, including the dependence on collision energy. The quality of agreement
improves as the strength of the short-range loss increases. However, specific systems nevertheless show strong
sensitivity to the details of the short-range interaction potential, which disappears only in the limit of complete
short-range loss.

The present results suggest a remarkable possibility for inferring the behaviour of cold collisions at higher
temperatures from calculations in the s-wave regime. For a systemwith enough open channels to bewell
described by a single-channelmodel, it would be possible to perform coupled-channel calculations for incoming
L=0only and use the results (as a function of a potential scaling factor λ) to determine a short-range loss
parameter y. The single-channel approach could then be used to predict the range of possible loss rates at higher
energy, without the need to carry out explicit coupled-channel calculations for higher initial L.
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