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Abstract

We show that congruent electric, magnetic and non-resonant optical fields acting concurrently on a
polar paramagnetic (and polarizable) molecule offer possibilities to both amplify and control the
directionality of the ensuing molecular states that surpass those available in double-field combinations
or in single fields alone. At the core of these triple-field effects is the lifting of the degeneracy of the
projection quantum number M by the magnetic field superimposed on the optical field and a
subsequent coupling of the members of the ‘doubled’ (for states with M # 0) tunneling doublets due
to the optical field by even a weak electrostatic field.

1. Introduction

Interactions with external electric, magnetic or optical fields provide the chief means to manipulate the
rotational and translational motion of neutral gas-phase molecules [1]. These interactions create directional
states in which the molecular multipole moments become non-vanishing in the laboratory frame so that space-
fixed fields can act upon them. Directional states are at the core of numerous applications in molecular physics,
such as orientation/alignment of molecules [2-30], deflection and focusing of molecular translation [31-34],
molecular trapping [35], attaining time-resolved photoelectron angular distributions [36—38], diffraction-
from-within [39], separation of photodissociation products [40—42], deracemization [43], high-order
harmonic generation and orbital imaging [44—50], quantum simulation [51, 52] or quantum computing
[53-59].

Herein, we examine directional states created by a triple-combination of congruent (parallel or antiparallel)
electric, magnetic and non-resonant optical fields acting concurrently on linear polar paramagnetic (and
polarizable) molecules. While the electric and magnetic fields interact, respectively, with the body-fixed electric
and magnetic dipole moments of the molecule, the non-resonant optical field couples to the molecular
anisotropic polarizability tensor. The molecular effects generated by the double-field combinations (electric and
magnetic, electric and optical, magnetic and optical) are all sui generis and amount to more than the sum of their
parts. And so does the triple-field combination (electric and magnetic and optical) which not only offers a high
efficiency and flexibility in amplifying the directionality of molecular states but is also of fundamental interest
per se, as supersymmetry [60—-64] as well as monodromy and quantum chaos [65, 66] lurk behind the
combined-field effects.

Polar paramagnetic molecules are of potential importance for many-body physics simulations, studies of
crossings of Stark and Zeeman molecular energy levels, and quantum computing. Among the most prominent
examples of linear polar paramagnetic molecules are the ubiquitous 2, X, and I linear species, such as StF,
SO, and OH. Heteronuclear diatomics or larger polar molecules that contain a rare-Earth atom often exhibit
much higher orbital and spin electronic angular momenta (e.g., CeO is a @, molecule in its electronic ground
state) and, therefore, correspondingly larger magnetic dipole moments. The recently discovered LiHe van der
Waals molecule [67, 68], a polar and paramagnetic halo species, would also benefit from the study of its
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properties in combined fields, as this would likely reveal additional particulars about its structure and the
dynamics of its formation. A survey of linear polar paramagnetic molecules along with their key properties is
available in table 3 of [9]. However, our treatment here is generic, making use of reduced molecular interaction
parameters, and therefore applicable to any polar paramagnetic and polarizable molecule in a given electronic
state. For the purposes of the present study, we chose molecules in a 2X state as a prototype.

Directional states of molecules may exhibit either orientation (visualized as a single-headed arrow librating
about a space-fixed axis) and/or alignment (visualized as a double-headed arrow librating about a space-fixed
axis). The more directional the state, the tighter the librational amplitude of the arrow and the more complete
the projection of the corresponding dipole (whether permanent or induced) on the space-fixed axis.

Since oriented states may only be of indefinite parity—otherwise they would violate the parity selection rule
[69]—arecipe for creating oriented states is to mix states of opposite parity. The coupling—or hybridization—
of opposite parity states can be generally achieved by the electric dipole interaction, which is the more effective in
coupling the opposite-parity levels the closer they lie to one another. Close-lying opposite parity states can be
prepared for large classes of linear molecules by either optical or magnetic fields. In our previous work as well as
that of others, it has been shown that, for linear molecules, the opposite-parity states amenable to facile electric-
dipole coupling are either the quasi-degenerate members of the tunneling doublets created by the induced-
dipole interaction with a non resonant optical field (combination of electric and optical fields)
[4,5,16,21,22,30] or the intersecting opposite-parity Zeeman levels that become exactly degenerate at their
intersection points (combination of electric and magnetic fields) [9, 10,70, 71].

Herein we show that a magnetic and optical double-field interaction with a polar paramagnetic molecule
may create near-degeneracies of additional levels that can be easily coupled by even a weak electric field
(magnetic and optical and electric triple-field combination). Thereby, the triple-field combination could, for
instance, enable fast switching of dipolar orientation and other dynamical effects that are not availablein a
double magnetic and electric or optical and electric field combinations alone (not to speak about the single
fields). At the core of these novel triple-field effects is the lifting of the degeneracy of the projection quantum
number M by the magnetic field superimposed on the optical field and a subsequent coupling of the members of
the ‘doubled’ (for states with M # 0) tunneling doublets due to the optical field by a weak electrostatic field.

This paper is organized as follows: In section 2 we introduce the rotational Hamiltonian of a X polar
molecule as well as its matrix representation in the Hund’s case (b) basis set. In sections 2.1-2.3 we present, in
turn, the single-field Hamiltonians for the electric, magnetic, and optical potentials. In section 2.4, we present
the full Hamiltonian for the electric and magnetic and optical triple-field interaction. In section 3 we present and
discuss the results of our calculations of the eigenproperties of the partial Hamiltonians as well as of the full
triple-field combined Hamiltonian. Section 4 surveys and summarizes our results. The appendix lists the key
matrix elements used in the calculations, describes the procedure developed to assign the states obtained by the
diagonalization of the Hamiltonian matrix, and lists the conversion factors needed to evaluate the dimensionless
parameters used throughout the paper in terms of customary units.

2. Rotational structure of a polar “X molecule in combined electric, magnetic and optical

fields

The phenomenological field-free rotational Hamiltonian of a 2X molecule is given by [72]
Hy=BN?+yN-S, (D

where N and § are, respectively, the rotational and electronic spin angular momenta, B = % is the rotational
constant, with I the molecule’s moment of inertia in a given vibrational state hosted by the 2X electronic state,
and y is the spin-rotation coupling constant. Hamiltonian (1) neglects nuclear spin as well as the (small)
magnetic moment arising due to the rotation of the molecule.

While for a 2X state the electronic spin angular momentum S = %, the orbital electronic angular

momentum is identically zero and so is the spin—orbit coupling. A %X state thus exhibits a Hund’s case (b)
coupling between the rotational and electronic angular momenta [72], with the projections of the total and spin
electronic angular momenta on the molecular axis (an axis of cylindrical symmetry) Q = X = %, see figure 1.

The Hund’s case (b) basis functions are an equally weighted linear combination of Hund’s case (a) basis
functions, each a product of a symmetric top wave function

I, @ M) = (~1)2 | %MM,_Q 0, 4, 2) 2)
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Figure 1. Definition of Euler angles 0, ¢, y describing the rotation of the molecule-fixed coordinates x, y, zwith respect to the space-
fixed coordinates X, Y, Z for a diatomic molecule depicted as a bar-bell. The green axis is the line of nodes, perpendicular to both z
and Z. Also shown are the rotational, N, electron spin, S, and total, J, angular momenta as well as the projections Mand 2 = X of J
on the space- and body-fixed axis.

and a spin function

a5+2ﬁ5—2
S, Z) = 3
5 %) JEE+ DS - 2! ¥

with ] = N + S the total (rotation and electron spin) angular momentum quantum number, M and £2 the
projections of the total angular momentum on, respectively, the space-fixed Z-axis and the body-fixed z-axis,
91[\/1,!2 (@, ¢, y) the Wigner matrix, with 6, ¢, y the Euler angles, and «a, f the spin functions. Thus for a 2y state

S = %), there are two types of Hund’s case (b) basis functions

1 1 1 1
(| N+ = M|=—|S =), L M)+ |S,——)]|], -2, M 4
wfv3om) =l [s. 3 e« [s. -2} - @

pertainingto ] = N + %,with parity (—1)N. The corresponding eigenenergies are
1
E+(N+ E,M) =BN(N+1) + %N, (5)
1

E_(N—E,M)=BN(N+1)—§(N+1). (6)

The + states of a 2 molecule are conventionally referred to as F; (when ] = N + %) andF, (when J = N — %).

Both Jand Nbut not £2 are good quantum numbers for a field-free 2% molecule.

2.1.Interaction with an electric field
The interaction potential for alinear molecule with an electric dipole moment ,, along the molecule-fixed z-
axis subject to an electrostatic field &g (a Stark field) defining a space-fixed Z-axis, see figure 2, is given by

Vel = —Bp, cos 6, (7)
where
He €s
ﬂel = eB (8)

is a dimensionless parameter characterizing the strength of the Stark interaction. We note that the attainable
external electric field &g is much weaker than the internal electric field produced by the molecule’s constituent
electrons and nuclei and thus its effect on the electronic structure of the molecule is negligible. In what follows
we will deal solely with the effect of the external fields on the molecular rotational structure.

The cos 6 operator (arising from the direction cosine matrix, see appendix) mixes Hund’s case (b) basis
functions with the same M but with N’s that differ by £1 and thus have opposite parities. As a result, the states
created by the Stark interaction are of indefinite parity and N (and J) cease to be good quantum numbers. The
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Z

Figure 2. An electrostatic field &5 directed along the space-fixed Z-axis acting on a polar >5*+1X molecule with an electric dipole
moment y, along the molecule-fixed z-axis. Also shown are the rotational, spin, and total angular momenta N, S, and J as well as the
polar angle @ between the space- and molecule-fixed axes and the azimuthal angle ¢ uniformly distributed about the Z-axis. See text.

H
A

Z

Figure 3. A magnetic field H directed along the space-fixed Z-axis acting on a >*1% molecule with a magnetic dipole moment g,
along the electronic spin vector S. Also shown are the rotational and total angular momenta N and J as well as the polar angle 6
between the space- and molecule-fixed axes and the azimuthal angle ¢ uniformly distributed about the Z-axis. See text.

only good quantum number is the projection M of J on the Z-axis. N and ] can, nevertheless, be used as adiabatic
labels of the states in the field, in which case they are furnished with a tilde, [N, J, M; 5, — 0) — |N, J, M).

2.2. Interaction with a magnetic field
The interaction potential for a 2~ molecule subject to a magnetic field H (a Zeeman field) defining a space-fixed
Z-axis, see figure 3, is given by

Viu=—p,H = B, Sz, 9

where

£
Ay

(10)

T
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Figure 4. A nonresonant optical field ¢ polarized along the space-fixed Z-axis acting on a polar 25*1% molecule with parallel and
perpendicular components of the molecular polarizability ¢ and a with respect to the molecular z-axis. Also shown are the
rotational, spin, and total angular momenta N, S, and J as well as the polar angle 6 between the space- and molecule-fixed axes and
the azimuthal angle ¢ uniformly distributed about the Z-axis. See text.

with g, = g the electronic magnetic dipole moment of the %X molecule, g, = 2.0023 the electronic
gyromagnetic ratio and y ; the Bohr magneton.

The S, operator couples Hund’s case (b) basis functions with the same M but with N's that are either the
same or differ by 2 and hence have the same parity. The selection rule on N moreover ensures that the
Hamiltonian matrix in the Hund’s case (b) basis for the Zeeman interaction of a 2% molecule factors into blocks
that are no greater than 2 X 2, rendering the corresponding Zeeman energy at most quadratic in H. Apart from
M, also parity (—1)N is a good quantum number.

2.3. Interaction with an optical field

As for any linear species, the polarizability tensor of a 2X molecule is anisotropic, with the principal component
along the molecular axis exceeding that perpendicular to the axis, ¢ > a;. When subject to an electric field &1 of
an electromagnetic wave of intensity J linearly polarized along the space-fixed Z- axis, figure 4, whose
oscillation frequency is far removed from any molecular resonance, the molecule undergoes an interaction given
by the potential

Vopt = =Bl cos* 6 — Br, (11)
where
Hopt =My — M1 (12)
and
ma = %7 (13)
with
J= isf. (14)

The V,, potential is a double-well potential with two equivalent minima at § = 0 and 180°, separated by an
equatorial barrierat § = % Asaresult, all states bound by V. occur as doublets, split by tunneling through the
equatorial barrier. The cos?  operator of V,, hybridizes free-rotor states of same parity and so the states created
by Vi, are of definite parity, given by (— 1)/. The members of any of the tunneling doublets have same M but J's

that differ by £1 and thus are of opposite parity. The tunneling splitting AE; (nopt ) « exp (—110%19t ), see [73].

5
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Z

Figure 5. Congruent electrostatic, magnetic and optical fields &5, H, and ¢ directed along the space-fixed Z-axis acting on a polar
25+1% molecule with body-fixed electric and magnetic dipole moments ,, and y,, and polarizability components @ and a . Also

shown are the rotational, spin, and total angular momenta N, S, and J as well as the polar angle & between the space- and molecule-
fixed axes and the azimuthal angle ¢ uniformly distributed about the Z-axis. See text.

Note that here 7, = Nopt = 0.

~
=

3/2,2

Hel

10

15

Figure 6. Dependence of the eigenenergies of a polar 2% molecule on the permanent electric dipole interaction parameter 7,,. F; and
F, levels are shown, respectively, by dashed and full lines. Red and blue curves pertain, respectively, to states with | = % and ] = 2.

2.4. Interaction with congruent electric, magnetic, and optical fields

In the congruent electric, magnetic, and optical fields, the potential is given by

Vel,m,opt = Vel + Vm + Vopt

(15)
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<cost>

<f)500>

J=3/2 IMI=3/2

J=3/2 |M|=1/2

<cosf>

<cost>

J=122 |M=172

Hel

Figure 7. Probability densities, orientation and alignment cosines of a 2% molecule as functions of the permanent electric dipole

interaction parameter 7. Values pertaining to the F; and F, states are shown, respectively, by dashed and full lines. Blue and red
curves pertain, respectively, to the left (orientation) and right (alignment) ordinate. Note that here 7,

= ”opl =0.

and the corresponding Hamiltonian becomes

Hel,m,opt = HO + vel,m,opt- (16)
The molecular axis, z, angular momenta, J, N, § and the dipole moments, y, y4,, and polarizability
components, ), & as well as the space-fixed Z-axis are shown in figure 5.

By dividing Hamiltonian (16) through the rotational constant B and making use of equations (1), (7), (9),
and (11), we obtain the reduced Hamiltonian

Hel,m,opt _
5 =
=N>+y'N S — 1y c0os 0 +1,,Sz = 1, 08>0 — 1, (17)
withy’ = %.
The eigenfunction of the triple-field Hamiltonian (17) can be written as
w=J, N, M; ng 1, nopt> = Y c/SM I K, M)[S, Z) (18)
.z
with a normalization
S
|c JEMIET = (19)
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J, N J, N
4x | /3/2, 1 i
32,2 |
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3, 1\ 32,2
Qn 2 — 12,0
E \
O 1 I 12,1
—2r \\1/2. o T
M:*l/‘2 ) M=1/2 ‘ ‘
0 2 4 0 2 4
Hm Hm

Figure 8. Dependence of the eigenenergies of a polar 2% molecule on the magnetic dipole interaction parameter 7,,. F; and F, levels
are shown, respectively, by dashed and full lines in panels pertaining to signed values of the good quantum number M. Red and blue
curves pertain, respectively, to states with J= % and | = % Note that here 7, = Nopt = 0.

The integral of the eigenfunction’s square over the spin variables

£0, 6,0 =Dw'w (20)
S

simplifies to

FO b= ciamzcpms(—1MK
M, X
J MLx
(2]+ 1)(2]’ + 1)
6472
X Dy (05 s )D oy _x (0, b, 1) 55,5 (21)

X

In order to visualize the directional properties of the molecular states created, we present probability
distributions of the spatial variables, 0, ¢, as polar plots of f (8, ¢, y = 0).

3. Results and discussion

The eigenenergies and eigenvectors of Hamiltonian (17) were obtained by numerical diagonalization of the
matrix representation of the Hamiltonian in Hund’s case (a) basis. For collinear fields, considered here, M isa
good quantum number and so the Hamiltonian matrix takes a block-diagonal form for different values of M.
For each M, the block was truncated at J = = to ensure the convergence of eigenvalues and eigenvectors. This
leads to formation of block matrices of rank 30. Each of these blocks was diagonalized separately. The
diagonalization was carried out using the Armadillo C++ linear algebra library [74].

In order to track which state is which as the interaction parameters 7, 1,,, and 71, were varied, a procedure
termed adiabatic following was developed. Instead of looking at the dependence on the interaction parameters of
the components of the eigenvectors, we monitored the scalar product of the states before and after a (small)

8
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Figure 9. Probability densities, orientation and alignment cosines of a X molecule as functions of the magnetic dipole interaction
parameter 7,,. Values pertaining to the F; and F, states are shown, respectively, by dashed and full lines. Blue and red curves pertain,
respectively, to the left (orientation) and right (alignment) ordinate. Note that here 5, = 1, = 0.

change of the interaction parameter. The scalar product was calculated between a given state at the initial value of
the interaction parameter(s) and all the other states at the altered value of the interaction parameter(s). The
maximum of the scalar product was then found and used to identify the state that makes the smallest angle with
the given state.

All the calculations below were carried out for a generic X molecule with a value of the reduced spin-
rotation constant ' = y/B = 0.41 (which pertains, e.g., to the NaO molecule in its A 2¥ state [75]).

3.1. Single-field effects

3.1.1. Pure Stark interaction

The Stark potential, equation (7), splits each J level into | + % states with different values of | M | but does not

undo the +M degeneracy. Figure 6 shows the dependence of the eigenenergies of the lowest six states on the

permanent electric dipole interaction parameter #,;, which is proportional to the electric field strength. Note

thatat zero field, the energy levels are given by equations (5) and (6). All Stark states become high-field seeking

(i.e., their eigenenergy decreases with increasing field strength) at sufficiently high field strengths. However, ata
MZ

low field, where the Stark potential merely hinders molecular rotation, Stark states with 7D < % are first

high-field seeking (i.e., their eigenenergy increases with increasing field strength), as exemplified by the

IJ = %, N=1,|M|= %; ngyand|] = %, N=2,|M|= %; 1) states. This behavior results from the tilt
angle of the angular momentum (approximately conserved at low field strengths) with respect to the field vector
(space-fixed Z-axis). When the angular momentum is nearly perpendicular to the field vector, the molecule acts
like a planar rotor and spends most of its time oriented oppositely to the direction of the Stark field, where the
rotor-fixed electric dipole moment interacts with the field repulsively. Once the field strength becomes sufficient
for the Stark potential to confine the molecular rotation and convert it into libration about the field vector, the
body-fixed dipole gets oriented along the field vector whereby the Stark interaction becomes attractive.

9
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Figure 10. Dependence of the eigenenergies of a polar 2X molecule on the anisotropic polarizability interaction parameter Nope- Frand

F, levels are shown, respectively, by dashed and full lines in panels pertaining to different values of the good quantum number |M |.
Red and blue curves pertain, respectively, to states with | = % and ] = % Note thathere 1, = 7,, = 0.

Figure 7 shows the orientation and alignment of the lowest six states as a function of #,;. The orientation and

alignment of the molecular axis is characterized, respectively, by the expectation values {cos 8) and (cos* 8). In
addition, the directionality of the states and its variation with field strength is visualized by the polar diagrams
displaying, at intervals, the probability density, equation (22). In these polar diagrams and in those that are to
follow below, the full range of the rainbow always corresponds to the full range of the probability. The absolute
directionality of the states is reflected in the shape of the polar plots and the plotted values of the alignment and
orientation cosines.

As the molecule becomes oriented in the +Z direction, the lower lobe of the probability distribution
becomes smaller and the upper lobe larger. At high electric field strengths the lower lobe is hardly visible. For a

given J and N, states with |M | = J have the lowest energy and exhibit the highest orientation. We note that, by
A(E/B)
on,

the Hellmann-Feynman theorem, {cos 8) = — ,and so one can glean this key measure of directionality

el

from the slopes of the Stark energies.
Figure 7 also illustrates the variation of the directionality of the |J = %, N=1,|M|= %; 1) and

IJ= %, N=2,|M|= %; 1,1 ) States, i.e., the ‘wrong-way’ orientation at low field strengths and its conversion to
the ‘right-way’ orientation at high field strengths, as described above.

Aless intuitive effect of the electric field on the polar 2% molecule is a transfer of the probability density from
rotational to spin angular momentum, as reflected by the increase of the size of the polar plots.

3.1.2. Pure Zeeman interaction
The Zeeman potential, equation (9), undoes the + M degeneracy and splits each J level into 2] + 1 states with
different signed values of M.

Figure 8 shows the dependence of the eigenenergies of a 2X molecule for the lowest twelve states on the
magnetic dipole interaction parameter #,,, which is proportional to the magnetic field strength. The
eigenenergies are linear in 7,, for states with M = +J (so called stretched states) and at most quadratic for other
states. In the strong-field limit, F; states are low- or high-field seeking depending on whether M is positive or
negative, whereas F), states are all high-field seeking. In the strong-field (Paschen—Back) limit, the electron spin
and the rotational angular momentum uncouple and the dependence of the Zeeman levels on the magnetic field
strength becomes % ~ Mgn,, where Mg = i% is the projection of the spin angular momentum § on the Z-axis.

10
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Figure 11. Probability densities, orientation and alignment cosines of a 2X molecule as functions of the anisotropic polarizability
interaction parameter 7,,,. Values pertaining to the F, and F; states are shown, respectively, by dashed and full lines. Blue and red
curves pertain, respectively, to the left (orientation) and right (alignment) ordinate. Note that here 5, = 7,, = 0.

E,—E_

The Paschen—Back uncoupling sets on at 7, > = Y (N + %), i.e,aty, % 1forthemolecular example

considered.

Since parity, (1), and M are good quantum numbers, the numerous crossings of the Zeeman levels that
come about for a 2X molecule are genuine. Of particular interest are crossings of levels with same M but opposite
parity, see section 3.2.2. We note that it is the Paschen—Back effect that precludes the occurrence of avoided
crossings of the 2% Zeeman levels [9, 10].

Figure 9 displays the directional properties of a 2X molecule subject to a magnetic field. Since a magnetic
field cannot orient the molecular axis, the orientation cosine vanishes identically. However, the axis can be
aligned. The alignment cosine, concurrent for a given state with the expectation value of the magnetic dipole
moment [10], increases/decreases monotonously with #,, only for the stretched states with M < 0/M > 0,

while for the rest it varies between ‘wrong-way’ (less than field-free value) and ‘right-way’ (more than field-free
value) alignment. In the Paschen—Back limit, the alignment tends to a constant value.

3.1.3. Pure polarizability interaction with an optical field

Like the Stark potential, equation (7), the anisotropic polarizability interaction with a nonresonant optical field,

equation (11), splits each J levelinto | + % states with different values of | M | but does not undo the + M
degeneracy.

Figure 10 shows the dependence of the eigenenergies of the lowest six states of a 2X molecule on the
interaction parameter 7., which is proportional to the optical field intensity J . One can see the formation of
the opposite-parity tunneling doublets with increasing 7., which become quasi-degenerate at high fields. Note

that the members of a given tunneling doublet have same J. In contrast to the Stark interaction, where for a
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Figure 12. Dependence of the eigenenergies of a 2% molecule on the optical field strength parameter 1lopy in the presence of an electric
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number | M |. Red and blue curves pertain, respectively, to states with J = % and J = % Note thathere 5, = 5and 7, = 0.

given J, states with lower | M | have a higher eigenenergy, the eigenenergy of states created by the anisotropic
polarizability interaction increases with increasing | M |.

Figure 11 displays the directional properties of a 2X molecule subject to an optical field. The optical field
does not orient the molecule but greatly enhances its alignment. Note that the alignment of the members of a
given tunneling doublet becomes the same as their eigenenergies become exponentially quasi-degenerate as

xexp (—r]jpt ). This behavior follows from the Hellmann—Feynman theorem, according to which
aE
(cos? 0) = —#. We note that the alignment of the state that becomes the higher member of a tunneling

opt
doublet (and so has a higher value of N') always exceeds that of the lower member (with alower value of N).
Interestingly, for a pair of Stark states with same J, it is the one with lower N that has the larger alignment of the
two. The optical field leads to a considerable transfer of the probability density from the rotational to the spin
angular momentum, as reflected by the increase in the size of the polar plots with increasing interaction
parameter Nopt-

3.2.Double-field effects
In this section we will provide a summary of how two collinear fields affect a polar and polarizable %X molecule.

3.2.1. Congruent electric and optical fields
Figure 12 shows the dependence of the eigenenergies of the lowest six states of a 2X molecule on the interaction
parameter 7, in the presence of an electric field such that the corresponding interaction parameter 7, = 5.
Compared with figure 10, we see that the opposite-parity tunneling doublets that were quasi-degenerate in the
absence of the electric field have been readily split due to the coupling by the electric dipole interaction. The
tunneling splitting in the combined fields at a given 7, is proportional to 7, AE; (1, = const., 1) o 1
[5,62].

Figure 13 displays the directional properties of a 2X molecule subject to an optical field in the presence of an

electric field. These exhibit quite a few distinct features, such as the sudden back-and-forth variations of the
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Figure 13. Probability densities, orientation and alignment cosines of a 2X molecule as functions of the anisotropic polarizability
interaction parameter 71, in the presence of an electric field. Values pertaining to the F, and F, states are shown, respectively, by

dashed and full lines. Blue and red curves pertain, respectively, to the left (orientation) and right (alignment) ordinate. Note that here
fq = 5and 5, = 0.

orientation and alignment cosines with 7,,,,. Most of these features are connected with the mutual ‘repelling’ of
the levels within a given tunneling doublet—which lends the corresponding states opposite-way orientation—
and with intersections of those levels with levels of same | M | but pertaining to different tunneling doublets.

So, for instance, like its tunneling-doublet partner, the |J = %, N=1,|M|= %) state is initially right-way
oriented but flips its orientation, at Nopt & 23, duetoits interaction with the | J= %, N=1,|M|= %) state.
This is reflected in the polar plots of the probability densities as well in that the upper lobe vanishes and the lower
lobe becomes huge, portending the wrong way orientation of the molecular state. Likewise, the
\J= %, N=1,|M|= %) state, which is initially wrong-way oriented, flips its orientation at 7, ~ 23 duetoiits
interaction with the |[J = %, N=1,|M|= %) state and acquires a right-way orientation. The
]
J

%, N=2,|M|= %) state undergoes the flip twice, whereby the first flip is due to the interaction with the
LN =1,|M|=

%) state and the second flip comes about because of the state’s interaction with the

\J %, N=2 M|= %) stateat 7, ~ 28 (ahigher-lying state not shown here). The state is right-way oriented
between these two flips and is wrong-way oriented in the high field region. Apart from that, there is, as expected,
a probability density transfer from the rotational angular momentum to the spin angular momentum.

These flips in the orientation of the molecule are of particular importance since not only do these provide the
means for switching the orientation of the molecule, but, as we will see in section 3.3, the values of the interaction
parameter where the flips take place can be controlled by introducing a third field.
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3.2.2. Congruent electric and magnetic fields

Figure 14 shows the dependence of the eigenenergies of the lowest twelve states of a >~ molecule on the
interaction parameter 7, in the presence of an electric field such that the corresponding interaction parameter
1y = 5. Compared with figure 8, we see that the genuine intersection in the absence of the electric field of the
opposite-parity levels have become avoided crossings due to the coupling by the electric dipole interaction. This
transforms the low-field seeking states into high-field seekers and vice versa.

The concomitant directional properties are exemplified in figure 15. For instance, the

J= %, N=1,M= —%> state changes its shape from an oriented torus to an oriented double-lobed form
while the crossing ‘ J= %, N=1,M= —%> state changes from an oriented double-lobe to an oriented torus.
We note that since the intersecting levels are exactly degenerate at the crossing point, even a small electric field
can mix them and thus generate orientation. For #,, > 7, the maximum value of the orientation cosine is

determined just by the intersecting purely Zeeman states and is independent of 7, see [9, 10].

3.2.3. Congruent magnetic and optical fields

In light of the fact that the magnetic dipole interaction only couples states with same parity, the opposite-parity
members of the tunneling doublets created by the polarizability interaction with the optical field remain
uncoupled in the presence of the magnetic field. However, the magnetic field lifts the +M degeneracy of the
good quantum number | M | that characterizes each tunneling doublet in the optical field alone and thus, for
|M| > 0, doubles the number of the tunneling doublets.

This is illustrated in figure 16, which shows the dependence of the eigenenergies of a 2X molecule on the
optical field in the presence of a magnetic field such that #,, = 2.5. The key feature of the ‘doubled’ tunneling
doublets is that they all remain quasi-degenerate at high 7,,,,. However, the states created by the anisotropic
polarizability interaction with the optical field are also affected by the presence of the magnetic field in other
ways than removing the + M degeneracy. In particular, since the magnetic field moves the levels of a
paramagnetic molecule around, see section 3.1.2, some of the tunneling doublets undergo a flip of the partner
levels: what was a lower member of a doublet becomes a higher member and vice versa.
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Figure 17 shows the directional properties of a 2~ molecule as a function of an optical field in the presence of
amagnetic field. As we have seen in figure 9, the magnetic field does not alter the directional properties of a
molecular state as created by the optical field unless the state encounters another state that couples to it. Since
neither a magnetic nor an optical field can orient a molecule, {cos #) vanishes identically for all states created by
these fields.

Finally, we observe that the optical field leads to a significant transfer of probability density from rotational to
spin angular momentum in the combined magnetic and optical fields.

3.3. Triple-field effects
In this section we study the effects of all three fields acting on a polar and polarizable 2X molecule
simultaneously.

Variation of the electric field. Figure 18 shows the dependence of the eigenenergies of the lowest six states on
the electric dipole interaction parameter 7, in the presence of constant magnetic (1,, = 2.5) and optical fields
(Mope = 15). Since the presence of the magnetic field lifts the +M degeneracy, the figure is split into four panels,
each pertaining to a given value of M, as states with M > 0 behave differently from states with M < 0. We see
that the states are paired up at 7,; — 0 due to the formation of the quasi-degenerate tunneling doublets by the
optical field. For #,; > 0 the doublets are increasingly coupled by the electric dipole interaction and split up as a
result. The magnetic field brings about a relative shift of the doublet levels which leads to avoided crossings.

Figure 19 shows the directional properties of a 2~ molecule as a function of the electric interaction
parameter at constant magnetic and optical fields. We again observe abrupt changes in the sense of the molecular
axis orientation. However, the field strengths at which these abrupt changes take place can be controlled by
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Figure 16. Dependence of the eigenenergies of a polar 2X molecule on the anisotropic polarizability interaction parameter Nopy i the
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the good quantum number M. Red and blue curves pertain, respectively, to states with | = % and J = % Note that here 7, = 2.5and

Ne = 0.

tuning the value of the superimposed magnetic field. For instance, the |J = %, N=1,|M|= %) state in the

absence of the magnetic field changes its orientation at #,, ~ 4; here the change takes place at a higher value of
the electric field for the |J = %, N=1, M= —%) state (17, ~ 6atn,, = 2.5) and for the

|J = %, N=1,M= %) state at a lower value of electric field (17, ~ 2at7,, = 2.5).

In general, for states with M < 0, the higher the value of the magnetic field, the greater is the electric field
strength required to flip the orientation of the state—and vice versa for states with M > 0: the higher the value of
magnetic field, the lower is the electric field strength required to flip the orientation. This happens because the
avoided crossings formed that lead to a flip in orientation arise at a lower electric field for states with M < 0 and
ahigher electric field for states with M > 0 as the magnetic field strength is increased. For M < 0, the lower of
the two states forming the avoided crossing is high-field seeking and the higher state is low-field seeking under
the magnetic field alone. This results in an increase in the energy splitting between these two states as the
magnetic field is increased. This, in turn, leads to the formation of avoided crossings, and hence to the flipping of
the orientation of the state at a higher electric field. On the other hand, for M > 0 states, the higher of the two
states forming the avoided crossing is high-field seeking and the lower state is low-field seeking under the
magnetic field alone. This results in a decrease of the energy splitting between these two states as the magnetic
field is increased and the formation of avoided crossings, and hence to the flipping of the orientation of the states
atalower electric field. The above feature of the triple-field interaction lends itself as a means to control the sense
of the molecular axis orientation with the superimposed magnetic field as a control parameter.

Variation of the magnetic field. Figure 20 displays the dependence of the eigenenergies of a 2 molecule on
the magnetic field in the presence of an electric field (7, = 5) and optical field (77, = 15). As we can see, the
tunneling doublets are no longer quasi-degenerate as they are split by the electric field. Figure 20 bears a
similarity with figure 14; however, due to the level shifts brought about by the optical field, the energy splitting at
the avoided crossing of, e.g., the || = %, N=1M= —%) and|] = %, N=1M= —%) states is less than in
the absence of the optical field. This leads to a much more abrupt variation of the orientation cosine in the
vicinity of the crossing, as can be seen in figure 21. In addition, by comparing figures 21 and 15, we see that the
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Figure 17. Probability densities, orientation and alignment cosines of a 2X molecule as functions of the anisotropic polariuzability
interaction parameter 7, in the presence of a magnetic field. Values pertaining to the F; and F, states are shown, respectively, by

dashed and full lines. Blue and red curves pertain, respectively, to the left (orientation) and right (alignment) ordinate. Note that here
n, = 2.5and 7, = 0.

presence of the optical field can lead to a higher orientation of the states (i.e., greater values of | (cos 8) |. The
flipping of the orientation can be conveniently controlled by making use of the optical field as a control
parameter. For states with M < 0, the higher the optical field, the lower is the magnetic field required to flip the
orientation and vice versa for states with M > 0. This is because the electric field couples the tunneling doublets
formed by the optical field. For M < 0 states, the lowest state for every M is a high-field seeking state which,
therefore, does not have any points of inflection. The avoided crossings, where the flipping of the orientation
takes place, are formed between states of different . The energy splitting between these states decreases with
increasing optical field as the tunneling doublets formed by the optical field are coupled by the electric field. This
leads to a decrease in the magnetic field strength required to flip the orientation of the state with increasing
optical field. On the other hand, for states with M > 0, the lowest state for each M is a low-field seeking state
under the magnetic field interaction. So the avoided crossings where the flip in orientation takes place are within
the same tunneling doublet. The energy splitting between the two states increases with increasing optical field
because the tunneling doublets are coupled by the electric field, thereby requiring a greater magnetic field to flip
the orientation.

Variation of the optical field. Figure 22 shows the dependence of the eigenenergies on the optical field strength
parameter 7, in the presence of electric (1, = 5) and magnetic (i,, = 2.5) fields. Like in figure 16, we see that
the tunneling doublets split by the electric dipole interaction. However, due to the Zeeman shifts, some of the
levels have interchanged their order. So the lower member of the J= %, M= %, N =0, 1>tunneling doublet
has become the higher member and the higher member has become the lower member. Such an interchange in

the order of the states occurs because the two states genuinely cross each other under the effect of magnetic field,
see figure 8.
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This is detailed in figure 23 which shows the dependence on the optical field 7,,,, of the tunneling splitting,
%, between the |J = %, N=0,|M|= %) and|] = %, N=1, |M|= %) states (the lowest tunneling doublet)
in the absence (red curve) and presence (blue curves) of the magnetic field. The magnetic field separates the
tunneling doublet into two, with each pertaining either to M = % orM = —%. A negative tunneling splitting
corresponds to a reversal of the order of the members of the tunneling doublets. We note that the tunneling
doublets depicted become quasi-degenerate in the high field region, following the % x exp(— O%pt) asymptotic
dependence.

Figure 24 details what happens when an electric field (corresponding to n,; = 5) is superimposed. The red
curve shows the tunneling splitting AE,/B in the absence of the magnetic field. Since the electric field couples the
\J= %, N =0, |M|= %) and|] = %, N=1,|M|= %) states in question, they ‘repel’ each other as a result.
Initially, the tunneling splitting rapidly increases with the optical field only to taper off in the high field region.
When the magnetic field is switched on, this tunneling doublet divides into two separate tunneling doublets, one
with M = —% and another with M = % The tunneling splitting of the two tunneling doublets formed is shown

by the dashed blue line. While the dependence on 7, of the tunneling splitting of the doublet pertaining to
M= —% resembles that of the tunneling doublet in the absence of the magnetic field, the tunneling splitting

keeps on increasing with the optical field strength for the doublet pertaining to M = % Note that in the latter
case, the members of the tunneling doublet interchanged their order, as reflected in the change of sign of AE,/B
from positive to negative.

Figure 25 shows the directional properties of a 2X molecule as a function of the optical field in the presence
ofboth electric (17,, = 5) and magnetic (7,, = 2.5) fields. The presence of the magnetic field can be used to
control the optical field strength at which the orientation cosine changes sign. The optical field strength required
to flip the orientation decreases with increasing magnetic field for states with M < 0 and vice versa for states
with M > 0. Finally, we note that the tunneling doublet member with greater N exhibits a wrong way
orientation in the high field region, except for the case when the two members of the tunneling doublet have
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Figure 19. Probability densities, orientation and alignment cosines of a X molecule as functions of the electric dipole interaction
parameter 7, in the presence of a magnetic and an optical field. Values pertaining to the F, and F, states are shown, respectively, by
dashed and full lines. Blue and red curves pertain, respectively, to the left (orientation) and right (alignment) ordinate. Note that here
N, = 2.5and 5, = 15.

exchanged their labels; in this latter case it is the state with lower N that exhibits a wrong way orientation at high
optical fields.

4. Conclusions

We examined the eigenproperties of polar, paramagnetic, and polarizable linear molecules in congruent electric,
magnetic, and nonresonant optical fields by numerical diagonalization of the corresponding Hamiltonian
matrix. We found that the directionality of the molecular states which can be achieved with the triple-field
combination supersedes—in its magnitude as well as controllability—that obtained by the double-field
combinations or single fields, as studied previously. The highly directional molecular states created by the triple-
field combination can be then acted upon by space fixed fields, permitting to manipulate readily and efficiently
both the rotation and translation of the molecules. Possible applications abound, but here we would like to
emphasize the potential for manipulating cold molecules. Not only are cold molecules generally more
susceptible to manipulation by external fields due to their low translational energy, but some of their
applications, such as quantum computing [76] or the search for the electric dipole moment of the electron [70],
have already envisioned the use of combined fields for both trapping and probing. The present paper expands on
what the use of the triple-field combination would entail.

The combination of an optical and a magnetic field creates a multitude of degenerate or quasi-degenerate
states of opposite parity that can undergo a facile coupling by a superimposed (weak) electric field. This is the
essence of the effects of the three congruent fields and the basis for their synergy. That one of the fields—the
optical one—can be varied or switched on and off at time scales on the order of the rotational period would lend
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amanipulation technique based on the triple-field effects a degree of controllability that is needed for such
applications as stereo-dynamical collisional studies or quantum computing.

In our forthcoming work we will examine the non adiabatic effects that are expected [30] to arise when the
optical field is varied at time scales shorter than the rotational period of the molecule. Also worthy of exploring is
the dependence of the triple-field effects on the tilt angles among the three field vectors [21, 71]. Relevant to both
is the topology of the eigenenergy surfaces spanned by the 7, 77,,, and 7, interaction parameters that may result
in conical intersections [63, 64], another subject of our forthcoming study.
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Appendix A. Direction cosine matrix elements in the symmetric top basis

The non-vanishing elements of the direction cosine matrix, ¢ Ij , used in this work are given by

(1,2, m|¢/

Lo M)=f(1)s(1 2.1, 2)

Xh[(]’) M/: ]> M) (22)
with f(J', J), 8; (J, 2, ], 2),and h; (J', M', J, M) listed in tables A1 —A5, see [72].
A.1. Matrix elements in Hund’s case (a) basis

For the electric field interaction, we need matrix elements of the operator cos @ which are listed in table A6 .
For the optical field interaction, we need matrix elements of the operator cos? @, which are listed in table A7 .
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Figure 21. Probability densities, orientation and alignment cosines of a X molecule as functions of the magnetic dipole interaction
parameter 7,, in the presence of a magnetic and an optical field. Values pertaining to the F, and F; states are shown, respectively, by

dashed and full lines. Blue and red curves pertain, respectively, to the left (orientation) and right (alignment) ordinate. Note that here
fq = 5and 5, = 15.

For the magnetic field interaction, we need the matrix elements of the S, operator
1
Sz=> (075~ + d78*) + 157, (23)

where the superscripts pertain to the body-fixed and the subscripts to the space-fixed frame. The electron spin
matrix elements are

1
<S) iz‘(}; Q) M| Si

s, %> 7, 2, M) =1, (24)

<Sr i%‘(}) Q)Ml SZ

1 1
, F— , 2, M) = —. 2
S+2>|] )=+ (25)

Appendix B. Conversion factors

With quantities express in customary units, the dimensionless interaction parameters are given by:

e 1, = 0.0168 u, (Debye) &5 (kV cm™)/B(cm™),

e 7, = 0.9347 H (Tesla)/B (cm™),

o N = 105 X 107 A [K] J (W em™2)/B (em™).
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Figure 22. Dependence of the eigenenergies of a polar 2X molecule on the anisotropic polarizability interaction parameter Nopy I the
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Figure 23. Dependence of the tunneling splitting AE,/B = (E ]=;N =1, |M|= %

interaction parameter 7., for ,, = 0 (red curve) and r,, = 2.5 (blue curves).

Table Bl shows what values the interaction parameters 7, ,,, and 7, take at particular values of the

respective field strengths for choice 2X molecules.
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Figure 24. Dependence of the tunneling splitting AE,/B = (Ej=Lx=1m=} = Ej=
parameter 7, for 57, = 5 (red curve) and 7,, = 2.5 (blue curves).
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Note that here 5, = 5and 7, = 2.5.

Table Al. The f (J', ) term of the

direction cosine matrix,

equation (22).
fasn

=T+ 1 I S
r=J 10+ 1)@+ D@ +3)
]/ - 1

4J0J+1)

I'=7-1

40+ DY@I+ D@ -1)
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TableA3.The g (J', Q" + 1; ], Q) and ¥ig, (J', 2" £ 1; ], Q)

Table A2. The g, (J', 2'; J, £2) term of the
direction cosine matrix, equation (22).

2. U, 257, Q)

J=7+1 2JU+2+1D)(J-2+1)
J=] 20

J=]-1 2JU+2)0 -9

terms of the direction cosine matrix, equation (22).

U, 2 x5, QorFig,(J, 2+ 1;], Q)

J =
J =
J =

J+1 F0z2+DT+2+2)
J UJFQUF2+1)

J-1 FNOFQUF2-1)

Table A5.The hx (J', M' + 1; J, M)and +ihy (J', M’ + 1; ], M)

Table A4. The h; (J', M'; J, M) term of the
direction cosine matrix, equation (22).

hz(J', M5 ], M)

I'=]+1 2JU+M+1D(J-M+ 1)
=] 2M
J=J]-1 20+ M)(J - M)

terms of the direction cosine matrix, equation (22).

hx(J's M' £+ 15 ], M) or +ihy (J', M' + 15 ], M)

I'=7]
J=7]
I'=7]

+1 FJUEM+DJ£M+2)
NIFEM)JFM+1)
-1 FVOFMTFM-1)

Table A7. Nonvanishing elements of the cos? @ operator in the symmetric top basis set.

Table A6. Non-vanishing matrix elements of the
cos 6 operator in the symmetric top basis set.

(]', Q, M [cos 6] ], 2, M>

J=7+1 J+2+)0-Q+DHJ+M+DJ-M+1D
U+DJ@T+ D@ +3)

’_ QM

F=1 JU+1

J=J—-1 T+ 7-27+M{7-M)

JN@I+1)(2)-1)

< J'QM |cos’ | ].QM>

J'=J+2
J'=J+1
I'=]

J=]-1
J'=]-2

J+2+2)J+Q+1)(J-2+2)J-2+1)J+M+2)J+M+1)(J-M+2)J-M+1)

J+1U+2)(2)+3){ 2]+ 1)(2]+5)

oM U+!2+1)(]—.Q+1)(]+M+1)(]—M+1)I:l ;]
J+ 12T+ D) (2T +3) J 42
2-2H(y2-M? M2 (U+12-0H((+1)?-M?)
J242-1) J2U+1)? J+12@0+1?%-1)
oM (IH?)(I*Q)(HM)U*M)[L ;]
JA@I+ D)@ - 1) J-1 " J+1

J+2)(+2-1)(J-20-2-DJ+MJ+M-1DH(J-M)(J-M-1)

JU=1@-DJ@+1)(2]-3)
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Table B1. Rotational constants, B, spin-rotation constants, y, electric dipole moments, y,,, polarizability anisotropies, Aa, and values of
the dimensionless interaction parameters 7, #,,, and 7,,,, at electric, magnetic, and optical fields of 100 kV cm™, 1 Tesla, and 10"

W cm 2, respectively, for choice 2X molecules, see text. Dipole moments and polarizabilities given in parentheses are estimates. Compi-
lation based on [5, 77-86] and own calculations.

Molecule B(em™) y(em™) 1 (D) Aa (A%) 1q @100 kV cm™! 7,@1T Nopt @10"”W cm ™2
NaO 0.462 0.193 7.88%,° 2.88%° 3.63 2.02 180.1

CaH 4.28 0.045 2.94 1.95",b 1.15 0.22 4.81

CaF 0.34 0.0013 3.34 4.83"‘,h 16.4 2.75 150

MgH 5.83 0.020 1.27 2.29 0.37 0.16 4.15

RbO 0.24 -0.019 (8.5) 0.422°° 60 3.9 18.57

BeH 10.32 0.005 0.1069 1.70 0.16 0.09 1.74

CN 1.99 0.0073 1.45 0.383 1.22 0.47 2.03

CaCl 0.15 0.0014 4.47 1.05“," 50.06 6.23 73.92

* Calculated using Gaussian 09 [87].
" Becke3LYP type calculation using 6-311+ +G** basis.
¢ Becke3LYP type calculation using TZP-DKH basis [88, 89].
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