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Abstract
We study stochastic energetic exchanges in quantumheat engines. Due tomicroreversibility, these
obey a fluctuation relation, called the heat enginefluctuation relation, which implies the Carnot
bound: nomachine can have an efficiency greater thanCarnot’s efficiency. The stochastic
thermodynamics of a quantumheat engine (including the joint statistics of heat andwork and the
statistics of efficiency) are illustrated bymeans of an optimal two-qubit heat engine, where each qubit
is coupled to a thermal bath and a two-qubit gate determines energy exchanges between the two
qubits.We discuss possible solid-state implementationswith Cooper-pair boxes andflux qubits,
quantumgate operations, and fast calorimetric on-chipmeasurements of single stochastic events.

1. Introduction

Thefield of nonequilibriumquantum thermodynamics has gathered a great deal ofmomentumover the last two
decades due to the discovery of a number of exact relationswhich characterize the response of physical (possibly
small) systems to external perturbations, namely, appliedmechanical forces or thermodynamic forces (e.g.,
temperature gradients and chemical potential gradients) [1–3].

Unlike traditional thermodynamics [4], which focuses onmacroscopic quantities, fluctuation relations
focus on theirmicroscopic, fluctuating, counterparts. To exemplify this, consider the two fundamental objects
of thermodynamic investigation, work and heat. Amacroscopic thermal engine delivers a certain amount of
workwhile withdrawing a corresponding amount of heat from a hot thermal reservoir. There can be variations
in these amounts between different cycles, but typically these fluctuations are negligible. However, as the
machine size is scaled down, thework output and heat absorbedwill likewise be scaled down. Accordingly, the
fluctuationswill becomemore andmore relevant. It then becomes useful to investigate the stochastic properties
of suchfluctuating quantities. Fluctuation relations pose stringent constraints on the statistics of such
fluctuating quantities as heat andwork due to the symmetries (in particular time-reversal symmetry)
characterizing themicroscopicmotions of atoms andmolecules fromwhich they originate.

Fluctuation relations have been reported for both classical and quantum systems [1, 2, 5–7]. In fact, identical
fluctuation relations hold regardless of whether the same system is regarded as classical or quantum.Despite
their formal identity, classical and quantum fluctuation relations are profoundly different in theway they can be
accessed experimentally. Concerningwork, for example, although typically one canmeasure the fluctuating
work applied to a classical nano system, e.g., a stretchedRNAmolecule, by continuouslymonitoring a
displacement x and its conjugate force f (e.g., extension and tension in themolecule) and obtaining thework as

∫= −W fdx [8–10], this is typically impossible in a quantum system. In the quantum scenario, the situation is
greatly complicated by the invasiveness of themeasurement apparatus, which can lead to collapse of thewave
function. The prescription accordingly is tomeasure the energy of the system twice (at the beginning and end of
the forcing protocol) bymeans of two projectivemeasurements and obtain thework as their difference [11–14].

This two-measurement scheme has, however, proved challenging from an experimental point of view
[15, 16], somuch so that it has been carried out only very recently [17]. This occurrence has triggered the
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proposal of a number of alternativemethods. One suchmethod proposes to replace the two invasive projections
withmany less invasivemeasurements (POVM) carried out on a smaller portion of the system [18]. This
method is particularly well suited for studies of transport induced by gradients of temperature and chemical
potential [18]. Some experiments already exist which can be explained in terms of thesemultiplemeasurements
[19, 20]. They take into account the complete counting statistics of electrons transported through a double
quantumdot due to an applied chemical potential difference. Note, however, that in those experiments all
quantum coherences are suppressed.

Another ingeniousmethod, which is particularly well suited for obtaining thework statistics of a driven
system, requires special coupling of the driven system to an ancilla, e.g., a qubit, and replaces the two energy
measurements with state tomography of the qubit at the sole final time [21, 22]. Thismethod is a formof
Ramsey interferometry and gives experimental access to the characteristic function of work, namely, the Fourier
transformof the probability density function (pdf) of work. This has led to the first experimentalmeasurement
of quantumwork statistics ever performed. It was performed in a liquid-NMR setup and reconstructed thework
pdf of a driven two-level system [23]. A proposal for implementing themethodwith solid-state quantumdevices
was put forward in [24]. Themost promising aspect of thismethod is that it can be used to asses thework
statistics not only of closed systems as in the performed experiment but also of systemswhich stay in contact with
a thermal bath [24].

Roncaglia et al [25] have proposed to couple the system to a quantumpointer, e.g., a spin chain. The
coupling is engineered so that that a single final projectivemeasurement of the state of the pointer will contain
information about thework performed on the system. Like the interferometricmethod, thismethod is best
suited for themeasurement of work. Its experimental realization, however, appears extremely challenging.

In this workwe focus on yet anothermethod that has been discussed recently in [26, 27] and that is based on
the calorimetricmeasurement of a photon released and absorbed by thermal reservoirs. This quantum
calorimeter is currently under development. Themethod is well suited for simultaneouslymeasuring both heat
andwork in a driven quantum systemwhich stays in contact with one ormore baths. For this reason it is
promising for the experimental study of the stochastic energy exchange of quantum thermalmachines.

Since the seminal work of [28], showing how a three-levelmasermay be understood as a thermalmachine,
quantum thermalmachines have beenwidely studied in the literature [29–31]; and are still under vigorous
investigation [32–45]: see also the recent review [46] and references therein.However, whereas so far the focus
has been on the average value of heat andwork, herewe focus on their fluctuations as well. As recently reported
[47], a special formof thefluctuation relation holds for quantum thermalmachines. This form implies that no
quantum thermal engine can over perform theCarnot efficiency. This universal and exact result was anticipated
long ago in [29] but only for those quantummechanical open systemswhose dynamics can bewell
approximated by aMarkovianmaster equation in Lindblad form.

After revisiting the heat enginefluctuation relation, we introduce amodel of thermal engine based on two
qubits each coupled to its own reservoir and subject to a unitary gate operation.We identify the regimeswhen
the engineworks as a heat engine, a refrigerator, or a heater (dud engine), andwe study its full stochastic
characteristics, including the pdf of its efficiency. Themost intriguing features of the presentedmachine are (a)
that atmaximumpower it can reach efficiency above theCurzon–Albhorn efficiency and (b) that increasing the
speed of its operation increases its power output without affecting its efficiency.

It is important to stress that the engine presented here can be implemented in a real solid-state device and
that its stochastic energetic exchanges can bemeasured using current and soon-to-be-available technology.
Hereafter we discuss possible solid-state implementations based on the calorimetricmeasurement scheme.

2. The heat enginefluctuation relation (HEFR)

Consider a driven bi-partite system:

= + +H t H H V t( ) ( ) (1)S 1 2

with a factorized initial condition

ρ = ⨂
β β− −e

Z

e

Z
(2)

H H

1 2

1 1 2 2

Without loss of generality we assume throughout this work β β⩽1 2, i.e., thefirst subsystem is assumed to be not
colder than the second at the initial time. Alsowe assume that at all times theHamiltonian is time reversal
symmetric [48].We further assume that the compound system is thermally isolated and that the driving is
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turned on at time t=0 and turned off at time τ=t . At these two times simultaneous projectivemeasurements of
the energies of both subsystems are performed, giving the results E E,n n

1 2
1 2

and E E,m m
1 2

1 2
, where i=1, 2 andEk

i is
the kth eigenvalue of subsystem i. According to the quantum exchange fluctuation theorem [18, 49, 50], we have

Δ Δ

Δ Δ− −
=∼

β Δ β Δ+( )
( )
P E E

P E E
e

,

,
(3)E E

1 2

1 2

1 1 2 2

where Δ = −E E Ei m
i

n
i

i i
is the observed energy change in subsystems i, Δ ΔP E E( , )1 2 is the joint probability of

observing ΔE1 and ΔE2, and Δ Δ− −∼
P E E( , )1 2 is the joint probability of observing Δ− E1 and Δ− E2 when the

reversed driving τ −V t( ) is applied. The drivingV(t) injects some amount of energy into the compound
system:

Δ Δ= +W E E (4)1 2

which is in fact thework performed by the external driving source to drive the system. Part of this energy, ΔE1,
goes into subsystems 1, and part of it, ΔE2, goes into subsystem 2.Using the preceding equation tomake the
change of variable Δ →E W2 , we obtain afluctuation relation for the joint probability of workW and ΔE1:

Δ

Δ− −
=∼

β β Δ β− +( )
( )

( )
P E W

P E W
e

,

,
(5)E W

1

1

1 2 1 2

Multiplying by Δ− −∼
P E W( , )1 and integrating over ΔdWd E1, one obtains the integral formof the fluctuation

relation

=β β Δ β− −( )e 1 (6)E W2 1 1 2

Using the Jensen’s inequality as usual, one obtains from this

η Δ⩾W E (7)C 1

where η β β= −1C 1 2 is Carnot’s efficiency. The preceding equations hold regardless of the size of the two
systems as long as the assumptions introduced are satisfied. Inmodelling a quantum thermalmachinewewill
consider each subsystem as composed of two parts, namely, a heat reservoir and a small quantum systemwhich
constitutes part of theworking substance (see figure 1).Wewill call the small quantum systems theworking
parts. The driving is applied on theworking substance. The receivedworkW is shared between subsystems 1 and
2 as ΔE1 and ΔE2.We allow for the possibility of a time-dependence of the couplings between the reservoirs and
theworking parts, inwhich case we consider them as part of the time-dependent part ofV(t) of theHamiltonian.
This encompasses continuous-mode thermalmachines, where the couplings between theworking parts and
their respective reservoirs are constant in time and non-vanishing, andmachines operate in discretemode (via
distinct strokes), where those couplings can be switched on and off during operation. The three-levelmaser is an
example of a continuous-mode engine, whereas Carnot, Otto, diesel engines etc. operate in discretemode.

The average quantities Δ〈 〉E1 , Δ〈 〉E2 , 〈 〉W define the operation regime of themachine:

• HEATENGINE: Δ〈 〉 ⩽E 01 , Δ〈 〉 ⩾E 02 , 〈 〉 ⩽W 0

• REFRIGERATOR: Δ〈 〉 ⩾E 01 , Δ〈 〉 ⩽E 02 , 〈 〉 ⩾W 0

• HEATER: Δ〈 〉 ⩽E 01 , Δ〈 〉 ⩾E 02 , 〈 〉 ⩾W 0

When the thermalmachineworks as a heat engine, equation (7) gives

Δ
η⩽W

E
(8)C

1

This is the second law of thermodynamics as expressed for a heat engine. Our derivation proves its universality
on the basis of the time-reversal symmetric unitary dynamics of the entire system and the initial bi-Gibbsian
preparation. In a similar way, when themachine operates as a refrigerator, one finds

Δ
β β

η
−

⩽
−

=
E

W

1

1
(9)C

R2

2 1

Before proceeding it is worth remarking that there is freedom in arranging the position of the border
between the two subsystems i.e., to arrange the initial bi-Gibbsian equilibrium. In fact, fluctuation relations for
heat engines have been derived previously assuming theworking substance is fully included in one of the two
subsystems only, say, subsystem 2 [47, 51]. In that case, workW is delivered to subsystem 2, which retains a part
ΔE2 (shared between reservoir 2, −Q2, andworking substance ΔU2) and dumps the other other part Δ = −E Q1 1
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directly into reservoir 1 as heat. That arrangement is particularly useful for amachineworking as a heat engine
because equation (7)would read η−〈 〉 〈 〉 ⩽Q W ,C1 as in standard thermodynamics books.

Here we adopt instead the scheme infigure 1 becausewe have inmind an implementationwhere the
coupling of theworking parts to the reservoirs isfixed and cannot bemanipulated, whereas one can turn the
interaction between theworking parts on and off. By keeping this coupling off, it is then straightforward to
prepare eachworking part in thermal equilibriumwith its own bath. This corresponds to the scenario depicted
infigure 1.With our arrangement the average energy Δ〈 〉E1 can be identifiedwith the heat −〈 〉Q1 onlywhen the
energy Δ〈 〉U1 stored in theworking part is null or negligible as comparedwith Δ〈 〉E1 and −〈 〉Q1 . This happens
when the number of cycles is long and theworking substance has afinite energy spectrum. Then Δ〈 〉U1 remains
bounded , whereas Δ〈 〉E1 and −〈 〉Q1 grow linearly in time. If the condition ismet, then

Δ η−〈 〉 〈 〉 ≃ 〈 〉 〈 〉 ⩽W Q W E C1 1 . Otherwise, if the condition is notmet one canwell have the ratio −〈 〉 〈 〉Q W1

be larger than ηC. This, however, does not have an impact on the second law of thermodynamics stating that a
machineworking in a cycle (implying Δ Δ〈 〉 = 〈 〉U U1 2 = 0) cannot have an efficiency larger thanCarnot’s
efficiency.

It is important to stress that the choice of borders and appropriate associated thermodynamic quantities is
the key to obtaining exact transient fluctuation relations, such as in equation (5), that is,fluctuation relations
that hold regardless of the time duration of the process under investigation [2, 18, 52, 53]. In the long time limit,
steady-state fluctuation relations holdwhich are independent of the border choice.

3.Optimal two-qubit engine

Our aim is to propose aminimalmodel of thermodynamic quantum enginewhich can be implemented and
tested experimentally as a solid-state quantumdevice. The simplestmodel one can think of is that of a single
qubit coupled to two reservoirs at different temperatures. The qubit is driven by an external drivewhich changes
itsHamiltonian in time, for example, by changing its energy spacing ω σ=H t t( ) ( ) 2zqubit . If one has the further
ability to couple and decouple the qubit from the two reservoirs one can implement a four-stroke engine, e.g., an
Otto cycle. This can be realized, e.g., by interfacing the qubit with the thermal reservoirs bymeans of band-pass
filters, as proposed in [54]. Herewe focus instead on the case where the coupling to the reservoirs isfixed in time.

Figure 1. Scheme of a quantum thermalmachine. An isolated system (large green rectangle) is driven by an external time-dependent
field. The system is composed of two subsystems (red and blue rectangles). Each subsystem is composed of a small quantum system
(small circle) and a large system, namely, a thermal reservoir (large circular section). The two small circles form theworking
substance; we call themworking parts. The drive acts on theworking substance, thus injectingworkW into the entire system. Part of
the work, ΔE1, is delivered to subsystem1 viaworking part 1. The rest, Δ Δ= −E W E2 1, is delivered to subsystem 2, via the working
part 2. Eachworking part retains part of the delivered energy ΔUi and dumps the rest Δ Δ− = −Q E Ui i i into its reservoir. These
energetic exchanges are possible due to possibly time-dependent couplings between the twoworking parts and between eachworking
part and its reservoir (dashed lines). At the beginning of the driving, each subsystem is at thermal equilibriumwith a given temperature
Ti.
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Tohave a heat engine/refrigerator in continuousmode, amore complexworking substance than amere two-
level system is necessary. One needs aworking substance that would be able to re-route the energy towards the
wanted direction (from the hot bath to thework source and the cold bath for a heat engine; from the cold bath
and thework source to the hot bath for a refrigerator). For this reasonwe introduce a second qubit. Qubit 1 is in
contact with thefirst bath, and qubit 2 is contact with bath 2, as infigure 1. A time-dependent couplingV(t)
couples the two qubits for a time-duration τ[0, ]. The full Hamiltonian is

= + + + + + +H t H H H H H H V t( ) ( ) (10)q B q B,1 ,1 int,1 ,2 ,2 int,2

where HB i, , H iint, , i=1, 2, are the ith bathHamiltonian and its interactionwith qubit i, respectively, and

ω
σ=H

2
(11)q i

i
i
z

,

is the the ith-qubitHamiltonian. Here σi
z denotes the zPauli sigmamatrix of the ith qubit.

To keep the discussion as simple and intuitive as possible we introduce a useful assumption, namely, that the
couplingV(t) is turned on for a time period τ[0, ]that is very short comparedwith the relaxation time of each
qubit in its own bath. The effect of the couplingV(t) can accordingly bemodelled by a unitary operatorU acting
in theHilbert space of theworking substance, namely, the two qubits.Wewill callU the gate operation. Initially,
each of the two qubits is in thermal equilibriumwith its own bath, i.e., its state is characterized by the density
matrix

ρ = ⨂
β β− −e

Z

e

Z
(12)

H H

1 2

q q1 ,1 2 ,2

with β ω= =β−Z eTr 2 cosh ( 2)i
H

i ii q i, . The averagework injected into theworking substance by applying the
unitaryU is

ρ ρ= + −( )( )W H H U UTr (13)q q,1 ,2
†

and the energy taken by each subsystem is:

Δ ρ ρ= −( )E H U UTr (14)i q i,
†

After the application of the gateU each qubit is allowed to interact with its respective reservoir for a sufficiently
long time so as to reach the state of thermal equilibrium.During this thermalization step theywill give the heats

Δ−〈 〉 = 〈 〉Q Ei i to the baths.
We are interested in the unitary that outputs themost work per cycle. Therefore we have searched for the

unitary thatmaximizes 〈 〉W .We have pursued this task by parametrizing a 4 × 4 unitary bymeans of 15 angles as
discussed in [55] and performing amaximization over the corresponding 15-dimensional space. Numerics
clearly indicate thatmaximumwork output is achieved bymeans of the complex swap unitaries, reading in the
∣+ +〉 ∣+ −〉 ∣− +〉 ∣− −〉{ , , , , , , , }basis:

=

ϕ

ϕ

ϕ

ϕ

U

e

e

e

e

0 0 0

0 0 0

0 0 0

0 0 0

. (15)

i

i

i

i

1

2

3

4

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

With theseUʼs we find

Δ ω= −
+

−
+β ω β ω

E
e e

1

1

1

1
(16)1 1

1 1 2 2

⎛
⎝⎜

⎞
⎠⎟

Δ ω=
+

−
+β ω β ω

E
e e

1

1

1

1
(17)2 2

1 1 2 2

⎛
⎝⎜

⎞
⎠⎟

ω ω=
+

−
+

−
β ω β ω

W
e e

1

1

1

1
( ) (18)2 1

1 1 2 2

⎛
⎝⎜

⎞
⎠⎟

In the followingwefix the gate to be any complex swap gate in equation (15). Quite remarkably, the same
unitaries alsomaximize the heat engine efficiency. The thermodynamics of one such device, namely, the iSWAP
engine (see equation (44)), are discussed in [33]. Its stochastic thermodynamics have not been studied so far.

3.1.Operation
The operation of the swapmachine is dictated by the relative signs of Δ〈 〉E1 , Δ〈 〉E2 , 〈 〉W .With β β⩽1 2 the
conditions for eachmode of operation are
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• HEATENGINE: < <β
β

ω
ω

11

2

2

1

• REFRIGERATOR: < <ω
ω

β
β

0 2

1

1

2

• HEATER: < ω
ω

1 2

1

The explanation of these conditions is as follows. After the swap-gate operation is performed the two qubits
are in the states

ρ ′ ∝ =β ω σ β− − ′e e (19)H
1

2z q2 2
1

1 ,1

ρ ′ ∝ =β ω σ β− − ′e e (20)H
2

2z q1 1
2

2 ,2

where

β β ω ω′ = (21)1 2 2 1

β β ω ω′ = (22)2 1 1 2

If ω ω β β<2 1 1 2, then β β′ <1 1 and β β′ >2 2; hence the cold qubit cools down and the hot qubit heats up
Δ〈 〉 >E 01 , Δ〈 〉 <E 02 . Also, since ω ω β β< < 12 1 1 2 , then 〈 〉 >W 0. Hencewe have the refrigerator
operation. If ω ω β β>2 1 1 2, then β β′ >1 1 and β β′ <2 2; hence the hot qubit cools down and the cold qubit
heats up Δ〈 〉 <E 01 , Δ〈 〉 >E 02 . In this case, depending on the relative size of ω1 and ω2, wewill have either a
heat engine or a heater. Let σ= σ σ− −u x e e( ) Tr ( 2) Trz

x x2 2z z . Then Δ ω β ω β ω〈 〉 = −E u u[ ( ) ( )]1 1 2 2 1 1 and
Δ ω β ω β ω ω ω Δ〈 〉 = − = − 〈 〉E u u E[ ( ) ( )] ( )2 2 1 1 2 2 2 1 1 . Accordingly ω ω Δ〈 〉 = − 〈 〉W E(1 )2 1 1 . If ω ω < 12 1 ,
then 〈 〉 <W 0 andwe have the heat engine; otherwise, the dud engine. Figure 2 shows a cartoon of the operation
ofmachine in the refrigeratormode.

3.2. Efficiency

For the heat engine operation, it is < <ω
ω

β
β

0 2

1

1

2
; hence:

η
Δ

ω
ω

β
β

η= −
−

= − ⩽ − =W

E
1 1 (23)C

1

2

1

1

2

Figure 2. Illustration of the functioning of a swap engine in refrigeratormode. (a) Each qubit is in thermal equilibriumwith its
respective bath. (b) The instantaneous swap gate is applied, resulting in the injectedworkW. The hot qubit becomes hotter, whereas
the cold qubit becomes colder. (c)Qubit 1 cedes heat to the hot bath.Qubit 2withdraws heat from the cold bath. The initial
equilibrium (a) is reestablished. In heat enginemode the swap cools the hot qubit and heats the cold qubit while outputtingwork. The
sign of the heat andwork arrows becomes inverted accordingly.
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For a refrigerator:

η
Δ ω

ω ω ω ω β β
η=

−
=

−
=

−
⩽

−
=

E

W

1

1

1

1
(24)F

C
F2 2

1 2 1 2 1 2

because for the refrigerator < <β
β

ω
ω

11

2

2

1
.

Note that for the engine to function the two qubitsmust have different energy spacings ωi; otherwise, the
work intake (output) will be exactly null. Note also that the efficiency depends only on the ratio ω ω2 1 and not
on the temperatures β β,1 2. This is a peculiar feature of the swap unitary. In the followingwewill focus on heat
engine operation.

3.3. Efficiency atmaximumpower
Given the two temperaturesT T,1 2 themaximal efficiency, i.e., Carnot’s efficiency, is reachedwhen
ω ω β β→2 1 1 2. In this regime, however, thework tends toward zero (see equation (18)). It is interesting that
here the power at Carnot efficiency is zero, as with standard stroke engines, but not because of slow operation.

On the other hand, given the two temperaturesT T,1 2 one canfind the value of ω1 and ω2 for which the
power output, −〈 〉W , ismaximum. This can be achieved bymaximizing thework output in equation (18). The
maximumdepends indeed only on the ratio Ω ω ω= 2 1. This can be best seen by setting ω1 as the unit of energy
so that ω = 11 and all energies aremeasured asmultiples of ω1.With these units:

Ω=
+

−
+

−
β β Ω

W
e e

1

1

1

1
( 1) (25)

1 2

⎛
⎝⎜

⎞
⎠⎟

Wedenote the value ofΩ for which −〈 〉W ismaximumat given β β,1 2 as Ω β β* ( , )1 2 . The corresponding
efficiency, namely, the efficiency atmaximumpower is

η β β Ω β β= −( ) ( )* , 1 * , (26)1 2 1 2

For example, the value of Ω* is Ω =* 0.83 for = =k T k T3 2, 1B B1 2 (in units of ω1, as previously explained ).

The corresponding efficiency atmaximumpower is η ≃* 0.17.

Figure 3 shows themaximumpower efficiency η β β* ( , )1 2 as a function of β2 for various fixed values of β1.
Thefigure also reports the correspondingCarnot efficiency and theCurzon–Albhorn efficiency [56]:

η
β
β

= −1 (27)CA
1

2

Thefigure shows that the themaximumpower efficiency can be both larger and smaller than theCurzon–

Albhorn efficiency. However, for sufficiently low β1 (hotter hot reservoir), η η<* CA, whereas, for sufficiently

high β1 (colder hot reservoir), η η>* CA; that is, at very low temperature the efficiency atmaximumpower is
above theCurzon–Albhorn efficiency.

We have performed an analysis of themaximumpower efficiency η* for β β≃1 2, i.e., in the low ηC limit. In
accordancewith linear response theory we expect the linear coefficient of the expansion tomatch the value1 2
[57]. Since our engine is not a thermoelectric engine (work is provided by time-dependent pulses, rather than by
aDC electric potential difference) and does not have left–right symmetry (for it to output somework the energy
spacings of the two qubits, ω1 and ω2, should be different), we do not expect the value 1 8 for the quadratic
coefficient, predicted in the cases [58], to be obeyed. The results of the low ηC analysis, reported infigure 4,

corroborate these expectations. Thefigure presents plots of η η* C for various values of β2 as a function of ηC.
The plots clearly show that

Figure 3.Efficiency atmaximumpower as a function of β2 for various values of β1.
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η
η

β η η≃ + +( ) ( )f O*
2

; (28)c
c C2
2 3

that is, the linear coefficient1 2 is obeyed , whereas the quadratic coefficient is a function βf ( )2 whose valuemay
differ from 1 8.

4.Modelling: quantum jumps

The foregoing analysis based on the simplified assumption of unitary gate followed by thermalization allowed us
tomake predictions about the averagework and heats that go into the two reservoirs. It does not suffice,
however, for the full stochastic characterization of the engine. To achieve that we need tomodel the dynamics of
the thermalization.We assume then that the effect of the thermal environment on each qubit can bemodelled by
means of amaster equation of Lindblad form:

ρ ρ ρ= − +i H˙ , (29)i q i i,
⎡⎣ ⎤⎦

where

 ρ γ σ ρ γ σ ρ= + + =( )n D n D i1 [ ] , 1, 2 (30)i i i i i i
†⎡⎣ ⎤⎦

=
−β ω

n
e

1

1
(31)i

i i

ρ ρ ρ ρ= − −D c c c c c c c[ ]
1

2

1

2
(32)† † †

and σ σ σ= + ii i
x

i
y is the annihilation operator for the qubit i; and σi

†, its adjoint, is the creation operator.

Figure 4. Low ηC behaviour of η*. The plot shows that η* behaves as in equation (28).

Figure 5.Typical quantum trajectory of theworking substance of the swap engine. The top trajectory is for qubit 1. The bottom
trajectory is for qubit 2. The green vertical lines indicate times when the instantaneous swap gate is applied. Transitions occurring at
these times are due to thework done by the external work source. Transitions occurring between the swap pulses signal heat exchanges
with the heat reservoirs.
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To obtain the statistics of energy exchanges with the bath during the thermalization step, we proceed to un-
ravel themaster equation [59], as proposed in [60] and [27]. This results in a stochastic differential equation in
theHilbert space of each qubit:

ψ ψ

σ ψ

σ ψ
ψ

σ ψ

σ ψ
ψ

= −

+
∥ ∥

− +
∥ ∥

−+ −

( )d iG dt

dN dN (33)

i i i

i i

i i
i i

i i

i i
i i

†

†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The deterministic part is given by

ψ ψ γ σ ψ ψ

γ σ ψ ψ

= + + ∥ ∥

+ ∥ ∥

( ) ( )G H
i

n

i
n

2
1

2
( ) (34)

i i q i i i i i i

i i i i

,
eff 2

† 2

γ σ σ γ σ σ

γ γσ σ

= − + −

= − −

( )H H
i

n
i

n

H
i

n i

2
1

2

2
(35)

q i q i i i i i i i

q i i i i

,
eff

,
† †

,
†

whereas the stochastic Poisson increments have the ensemble expectations

γ σ ψ= + ∥ ∥+( ) ( )E dN n dt1 (36)i i i i
2

γ σ ψ= ∥ ∥−( )E dN n dt( ) (37)i i i i
† 2

The stochastic equations can be solved bymeans of theMonte Carlowave function (MCWF)method [61]. In
the present case of an undriven single qubit they result in a dichotomic Poisson process governed by the
following two rates:

Γ γ=− n (38)i i

Γ γ= ++ ( )n 1 (39)i i

depending onwhether the qubit is in the down state ∣ − 〉or up state ∣ + 〉. Note that these rates are detailed
balanced:

Γ
Γ

= β ω
−

+
−e (40)i

i

i i

Reference [60] has studied the fluctuation relations for such quantum trajectories but for systems being in
contact with a single thermal reservoir. Here ourworking substance, the two qubits, is in contact with two
distinct reservoirs. The analysis performed in [60] can, however, be extended tomultiple reservoirs. This results
in the followingfluctuation relation for the probability of a given quantum trajectory γ:

γ
γ

β γ β γ= + +∼
P

P
Q Q

p

p

[ ]
exp [ ] [ ] ln (41)a

b
1 1 2 2⎡⎣ ⎤⎦

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where γ∼ is the time reverse of γ.We remark that in the case ofmultiple reservoirs γ is not only specified by the
temporal evolution of the state of the central system (theworking substance in our case)—call it χt—but also by
the succession in, indicatingwhich bath (labelled by i) was responsible for each of theN jumps (labelled by n),
γ χ= i({ }, { })t n . Accordingly the time-reversed trajectory results by requiring that the temporal evolution of the
central system state be inverted, and if the nth jumpof the forward trajectory γwas caused by the ith bath, sowas
the last nth jump of the backward trajectory γ∼. That is, γ χ=∼

− −i({ }, { })t T t N n . In our case the trajectory γ has two
components γ γ γ= ( , )t t t1, 2, , each specifying the temporal evolution of the state of each qubit. No extra indexes
are necessary because all jumps in γ t1, are caused by reservoir 1 and all jumps in γ t2, are caused by reservoir 2.
Accordingly  γ γ γ=∼

− −( , )t t t1, 2, . The symbol γQ [ ]i means the heat ceded to the ith reservoir during the

realization of γ. Specifically
∫γ ω= −− +Q dN dN ds[ ] ( )i i i s i s0 , , . Obviously in our caseQi is a functional of γi only.

In equation (41) a b, denote the initial andfinal state of the trajectory γ, i.e., γ = a0 , γ = b, and pa b, are the
respective probability that these states are observed.With our choice (12) it is

β β= − −p U U Z Zexp ( ) ( )x
x x

1 1 2 2 1 2 , =x a b, .Writing Δ = −U U Ui i
b

i
a and using Δ Δ γ γ= −U E Q[ ] [ ],i i i we

obtain
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γ
γ

β Δ γ β Δ γ= +∼ ( )P

P
E E

[ ]
exp [ ] [ ] (42)1 1 2 2⎡⎣ ⎤⎦

Multiplying by γ δ Δ Δ γ δ Δ Δ γ− −∼P E E E E[ ] ( [ ]) ( [ ])1 1 2 2 and performing a path integral over all trajectories γ,
one recovers equation (3). Accordingly all subsequent relations in section 2 are obeyedwithin our quantum
jumpmodelling.

5. Stochastic thermodynamics of the swap engine

Weoperate themachine in the followingmanner. At time t=0we pick up a state randomly from the initial bi-
Gibbsian distribution, equation (12).We apply the complex swap gate, equation (15), and generate the
stochastic dynamics of each qubit using theMCWFmethod until time τ2, whenwe apply the complex swap
again and let it evolve stochastically until time τ2 2, and so on for a total duration  τ= N 2. Our assumption is
that the swap gate ismuch faster than the stochastic evolution time: τ τ≪ 2. Figure 5 shows a sketch of the
resulting quantum trajectories of the two qubits, alongwith the energetic exchanges the various jumps signal.

Thefirst important observation fromfigure 5 is that any time the energy ΔE1 is given to subsystem1,
accordingly the energy Δ ω ω Δ= −E E( )2 2 1 1 is taken from subsystem 2. This implies that all trajectories have the
same efficiency η Δ Δ Δ Δ ω ω η= = + = − =W E E E E( ) 11 1 2 1 2 1 . In otherwords there are no efficiency
fluctuations. This is because the gate swaps the eigenstates of the double qubit without creating superpositions
thereof. Hence each swap pulse k deterministically and univocally results inwell-defined values of ΔE k

1,2

depending on the state of each qubit before its application. A generic unitarywill typically create a superposition
of the eigenstates, which can collapse in either the up state or the down state of each qubit with corresponding
probability. The value of ΔE k

1,2 would be accordingly not uniquely defined by the state before a generic gate.
The constraint Δ ω ω Δ= −E E( )2 2 1 1makes it possible to express the heat enginefluctuation relation (5) as a

relation for a single variable, say,W. SinceW is an integermultipleNW of ω ω ω= −1 2, thefluctuation relation
can be conveniently expressed as a relation for the probability P N( )W thatNW ofwork quanta are given off by
thework source.We obtain then

−
= β ω β ω−( )

( )
( )

P N

P N
e (43)

W

W

NW1 1 2 2

Figure 6 shows P N( )W and the corresponding logarithmic ratio −P N P Nlog ( ) ( )W W for one simulation of
our engine. In an experimental realization the probability P N( )W , can be constructed by recording the number
and sign of the swaps occurred during each ofmany realizations in just one of the two qubits.

Infigure 7, left panel, we report a plot of the joint probability distribution of heat andwork P Q W( , )1 .
Note how ω ω−W ( )1 2 differs from ωQ1 1 atmost by one unit. This is because Δ ωE1 1differs from ωQ1 1 at

most by one unit, i.e., one quantumof energy stored in qubit 1 as ΔU1. BecauseQ1 is not exactly equal to ΔE1,
heat efficiency η = −W QQ 1has some fluctuations, in contrast to the ΔE-efficiency η Δ= −W E1. The

statistics of ηQ corresponding to the plot infigure 7 are reported in the right panel offigure 7.

Note the very pronounced peak at η. Note also a second peak ηC .We observe that there is afinite probability
that ηQ is infinite. Because of the peak at infinity the quantity η〈 〉Q is not well defined. As the number of cycles

increases the spot in figure 7 left panel drifts and diffuses in the diagonal direction but not in the transverse

Figure 6. Left panel: probability P N( )W of work quantaNW given off by thework source. Right panel: corresponding logarithmic
fluctuation ratio −P N P Nln ( ( ) ( ))W W . Dots: numerics. Solid line: theoretical line β ω β ω− N( ) W1 1 2 2 . The discerepancy at largeNW

is ascribed to bad corresponding statistics. The histogram P N( )W was constructed from a sample of 106 trajectories. Here =k T 1.5B 1 ,
=k T 1B 2 , ω = 11 , ω = 5 62 , corresponding to heat engine operation. The time between swaps τ ≃ 0.652 was about half the

relaxation time τrelax andN=100 swap gates were applied.
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direction. A consequence of this is that the peak at η in the efficiency probability increases while all other peaks
decay. That is, for long operation time the probability of ηQ coincides with the probability of η as expected4.

5.1. Increasing the power
As discussed earlier the swap heat engine works at the efficiency η ω ω= −1 2 1 regardless of the power output.
This is a great advantage over traditional engines because increasing the power has no cost in terms of reducing
the efficiency for our engine. The power of our engine can be increased simply by increasing the frequency of the
swap pulses. This is illustrated infigure 8. Figure 8 suggests that the power output saturates at a regime value as
the pulse frequency increases. The saturation value gives themaximumpower for the given ω ωT T, , ,1 2 1 2. It is
important to stress that for too-frequent swap pulses, namely, when their temporal separation τ2 is on the same
order as the temporal duration τ of the swap pulse, our simplifying assumption (namely, that dynamics can be
modelled separately by a unitary followed by stochastic relaxation) does not hold any longer. In a real
experiment the power output is expected to decay in the range of highly frequent pulses.

6. Solid-state implementation andmeasurement scheme

The swap enginemay be realized bymeans of solid-state devices, with theworking substance consisting of two
superconducting qubits [63, 64]. Superconducting qubits aremesoscopic devices (they can be ofmicrometer
size) comprising Josephson junctions, which, when operated below the critical temperature, display a quantum
behaviour that is well characterized by just two quantum states.We recall that a Josephson junction is

Figure 7. Left panel: joint distribution p Q W( , )1 . Right panel: the correspondingQ-efficiency distribution ηP ( )Q . The plots are for
ω ω= = = =k T k T3 2, 1, 1, 5 6,B B1 2 1 2 corresponding to the heat engine regime. The number of applied pulses isN=100. The

sample consists of 106 trajectories. TheCarnot efficiency is η = − =1 2 3 1 3C . The ΔE-efficiency is η η= − = =1 5 6 1 6 2C .

Figure 8.Efficiency andwork output as a function of number of applied pulses for a fixed operation time.Here = =k T k T3 2, 1B B1 2

(in units of ω1). The operation time of themachine isfixed and equal to τ=T 30op relax (τrelax is defined here as the longest among the

thermal relaxation times, i.e., τ γ= − −β ω β ω− e emax (( 1, 1))relax
1 1 1 2 2 . AtN=10 cycles, the engine has plenty of time to relax to

equilibrium, because each pulse is followed by a rest time of τ3 relax . By increasing the pulse frequency one can greatly enhance thework
output. Solid line: ω ω= =1, 0, 71 2 , corresponding to efficiency η = 0.3. Dashed line: ω ω= ≃1, 0.83,1 2 corresponding to

efficiency atmaximumpower η = ≃* 0.17.

4
According to large-deviation theory, all peaks but themost likely fall with an exponential rate, the largest of which is for theCarnot

efficiency [62].
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characterized by a capacitance and a nonlinear inductance. Depending onwhether the nonlinear inductance or
the capacitance dominates, either the phase difference δ of theCooper-pair condensate wave function across the
junction, or its conjugate variable, i.e., the accumulated chargeQ, is a good quantumnumber. In thefirst case we
talk aboutflux qubits, whereas in the secondwe talk about charge qubits. Flux qubits are typically realised by
means of a superconducting loop interrupted by several Josephson junctions. Accordingly, the two relevant
quantum states correspond to clockwise and counterclockwise supercurrents. Charge qubits are realized by
means of a so-calledCooper-pair box, namely, a small superconducting island that collects the charge. The
island is connected to ground by a gate capacitor in series with a controllable gate potential and by a Josephson
junction. In this case the two relevant quantum states correspond to zero or one extra Cooper pair in the island
as comparedwith a reference charge [63, 64].Many variations of these basic types of Josephson qubits have been
developed.

For our implementation proposal we follow the scheme presented in [26]with the necessarymodifications
and extensions. Reference [26] presents an experimental schemewhere a single Cooper-pair box (CPB), namely,
a superconducting qubit, is coupled to a resistor at some temperatureT. The resistor comprises an electronic
system coupled to a phononic one.When a photon is emitted (absorbed) into the resistor, the fast electronic
system responds by heating (cooling) abruptly and then relaxing to the thermal equilibrium set by the phononic
substrate. A nano calorimeter can then be used tomonitor the temperature of the electronic system to detect
absorbed/emitted photons. As reported in [65], sufficiently fast and sensitive calorimeters for this purpose are
currently under development and should soon be available.

To produce the swap engine, two suchCPB+ resistor systems should be implemented on the same
microchip, which does not seem to pose any particular difficulty. Each resistor is thenmonitored by an on-chip
calorimeter of the type in [65]. At variance with the setup proposed in [26], here the twoCPBs have fixed energy
gaps, so they exchange photons of well-defined energy ω i. This simplifiesmeasurement because each
calorimeter does not need tomeasure the energy of the absorbed/emitted photon but should just detect that a
photon has been absorbed/emitted. The gate operation can be implemented by coupling the twoCPBs using two
tunnel junctions connected in parallel as described in [66]. This allows for the implementation of the iSWAP
gate, namely the complex swap gate:

=U i
i

1 0 0 0
0 0 0
0 0 0
0 0 0 1

. (44)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

Figure 9, top panel, shows the scheme of the implementation.
An alternative implementation usesflux qubits operating at the optimal point, which havemuch longer

coherence and relaxation times comparedwithCPBs [67, 68]. The switchable coupling is achieved bymeans of a
third qubit sandwiched between the two qubits as demonstrated in [69]. An iSWAP gate can be effected by
means ofmicrowave driving for a targeted time duration [69]. As demonstrated in [69], theminimum time for a
universal gate is, in that set up, about 22 ns, whereas the decoherence and relaxation times are at least 0.2 μs. This

Figure 9. Scheme of two possible experimental setups. Top panel: twoCooper-pair boxes are coupled bymeans of two Josephson
junctions in parallel as in [66]. Bottompanel: twoflux qubits are coupled via a third flux qubit as in [69]. Both setups can be used to
produce the iSWAP gate (equation (44)). Each of the two qubits exchanges photons with a different resistor kept at a given
temperature. Two on-chip fast calorimeters detect single-photon emission/absorption in each resistor.
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is in agreementwith our assumption of fast gate operation, as comparedwith thermal relaxation. Figure 9,
bottompanel, shows this alternative implementation.

Bymeans of calorimetricmeasurement one can experimentally access the quantum trajectories of the type
shown infigure 4. This is achieved in the followingway. The calorimeters can detect only the heat quanta ΔQk

i

ceded to the resistors i=1, 2. If two consecutive emissions (absorptions) are observed to occur in the same bath i,
itmeans thatmeanwhile a quantumof energy Δ ω= + −E ( )k

i
i has been given to (taken from) the ith qubit by

thework source. Summing up all the ΔEk
i one obtains the total energy given to each subsystem, Δ ΔE E, ,1 2 and

thework Δ Δ= +W E E1 2. Having Δ ΔQ Q E E W, , , ,1 2 1 2 one can address the full statistics of energetic
exchanges of the engine, and accordingly can check the validity of the fluctuation relations (3), (5). Note that the
measurement apparatus can also be employed to check the coincidence of swap-induced jumps in the two
qubits, thus quantifying the goodness of the swap operation.

The employment of aflux qubit for implementation of nano coolers was also discussed in [54]. In thework
of [54] theworking substance is a single flux qubit which is alternatively coupled and decoupled from the two
baths. This is attained by embedding each of the two bath-resistors in an LCR circuit, acting as band-passfilters
centred at different frequencies ω ω,1 2. As the qubit- level spacing is switched between these two values, the
qubit interacts primarily with one resistor or the other so as to realize anOtto cycle, where interactionswith the
cold and hot bath occur in alternation and are separated by slow, adiabatic drives. This realize the same average
heat andwork exchanges as the present engine—hence the same efficiency—with the difference that the present
engineworks in continuousmode.Heat exchangeswith the two baths occur here simultaneously, and no
adiabatic drive is employed. Thismakes this approachmore promising in regard to the delivered power.

7. Conclusions

Based on a previouswork [47], we have presented a detailed discussion offluctuation relations for heat andwork
in quantumheat engines. Thesefluctuations are illustrated bymeans of an optimal two-qubit engine working in
continuousmode.We studied its full stochastic energetic exchanges, including the statistics of its efficiency. At
the average level, this engine achieves the same efficiency as the single-qubit Otto engine of [69] but is expected
to deliver higher power due to its continuousmode of operation (no adiabatic sweeps needed; no full thermal
relaxation needed).We have presented possible implementations which employCooper-pair boxes and flux
qubits as working substances, two-qubit quantumgates, and on-chip fast calorimetry for the detection of single
exchanged energy quanta. The proposed experiment would allow for the first fully stochastic characterization of
a quantumheat engine.
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